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Abstract

This paper is devoted to analysing a kind of fractional neutral stochastic system (FNSS). Firstly, by introducing the notion
of newly defined two-parameter Mittag-Lefller matrix function, we derive the solution of the corresponding linear stochastic
system. Subsequently, for the linear case, by virtue of the Grammian matrix, we give a suffcient and necessary condition to
guarantee the relatively exact controllability for the addressed case. Furthermore, for the nonlinear one, the relatively exact
controllability is obtained by fixed point and explore it via Banach contraction principle. Finally, two examples are provided

to intensify our theoretical conclusions.
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1 | INTRODUCTION

The concept of fractional calculate originally motivated by a discussion between L'Hospital and Leibnitz. After the study of
many outstanding mathematicians such as Riemann, Liouville, Euler and Hilfer, it has been developed into a successful tool in
classical analysis. It is recognized as a powerful approach to apply the integral and differential operators of integer order into
fractional even plural order, which is an useful tools in explaining real-life, particularly in stability theory?%, control theory“/0
and stochastic analysis”82, For have a more effective illustration, one can pay attention to refer the monographg!®H1213
previous studies #IST6I7ISIOR021]

Controllability issues with single delay have been addressed well. However, it is not many papers concerning the fractional
system with two incommensurate delays. In fact, the relatively exact controllability?? means when steer these delays systems to
rest, it should not only require to control the value of the state at arbitrary final time but also exsist a solution that satisfies the
initial function. Controllability plays a vital role in many application area including robotics, remote control, and so on.

The delay system can model real-world problems in a more accurate way. In? Khusainov et al. studied the existence of
solutions about the first-order differential equation with a single delay. In** Li and Wang considered two parameter delayed
matrix function of Mittag-Leffler and derived the solution of fractional delay equations. Furthermore, some scholars have begun
to extend the case of single delay to two delays. In*> Huseynov and Mahmudov analysed the following fractional neutral system

(D x) (0) = Agx(p) + Ayx (p—71) + A, (D x) (0= 7) + f(0, x(p), x(p = 7)), x(p = 7)),  p €[0,T],
x(p) =@(p), —t<p<0, r:i=max{r,7,}, 7,7,>0.

and

ey

We know that stochastic noise plays a significant role in fractional controllability problems. Because of our real life is full
of stochastic disturbances, the deterministic systems should take this kind of disturbances into account. There are many experts
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discussed disparate disturbance. In*® Wang et al. studied a kinds of stochastic oscillating delay systems driven by the Rosenblatt
distribution. In“Z O’Regan et al. researched the controllability for stochastic systems with standard Brownian motion.
Inspired by the studies above, we will discuss the following neutral stochastic system with two different delays of the model

(CDGx)p) = Agx(p) + Ay x(p = 1) + W(CDEX)(p = 72) + Bu(p) + F(p. x(p). x(p = 11). X(p = 1))
+A(p. x(p). x(p = 7). x(p ~ 1) T, p €[0.5], 6)
x(p)=@(p), -t<p<0, 7:=max{r,5,}, 7,,7,>0,

where (Ci)gﬁx) (+) is the Caputo fractional derivative, @ € (%, 11, A, A, A, € R™". B € R™™ denotes any real matrices

and 7|, 7, are the two different delays. Let I = [-7,0], 9 = [0, 5], ¢(-): I — R” be an arbitrary vector function and x(:) €

R" is an analytical solution of the Cauchy problem (Z). Here 1(p) € R™ is a control vector and the nonlinear functions F:

IXR"XR"XR" — R”, A: 9 X R" x R" X R" — R™ are continuous. w(-) is a standard d-dimensional Brownian motion.
Concerning relatively exact controllability of system (2)), we would like to address the diffculties as follows

e Due to the complexity of the two parameter Mittag-Leffler type matrix funtion %;’;2 (2[0,?[1,2[2;/)) with two
incommensurate delays, the estimation is much more diffcult.

e Different from the past-studied Grammian matrix“%, we introduce the generalized Grammian matrix and this matrix is
given by newly defined delayed Mittag-Leffler type matrix function.

e  With the help of Banach contraction principle and maximum weighted norm in Banach space, we give the sufficient
and necessary condition to guarantee the fractional neutral stochastic system with two different constant delays, which is
relatively exact controllability and it is essential new compared to some references?.

This manuscript proceeds as follows. Section 2 is a preparatory part where we list some fundamental definitions and introduc-
tory results on fractional calculus. In Section 3, the relatively exact controllability issue of linear FNSS is analyzed by Grammian
matrix and the relatively exact controllability of nonlinear case is obtained with the help of Banach contraction principle. The
applications of two examples to intensify our results in section 4.

2 | PRELIMINARY

In order to carry out the following work, we will prepare the definitions. Moreover, we are going to give some fractional calculus
formula and several necessary facts.
Let H, (Q, Bss IR”) be a Hilbert space of all §§,-measurable square integrable random variables with values in R”. R" endowed

with a norm ||z|| = \/z% + ...+ zﬁ for any z = (zl, ,z,,) € R". Hf ([—=, b], R") is the Hilbert space of all square integrable
and & p—measurable processes with values in R”. Let J = [0,T'] ¢ R”, C (J, R") be the Banach space of all continuous functions
mapping from J — R" equipped with the norm |[v||,, = max lo(p)||. For any matrix % = {a;;} € R™4  the norm of the matrix
pE
d
Ais |A| = lrgasxgl lai;l.

Definition 1. (see Feckan et al.*%). If order 0 < a < 1, for a function o(-) € C! (J, R") the Caputo derivative is

p

Cea\a _ ; _ _“i

(“D50) 0= 57— / (p=9) To(s)ds, p>0.
0

Definition 2. (see Luo et al.“* and Li et al. %), The Mittag-Leffler matrix function M, (2p%) and M, ; (Ap*) are defined by

s ka
a\ k P nxn
Ma(ﬂp)—kzz()?[ m, AeR™, a>0, peR.
s i pka
2[“=E?[—, A € R™, > 0, ER, eR.
Map G0 = 2 Fa+p) ¢ b g
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Definition 3. (see Huseynov et al.?d). If « > 0, € R, then the Mittag-Leffler matrix function of two parameter with two
different delays 7,, 7, > 0, 'é’i;ll’;z (2o, 2, 2ns-) 0 R — R™™ A A, A, € RN s

©. —-1<p<0,
T|,T ]’ _ 0’
got,l,l; ’ (2[03 2[1» ?[2; p) = © 0 (p w7~ Tz)ka+ﬂ 1 ’
Z Z Z Qk 1\ 0T, 0,7, ;’ pER,,
k=0 w;=0 w,=0 * ( ) T(ka+p) +

where

(p o wr) _{p—wlrl—wzrz, p =0T + W7y,
T T W), =

0, p<wT + 0,7,
Lemma 1. (see Huseynov et al.>)). Leta > 0, § € R, 71,7y > 0, and Ay, A, A, € R™". Then the following relation holds
5257 (2002020 )| < 25 (128 120 126 0) < 2P M (2] 2] 2] 50) . o € R

where p/~'M Ao ||, |2, ]], ||, 5 p) is the norm of it, such that
a,p 0 1 2

phatp=1

Mo (110 0) = 3, 30 3 0w v s

k=
Lemma 2. (see Tian et al.”). Forall y,p >0and « € <— 1) the following inequality holds

Y o— oa— oa—
m / (p— S)z : My, (752 1) ds < My, (7.02 1) .
0

Lemma 3. (see Huseynov et al.?>). The solution of the following system

(Cﬁ)&x) () =Upx(p)+ A x (p—1)) + A, (Cﬁ)&x) (p—1) + f(p), pEI0,0],
x(p)=@(p), —t<p<0, 7:i=max{r,7,}, 7,7,>0

can be represented as
0

x(p) zg;ljrz (Ao, A, Uy: p) (00) — Uy (—7,) ) + / & (Ao A, Aip— 7 —5) A (s)ds

-7,

+ 2[0, AL p—17y — s) 2, p(s)ds

+ 7112 2[0,%[1,2[2, )f(s)ds, p€[0,b], 7,,7,>0, TI=I’1’1aX{T],T2}.

[
e

3 | MAIN RESULTS

3.1 | Linear case
We will consider the exact controllability of following linear stochastic system with two different delays

{ (C‘})g+x) (p) =Upx(p) + A x (p - Tl) + U, (C‘})g+x) (p - 12) + Bulp) + f(p) + Z(p)dz;;”), p € [0,5],

3
x(p)=@(p)., —t<p<0, 7:=max{r.75}, 7,7,>0,

where A : [0, 5] — R™ is continuous. We know that the corresponding linear deterministic control system is given as follows

(“DG.x) () = Aox(p) + Uyx (p = 7)) + A, (D x) (p— 7)) + Bulp) + f(p).  p€[0.5]. 7.7, >0,
X(p)=@lp), —t<p<0, 7:=max{r,5}|, 7,75>0.

“
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Using Lemma 3] the solution of @) is
0
x(p) =%;1{12 (Ao, A, Uy: p) (00) — Uy (—7,) ) + / e (Ao A, Wi p— 7 —5) A (s)ds
0 »
+/ &7 (A, A, Uy p —5) Wyp(s)ds + / Ern (Ag, Ay, Aps p — 5) Bu(s)ds (5)
0
0/

+ [ & (Ao UL Wysp—5) f(s)ds, pE[0,B], 7,7, > O,
When substituting p = b in (3)), we have
0
xX(b) =&, (Ao, Ay, Ay b) (0(0) = W (=175) ) + / Eom (Ao, Ay, Ay b— 7y — 5) Ay p(s)ds

-7
b

0
+/ &7 (Ao Ay, Ay b — 75 — 5) Wy p(s)ds + / Eran (Ao Ay, Ays b — 5) Bu(s)ds ©)
- 0

b

+ [ & 72 ?[0,2[1,2[2, —s) f(s)ds.

o\

The linear bounded operator £, € L (H2% ([0,6],R"), H, (2, T, IR")) can be written as

b
/ En (Ug, A, Ay; b — 5) Bu(s)ds.
0

Here the adjoint is expressed as
£;: Hy (.8,.R") - HS (0,6, R"),
and its defined as .
Ly =" [0 (o, Uy, Uib—5)| E{x18,}.
Consider the operator F’; el (H2 (Q, & o R") , H, (Q, 3 29 R”)) about linear controllability
I ()= £, ()
b

= [ (0, 0,200 )88 [s5757 (02, 2050 )] E (-1, s, @
0
and the correspondingly deterministic Grammian matrix G’; € L (R",R") has a form
b
/ £ (9,9, %y b — 5) BB [g;’,fz (2. 2, 2,05 s)] " ds. ®)
0

Definition 4. (see Wang et al.>?). System (@) is called relatively controllable on [0, b], if for an arbitrary initial vector function
@(p) and the final state of the vector x; € R”, there exists a control 1(p) € R” such that the system (@) has a solution x that
satisfies the initial condition x(p) = @(p) and x(b) = x;.

Definition 5. (see Luo et al.). System (3] is called relatively controllable if
Ry (%ac) = H, (Q’ 7 R") ’
where %, (%ac) = {x(b, u) € H, (Q B IR”) cu() € %ac} and %, = HZ% ([0, b], R™) denotes set of all admissible controls.

Lemma 4. System (@) is relatively controllable if and only if the Grammian matrix (8) is nonsingular.



YUAN AND LUO | s

Proof. Suffciency: Assume that Gf is nonsingular, so there exists its well defined inverse [Gi’] ~'. The function u(s) € R"is
expressed by

u(s) = B* [%’;}&fz (Ao, Ay, Ay b — s)]* [Gl;]‘l B, ©)
where

0
B=x, =& (Ap, Ay, Ap; b) (0(0) — Wy (—7,) ) — / & (U Ay Ay b— 7y — 5) Ay p(s)ds

-7,

0 b
_ / € (o, Ay, U3 b— 1) — 5) Wyp(s)ds — / & (Ao, Ay, Ay b —s) fs)ds,
-7, 0

with the chosen arbitrarily vector x; € R".

Inserting (9) in (6)), one can derive

0
x(b) =8\" (Ao, Ay, Ay; b) (@(0) — Wy (—75) ) + / Eom (Ao, Ay, Apsb— 7y — ) Ay (s)ds

-7,
b

0
+ / T] 1:2 2[()7 2[1, 2[2, - S) 2[2¢(S)ds + / %;}‘;TZ (2[0, 2[1,2[2; b— S) f(S)dS
- 0
b

+ / &1 (A, Ay, Ay b — 5) BY* [%;};z (Ag, Ay, Ays b — s)] [G°]™ pds
0
The boundary condition x(p) = @(p), =7 < p < 0, 7 := max {7,,7,}, 7,7, > 0 holds by Lemma Thus the system (@) is
relatively controllable according to Definition 4]

Necessity: Under the assumption that G’T’ satisfy singular, then there remains at least one nonzero state X, € R". Therefore, we
have

b
/ & (Ao, Ay, Ay b — )5853*[g;j&fz(2[0,9[1,2[2;b—s)]*ds5cl
0

5182 (2,2, 20535 — 5) B %7827 (% %, 2,55 - 5) B| ds

:0/,

I
o
S S

2
S1EL™ (Ao, Uy Ui b — ) B ds,

which can derive that

XyELT (Ug, Ay, Az b—5) B =0,Vs € [0,b], (10)
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where 0 represents n dimensional zero vector. Because system (@) is relatively controllable, according to the Definition [4] a
control function u,(p) exist and enable the initial state to zero at time b, namely
0
x(b) =&\ (A, Ay, An; b) (0(0) = Wy (—7,)) + / & (Ap, Ay, Aysb— 7 — 5) Ay p(s)ds

-1,
b

0
+ / g;,l(;rz (mo’ml’mZ;b - S) Q[2(»0(5)‘13‘ + / g‘;lt;ﬁ (2[0, 2[1, 2[2;17 - S) %HO(S)dS

QY
-7, 0
b
+ / &oon (Ao, Ay, Ay b —s) f(s)ds
0
=0.
Moreover, by Definition E], there also exists a control 1t (p) that transfers the complete state to the state X; at b, namely
0
x(b) =%;jl’72 (Ao, A, 2Uy: b) (@(0) — Wpep (—175) ) + / &n (A, A, Apsb— 7 — 5) Ayp(s)d's
0 b
+ / %{;‘612 (Ao, A, Apsb— 7 — 5) Wyep(s)d's + / & (Ao, Ay, Ay; b= 5) Buy(s)ds (12)
-1, 0
b
+ / g;}(;% (2[0, 2[1, 2[2; b - S) f(S)dS
0
:561 .
Linking the formula (TT) and (IZ)), then
b
% = / Eom (Ao, Ay, Aps b — 5) B (1y(s) — uy(s)) ds,
0
multiplying both sides of the above equation by X7 , and we have
b
X% = / X (g, Ay, Aysb—5) B (1,(s) — 1y(s)) ds.
0
We acquire X; = 0, which is contradicted with X; being nonzero. Thus, Gf is nonsingular. O

Lemma 5. (see Klamka®l). The following conditions are equivalent
(1) System @]) is relatively controllable on [0, b],
(ii) System (@) is relatively exactly controllable on [0, b].

3.2 | Nonlinear case

Before starting this part, we assume that the following assumptions hold

e (H,) The functions H € C(JI xR" xR"xR",R"), A e C@HIX R"XR"xR", [R”Xd), then there exist two positive
constants L, L£,, such that

- (@) :
”H (@, Kl’gl) = H (p, o, Kz’gz)“

<2, (Jlow = ol + I = ol + s - 2l
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- (i)
“Z (Pa 1, ’(1,€1) -A (Pa @y, K29€2)“2
< £, (Jlon = ol + I = ol + s - <)
p €10,b],mw,0,,K,,k,,61,6, € R".
e (H,) Set

N := max E||H (p,0,0,0) ||%,
0<p<b

M := max E[|A (p,0,0,0) ||,
0<p<b

M, = max lle (o) I,

K, :‘(El,?i‘bgf 2 (o, Ay, Ass p ) ,

Ky 1= max &7 (1] 20l 120 0)*
Ky 1= max & o (1280l 126,11 12 )7

Ky = max Mo, (%)) |20 |20 0 - 5)°.

o (H3) Set K, :=|| G® |I>, K5 :=| [(T)}17" ||, and
3rQ2a — DK,
2

K := (142K,Ks) (bL) + L£y) < 1.

Now we give the solution of (2)) with this form

0
x(p) =%;’1{T2 (2. A, Ay p) (9(0) — Wy (—1,)) + / & n (Ag, A, Apsb— 7 — 5) Ay(s)ds

-7,

0 p
+ / €y (Ao, Uy Wi p =7y = 5) Wyep(s)ds + / g (A, Ay, Asi p — 5) Bu, (s)ds
=z, 0 (13)
p
+ / %;3{;’2 (2[0,2[1,2[2;,0 - s) H (s,x(s),x (s — 1'1) , X (s — 72)) ds
0
p
+ / %;‘;2 (9[0,?[1,2[2;,0 - s) A (s,x(s),x (s - Tl) ,X (s - 12)) duw(s).
0
Furthermore, the admissible control function
u(p) =B [E27 (%, 4, %50 — 5)| E{ [0 n13, ) (14)

defined for p € [0, b], where
0
n =x1 - g;’ll,rz (2[0, ?[1, 2[2; b) (@(0) - 2[2(,0 (_Tz)) - / %;}I;TZ (2[0, 2[1, 2[2; b— T — S) ml(p(s)ds

-7
b

&7 (Ao, AL Ay b— 7, — 5) le(p(s)ds—/%;j(;fz (Ao, Ay, Asys b —5) H (s5,x(s), x(s — 7)), X(s — 7)) ds
0

\O

/ %TI TZ ?[0, AL AUy b ) A (s, x(s), x(s — 7;), x(s — 12)) duw(s),

and x, € R" is arbitrarily.
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Inserting (I4) in (I3), it is easy to check that the control u (p) steers x, to x; at time b. In order to establish sufficient
conditions, we let

= {x() € C([-7,b],R") : x(p) = @(p), —7 < p < 0}

be a Banach space with norm || - ||, as follows
2 Ellx*(o)II?
llx|l; = max § ———— 5,
0=p<h | My, (Ap2a—1)
where 4 > 0, and ||x*(p)||> = max Ix®I* © = max{z,,7,}, where 7,7, > 0. Since two norms || - ||, and || - ||, are
equivalent, (C_, ||-]]) is alsoaBanaCh space We will use the following fact that max ||x(s)|| = X*(p) and max ||x(s) Y| =

X*(p) — y*(p). In addition, we denote x(p) := me;lxo x(p + h). Let
—7<h<l

* 2
0 =4 xeC, : xll, = max Bl U, U
0<p<b My, (/lpza—l)

2 o
36K, K AE||x]>+ (6 + 36K, K ) A[K, ”(p(O)—Q[z(p(—Tz)” +2 [P 2K M+ |20, |P 2 K MP 4+ 2 KN + 2 'K3M]
B A—6K T 2a—1)(bL,+L,)

then ®, C C,, is defined as

The operator ¢ : ©, — ©, is described as o
0
(x)(p) =& (Ao, Ay, s p) (9(0) = Wyp (—7,) ) +/ Eom (Ao, Ay, Aps p— 7y — 5) Ay p(s)ds
i p
+ [ & (A AL Ay p— 75— 5) Q[Zqo(s)ds+/%;,llfz (A, A, Ay:p— 5) Bu, (5))ds
0 (16)

%;1&’2 (2[0, AL Uy p — s) H (s,x(s), x(s — 7)), x(s — 1'2)) ds

+ %{;‘:Z (2[0, AL p— s) A (s, x(s), x(s — 7;), x(s — 1'2)) dw(s).

+
St~ T \o

Under the condition of operator ¢ has a fixed point, therefore system (2)) has a solution x(p) for u () € %,,., which satisfy
(px)(b) = x(b) = x1, x(p) = @(p), p € [-7,0], 7 := max {Tl, 12}. In other words, system (2) is relatively exact controllable.

Theorem 1. Suppose that hypothesis (H,)-(H;) set up and system is relatively exactly controllable. Then system is
relatively exactly controllable on [0, b].

Proof. In order to make the following process clear we divide it into the following steps.
Step 1: We prove that ¢ maps ©, into itself.
By using (Hz) and Jensen inequality, we can acquire

Ell(x)(p)I?
M2a—1 (lpz"’_l )

<«
MZa—l (APZa 1

r] rz ?
(Ao, Ay, Ays p) (9(0) — Apep (—72))”

0
! R o _
* W6E / %a,a (2[07 2[1, 2[2’/) T S) ml(p(s)ds
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TR S—'

%T‘ 2 (U, Ay, Ans p— 75 — 5) Uy p(s)ds
Mgy (Ap>*1)

T 6F

My, (4p%1) & (Up, A, Wyip—s) H (s, x(s),x (s —7y) . x (s — 1)) ds

/
[

+ —_—
MZa—l (Apz"_])

! 6E /%;’11;72 (2[0,?[1,?[2;p—s)Z(s,x(s),x(s—rl),x(s—rz))dw(s)
0
p 2

1 ¢
My, (/1,02“_1 )

E / & (2[0’ A, Aysp— S) Bu(s)ds
0

:II+IZ+I3+I4+IS+I()

With the aid of (H,), we have

I, =W6E| &0 (Ao, Uy, Asip) (0(0) = Aygp (_72))”2
<6K, [ 0(0) ~ Mo (~5,)] -

Motived by Holder inequality and (H,), we have

2

1
I,=—6E
’ Moy (Ap%1)

7

0
L/ %;,'&12 (2[0’2[1’2[%0 I S) A, p(s)ds

<6120, ||* 2K, M,
and

1
I, =————6F
’ Mo,y (Ap*e1)

0
\‘/ g;,l(fz (2[0’ A, Ansp— 15 — s) A, p(s)ds

)

<62, |]° 72K, M?.

By employing Holder inequality, (H), (H,), Lemmal[l} and Lemma 2] we have the following

1
I 56”m / |
=
<12b—
M2a—l (/lp2a—l) ) |

p

1 / ’
M2a—1 (APZa—l

SI2bL / (
2(1 1 2a 1

g (U, Ay, Ays p— s “ [E”H 5, x(s),x (s = 7;) ,x (s—r2))”2ds

I (A, Ay, A; p—S)”z - ”H (s,x(),x (s=7,) . x (s = 7)) = H(s,0,0, 0)”2 ds

7,7 2 2
&7 (Ao, 1 Wi p—s) | EN1H(5,0.0,0)1 ds

- 2 My, (4577) 2
% 2[0 AL A P—S)” W[E”x(s)” ds




YUAN AND LUO

2 My, 1(/ISZ“ !
(
a1 (A2

H2 MZ(Z 1

p
%‘Q&Tz (Qlo,gll,ﬂz;p—s)u [E”x(s—'rl)”2 ds

+12bﬁlm/|
=i

& (U, Ay, Ay p —s) [E||x(s—12)|| ds

Ap2a 1

7,7, 2 2
B (g, 2y A p—s) || ENNH(s,0.0,0)] ds

+12b—] / |
Moy ('1/’2"_1) )
1 /P
<36, ———MM
1M2a_1 (Ap2e-1) o‘

1 2a-2
+ 12bK;N ——— /(p—s) ““ds
MZa—l (Ap2a—1) o

7,7, 2 E A*( ) 2
& (mo’ml’ﬂzm—s)” Moy (257) ds&fﬁ%

P
) 1 . _ 12p%«
S36bK3£1||x||iw/(p— S 2 My, (ﬂsz" 1) ds + S — 1K3N
36bK.L,TQa — 12b2"’
< : '/1 || I3+ 1K3N

Similarly like above algorithm and by Itd’s isometry, we get

2M2(1—l (ﬂsza_l)
M2 4 (/1 2a —1)
2M2a | s 2a—1

B (%, %, %30 —5) | E [|x(s)|I> ds

1 , ( ) )
' %W/ 2 (o 289 =) [ BB s = s
1 ’ 2M2a (ASZa 1) ,
w120, | B (2 =) [ TR E e
’ raet (AP%*71) | * (o, 21, s p S)“ L (As) [|x(s = )||" ds

P

1
+ 12K, M /(p — )22y
3 —_ (/IpZa—l) )

7,7 2a-1 E ”5%*(:0)”2 1 20,_1
s36£2W/ ‘gl > (Ao, Ay, Wi p—s ” Moy (As )ds&%]—MZH (Apza_])+l2K3M—2 —
<36K,L, %7 /(p = )" 2 My, (A5 ds + 1251 K;M
= 342 A ot ( pZa—l) / 2a—1 2a—1 3

36K;L,IQ2a—1)  ,  12p2!
< ; 115+ 5= K3 M.
Motived by Jensen inequality and (H;) we have
b 2 by—1 2 1 2 7,7, . _ _ 2
1, <36 |G| ||| Mo l[E x|+ E [ 87572 (2o 261,23 ) (00) = 2yp (—72)) |
2 0 2
+E|( [ & (Ao, Ay, Wnsb— 1 —5) Ay(s)ds|| +E L/ &l (U Ay, U3 b — 7y — 5) Wyp(s)ds

]

2

+E & (Ag. A, Ui p—s) H (s, x(s),x (s —7y) . x (s —1,)) ds

o\n:. “‘L\o
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2

p
E /%;"[f?(ﬂo,ﬂl,ﬂz;p—s)Z(s,x(s),x(s—rl),x(s—rz))dw(s) ]
0

2
<36K,Ks [EllxI + Ky [[0(0) = 20 (=) | + 120 22K, M7 + |2, | 2Ky

6bK; L TQRa—1) _ ,  2p OK LI 2a 1) oo bz‘“
e 2 P ]
+ p %I + 5 —7 KsN + ) %115 + 5 — K5
Hence
Ell(¢x)(p)]I*
Mgy (4p%)

I+ L+ 1+ 1+ Is+ Ig

2
<6Kq [[0(0) — 2y (—=) | + 6|2, |* 72K, M7 + 6 |20, 2 Ky M7

360K, £ T2a—1) o 121, 36K, L,TQa—1) o [2p%]
KN ;
* ; 111 + 57 Ka N + == I3 + 5 K
2 2 2
+36K,K;s [[E||x||% + Ky ||(P(0) -0 (—72)” +|2 |7 2 K M+ ||| P KM
6K, L TQa—1) ., op 6K5L,TQa—1) o opa-
+ |12 + KN+ —2 27 )2 + KM
- IRI5 + 5— K 7 1113 + 5—— KM
2 2 2
<36K,KsE||x|> + (6 +36K,K5)[Ko [ 0(0) = 2y (=) |+ |20, [|* 2K, M7 + |2 ]|* 2K, M7
6bK4L, T2 — b 6K, L,T 2 2pe-1
# PRI D+ 20k 4 SR Dy 2 ).

From the above, one can concludes that there exists a constant C > 0, such that

Ell(@x)(p)II* < C(1 + [I%]1%).

Hence, ¢ maps O, into itself.
Step 2: We claim that ¢ is a contraction mapping. In fact, for any x, z € ©,, by applying Jensen inequality, we derive that

mem—@@ww
MZu—l (APZa—l)
P

E / %;"0’[’2 (2[0,?[1,2[2;,0 - s) [H (s, x(s), x (s - rl) ,X (s—rz))—H (s, z(s), z (s - 11) ,Z (s—rz))] ds

2

<— -
My, ( y) pZa—l)

0
P
3 F /%;I(;rz (Ao, A, 2Uy; p—5) [K (s’x(s)’x(S_Tl)’x(S_Tz))_z(S’Z(s)’Z(S_Tl)72(5—72))]dw(s)
Moy (ﬂﬂz‘H) s ’
" 2
3
b | [ & (2, %y, %yip — 5) B, (5) — u,(s)d
| (=) B0 o

Applying Holder inequality, (H,), Jensen inequality, Lemmal[I] (H,), and Lemma[2] one can get

» 2

J, = E / %TI’TZ (2(0,2[1, 9[2;p—s) [H (s,x(s),x (s—'rl) , X (S—Tz))—H (s, z(s), z (s—rl) ,Z (s—'rz))] ds

M2a 1 ( 211—1)

M2 | Mza—l /‘

2 2
%T‘ 2 ?[0,2[1,?[2,,0 N “ [E”H (s,x(s),x(s—rl),x(s—‘rz))—H (s,z(s),z(s—rl),z(s—rz))“ ds
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p
3bL K E ||£*(s) — 2%(s)|?
< 183 /(p— S)za_zMza | (ASZa—]) ds max l1%*(s) Il
M2a—1 (APZa—l) 0<s<b MZa—l (ASZa—l)
3I2a — 1) .
S K 1 - 211
Similarly like above algorithm and by It&’s isometry, we get

’ 2

J,= E / &n (2[0,2[],2[2;p—s) [Z (s, x(s), x (S—T]) , X (s—r2))—z (s, z(s), z (s—'r]) ,Z (S—Tz))] dw(s)

M2a—1 ( 201 )

p
ST e 2l /
M2a] o .,

30,K El125(s) — 25(s)]I2
T / S)za_zMZa—l (ASZa—l) ds max ||X (S) (S)”
T Moy (407! 0s5<b My, (As2e1)

3ra-1

&, ’2 2[0,2[1,?[2,,0 s ” [EHA s, x(s), x(s Tl) x(s—rz))—z(s,z(s),z(s—rl),z(s—rz))H2ds

0

PPNty
LKs || - Z||,1~

One can apply Jensen inequality, It6’s isometry, and (H3) to derive that

2
P
3
Jy=—————F &7 2[,2[,2[; — B . —u, d
3 Mo,y (ﬂpza_l) 0/ ax ( 0> <> s P S) (u,(s) — u,(s))ds
6K,K. ; i
< M /‘5;1(;12 (Ao, Ay, Aysp—5) [H (5,x(5), x (s—71) . x (s=75) ) —H (5, 2(5), 2 (s=7,) , 2 (s—7,) )] ds
My,y (ﬂp2a—1) / ;

p
6K, K

+ —_—
Mgy (Ap>*!
6K, K KsTa = 1)
- A

1% — 2115 (BL, + L,).
From the results of J,, J,, and J5, we get the following

900 - @i 20| ?
My, (/1/’2"’_1)

<+ + J;

3 Qa — 1) o 3rQa —1) o
Sf[qlg 1% — 2115 + T£2K3 1% — 2113

6K, K,KTQa—1)

+ 1% = 2115 (bL, + L)

3rQRa — 1)K, a2
=f(1 +2K,K5) (DL + L) 1% - 215
=K |I% - z|15.

Since K < 1, by (H3), ¢ is a contraction mapping on ®, and so ¢ has an unique fixed point x € ©, with u,(-) € V,,;, which
is the solution of (2)). The proof is completed and we can conclude that system (2) is relatively exactly controllable.
O

) E / %{;‘f (Qlo,ﬂl,g[z;p—s) [Z (s, x(s), x (s—rl) ,X (s—rz))—z (s, z(s), z (S—Tl) ,Z (s—‘rz))] dw(s)
0

2
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4 | EXAMPLES

4.1 | Example 4.1

Considering the neutral stochastic system with two different delays, firstly, we will talk about the linear case
Leta =0.6,7, = 1,7, =0.5. Then, r = max {r|,7,} = 1,b=1,

{ (CDYOx) () = Agx(p) + Ay x (p = 1) + Ay (“D[x) (0 = 0.5) + £ (p) + Bu(p) + AP)TZ.  p €[0.11,

17
x(0) = p(p) € C([-1.OLRY), —1<p<0, 7i=max{r.0}. .20, a7

0.5 0.7 10 0.6 0.3 0.50+0.9 -
h — RZXZ — RZXZ — RZXZ — RZ A —
where 2, <o.6o.8>E e <01>E + and 2, <0.50.4>e 00 <0.2p+0.4>e # A0

pr > € R?. The Grammian matrix of system is
1
Gl = / B (o %y, Ui 1 5) BB B0 (% U, %31 = 5)| ds 1= Gy +Gy
0

The delayed Mittag-Leffler type matrix functions &> (2, 2, Ay; (+)) is

0.6,0.5
®, -1<p<0,
1 p=0
1,05 R & ,
g0.6,().5 (2[0, 2[1 s 2[27 P) = © ®© © (9=, =0 SmZ)O'Sk_O'S
RS i Ps S
Z m12=0 I (m1,05m,) s #€Rx

where

G12 %1,0.5 (2[0,2[1’ 2[29 1 - s) BB* [gl,O.S (2[0’2[1,2[2; 1-— s)]* ds.

0.6,0.5 0.6,0.5

0.5
Gy = / %5.23.5 (2[0,2[1,9[22 1- S) BB [g&gjs (2[0’2[1’2[2; - s)] as,
0
1

0.5
By simple calculation, we can obtain

G = (1.0666 1.2435>
117\ 1.2435 1.4498 /°
G. = <4.9385 0.6639)
127X 0.6639 1.5940 |
So
Gl - <6.0051 1.8774)
0 1.8774 3.0438 )’

and its inverse
]—1 _ < 0.2063 —0.1273>

—0.1273 0.4070

and we can find that G(l) is positive definitely, so system (I7) is relatively controllable on [0, 1].

4.2 | Example 4.2
Considering the relatively exactly controllable of the following nonlinear case
(CD0x) () = Agx(p) + Ay x (p = 1) + Ay (“Dx) (p = 0.5) + Bu(p) + H(p, x(p), x(p — 1), x(p — 0.5))
+A(p, x(p), x(p — 1), x(p - 0.5))”;—”:, p € [0,1], (18)
x(p)=p(p)€ C([-1,0,R?),-1<p<0, 7:=max{r,7,}, 7,7,>0,
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and we let A, = <O(')6 0(.)4> €R»Z Y, = <O(')3 0(.)2) € R 9, = <82 8.1 > € R, and B = <O(')2 O(.)l > € R,

H(p, y(p), y(p— 1), y(p —0.5)) = (

= (1) + 10— D)+ ,(p = 0.5))
082
(32(p) + y2(p = 1) + y3(p — 0.5))

o042

- -1 -0.5
A(p,y(m,y(p—1>,y<p—0.5>>=(eo.z,,-z (@) + 0= D01 ))>,(p(p>= ( ’ >
2

(J’2(.0) + (=1 +y(p— 0.5)) 2p
The controllability Grammian matrix is
1

G =/%;;;z (g, A, Ay 1 — 5) BB* [%;;;z (2. 2, 2,1 1 —s)rds := Gyy + G
0

The delayed Mittag-Leffler type matrix functions & o 6 0 5 (2[0, A, Ay ( ))
0, -1<p< 0,
I, =0,
Groos (Ao A 2Wip) 1= 6 o o (p-my—0.5my) % ’
Z 2_: 2_: O (m1,0.5m2) W, pER,.

0 m

By simple calculation, we get the controllability Grammian matrix

G — 2.2596 x 10~ 0
2 0 2.3476 x107¢ |’

0.5002 0
G22_< 0 0.1211)'
Gl = 05005 0 '\

0 0.1211

-1 _ (19114 0
[65] _< 0 0.8868)'

We can obtain that G(l) is positive definitely, so system (I8) is relatively exactly controllable on [0,1]. Thus, we have

(Gyx,x) = 1.9114x7 + 0.8868x% > h||x]||°,

So

and

where 0 < h < 0.8868, and we can let 4 = 1, then we can easily obtain K5 = 0.8782, K, = 0.5005, K5 = 0.2505. Letting
3rRa — 1K
_ Qe - DK (1+2K,Ks) (bLy + L)

=3x4.5814 x 0.8782 x (1 4+ 0.2508) x (0.0302 + 0.0306)
=09198 < 1,
which implies that all the conditions in TheorenyT|are satisfied. So system (I8) is relatively exactly controllable.

S | CONCLUSIONS

This paper considers the relative exact controllability of fractional neutral stochastic system with two incommensurate constant
delays. With the applying of controllability Grammian matrix, a result of relatively exact controllability of linear part FSDS is
obtained. The nonlinear part of relatively exact controllability is given by using the Banach contraction principle. Controllability
criterions for linear and nonlinear systems are also established, respectively.

In the forthcoming papers, we will focus on fuzzy fractional delay system and study the controllability of the addressed
system. For this fuzzy fractional system, it is different from traditional fractional differential equations because of its variables
and parameters are uncertain. But until now, there are few authors paying attention to it.
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