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Abstract

Consider general minimum variance distortionless response (MVDR) robust adaptive beamforming problems based on the

optimal estimation for both the desired signal steering vector and the interference-plus-noise covariance (INC) matrix. The

optimal robust adaptive beamformer design problem is an array output power maximization problem, subject to three constraints

on the steering vector, namely, a (convex or nonconvex) quadratic constraint ensuring that the direction-of-arrival (DOA) of the

desired signal is separated from the DOA region of all linear combinations of the interference steering vectors, a double-sided

norm constraint, and a similarity constraint; as well as a ball constraint on the INC matrix, which is centered at a given

data sample covariance matrix. To tackle the nonconvex problem, a new tightened semidefinite relaxation (SDR) approach

is proposed to output a globally optimal solution; otherwise, a sequential convex approximation (SCA) method is established

to return a locally optimal solution. The simulation results show that the MVDR robust adaptive beamformers based on the

optimal estimation for the steering vector and the INC matrix have better performance (in terms of, e.g., the array output

signal-to-interference-plus-noise ratio) than the existing MVDR robust adaptive beamformers by the steering vector estimation

only.
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Consider general minimum variance distortionless response (MVDR)
robust adaptive beamforming problems based on the optimal estima-
tion for both the desired signal steering vector and the interference-
plus-noise covariance (INC) matrix. The optimal robust adaptive beam-
former design problem is an array output power maximization problem,
subject to three constraints on the steering vector, namely, a (convex or
nonconvex) quadratic constraint ensuring that the direction-of-arrival
(DOA) of the desired signal is separated from the DOA region of all
linear combinations of the interference steering vectors, a double-sided
norm constraint, and a similarity constraint; as well as a ball constraint
on the INC matrix, which is centered at a given data sample covariance
matrix. To tackle the nonconvex problem, a new tightened semidefi-
nite relaxation (SDR) approach is proposed to output a globally optimal
solution; otherwise, a sequential convex approximation (SCA) method
is established to return a locally optimal solution. The simulation results
show that the MVDR robust adaptive beamformers based on the opti-
mal estimation for the steering vector and the INC matrix have better
performance (in terms of, e.g., the array output signal-to-interference-
plus-noise ratio) than the existing MVDR robust adaptive beamformers
by the steering vector estimation only.

Introduction: Array signal processing has wide applications in areas
such as radar, sonar, communication, and speech processing [1]. Adap-
tive beamforming is one of the basic problems in array signal processing.
The traditional adaptive beamforming techniques are not robust, mean-
ing that small errors (such as the deviation between the estimated and
actual steering vectors of the target signal, the calibration error of the
array elements, etc.) can significantly reduce the performance of the
beamformer [2]. In the past two decades, with the help of new techniques
such as convex optimization, robust optimization and machine learning,
robust adaptive beamforming techniques have made great progress [3–
5].

A well-known robust adaptive beamforming technique is the mini-
mum variance distortionless response (MVDR) robust adaptive beam-
forming technique, which uses the optimal/suboptimal estimate of the
steering vector of the target signal to obtain the beamformer. In [6], the
problem of the optimal estimate of the steering vector is transformed into
a problem of maximization of array output power, satisfying the unit
norm constraint and a similarity constraint. The optimization problem
is a special quadratically constrained quadratic programming (QCQP)
problem. The Lagrange multiplier method is leveraged to quickly obtain
an optimal solution. In [7], the optimal steering vector estimation prob-
lem is formulated as a QCQP problem with two non-homogeneous con-
straints, and the globally optimal solution is studied using semidefinite
relaxation (SDR) techniques. In [8], a maximization problem of the array
output power is considered, subject to the constraints of the direction of
the target signal in the actual signal angular sector and the unit norm
of the target signal steering vector. Since the optimization problem is a
QCQP problem with two homogeneous constraints, hence the SDR tech-
nique and a rank reduction postprocess (see, e.g., [9]) are employed to
obtain an optimal solution. Extending the work in [8], another optimal
steering vector estimate problem is proposed in [10], where the array

output power is maximized, subject to a new nonconvex quadratic con-
straint to ensure the target signal direction inside the actual (predefined)
signal angular sector, the double-sided norm constraint of the signal
steering vector, as well as a generalized similarity constraint. This is
a typical nonconvex QCQP problem with three non-homogeneous con-
straints, and generally it is not possible to obtain the globally optimal
solution using the SDR technique. Nevertheless, several global optimal-
ity sufficient conditions are obtained to ensure that an optimal estimation
of the steering vector can be found efficiently (for instance, the usual
similarity constraint is imposed, rather than the generalized one).

In addition to the MVDR robust adaptive beamforming technique
mentioned above, there are other techniques to get an optimal robust
adaptive beamforming vector. For example, maximization the worst-
case signal-to-interference-plus-noise ratio (SINR) based techniques
[11, 12], random matrix theory based techniques [13], distributed robust
optimization based techniques [14, 15], and reconstruction techniques
for the signal steering vector and the interference-plus-noise covariance
(INC) matrix [16–18].

In this paper, we consider the problem of MVDR robust adaptive
beamforming based on the optimal estimation of the INC matrix and
the target signal steering vector. Different from [10], we herein consider
the optimal estimate of the INC matrix additionally, which leads to an
improvement of the array performance, in terms of, e.g., the SINR. The
optimal estimation problem is to maximize the array output power, sub-
ject to a sphere constraint on the INC matrix and some quadratic con-
straints over the steer vector. Then, this nonconvex problem is relaxed
into an semidefinite programming (SDP) problem (namely, the SDR
technique is applied to the problem). To output a rank-one optimal solu-
tion for the SDP problem, we propose a tightened SDR technique, which
means that an additional second-order cone (SOC) constraint is imposed
to the SDP problem without changing the optimality. By doing so, we
expect that rank-one optimal solutions for the tightend SDP problem
can be output and thus a globally optimal solution for the original opti-
mal estimation problem is obtained. Then we have to design a sequen-
tial convex approximation (SCA) algorithm to solve the original optimal
estimation, provided that the tightened SDP problem is solved and a
high rank solution is generated. We show that the proposed approxima-
tion algorithm leads to a locally optimal solution for the optimal estima-
tion problem (in fact, we observe in simulation that this local solution
is globally optimal in most problem instances). As will be seen in sim-
ulation, the new optimal estimation problem leads to a better MVDR
beamformer than the one given by a solution for the previous optimal
estimation problem.

Signal Model and Problem Formulation: In many applications, the tar-
get signal steering vector 𝒂 is not known accurately. Therefore, the steer-
ing vector can only be estimated by the antenna array geometry, the
parameters of the target signal, etc., to obtain �̂�. Assuming that it is the
optimal estimate in some sense and that data sample covariance matrix
�̂� is sufficiently close to the exact INC matrix 𝑹𝑖+𝑛, then the following
beamvector

𝒘★ =
1

�̂�𝐻 �̂�
−1
�̂�
�̂�

−1
�̂� (1)

is called MVDR robust adaptive beamformer.
In [8], the optimal steering vector estimate �̂� is derived by addressing

the array output power maximization problem. This approach requires
two constraints: ensuring the direction-of-arrival (DOA) of the desired
signal is separated from the DOA region of all linear combinations of the
interference steering vectors, and maintaining the norm of the steering
vector. Such a steering vector estimation problem can be modeled as
follows,

minimize
𝒂

𝒂𝐻 �̂�
−1
𝒂

subject to 𝒂𝐻�̃�𝒂 ≤ Δ0
∥𝒂∥2 = 𝑁,

(2)

where �̃� is defined as,

�̃� =

∫
Θ̃

𝒅 (𝜃 )𝒅𝐻 (𝜃 )𝑑𝜃, (3)

and 𝒅 (𝜃 ) is the steering vector defined by the antenna array geometry
for angle 𝜃 . In (3), the angular sector Θ = [ 𝜃min, 𝜃max ] is the region
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where the DOA of the desired signal is located, Θ̃ is the complement of
this angular sector (assumed to be the interval of the interference signal
direction), and the parameter Δ0 is determined by the following maxi-
mum value,

Δ0 = max
𝜃∈Θ

𝒅𝐻 (𝜃 )�̃�𝒅 (𝜃 ) . (4)

Therefore, if the steering vector 𝒂 satisfies the constraint 𝒂𝐻�̃�𝒂 ≤ Δ0, it
means that its direction is located within Θ (for example, see [8, Figure
2]).

Extending the work in [8], a more generalized problem pertaining to
optimal steering vector estimation is considered in [10],

minimize
𝒂

𝒂𝐻 �̂�
−1
𝒂 (5a)

subject to 𝒂𝐻�̃�𝒂 ≤ Δ0 (5b)

𝑁 (1 − 𝜂1 ) ≤ ∥𝒂∥2 ≤ 𝑁 (1 + 𝜂2 ) (5c)

∥𝑸𝐻 (𝒂 − 𝒂0 ) ∥2 ≤ 𝜖 , (5d)

where 𝜂1 and 𝜂2 set the boundaries for the variation in the norm of
the steering vector, 𝒂0 is a given steering vector, and 𝑸 is a 𝑁 × 𝑀

matrix. Because constraint (5c) is nonconvex, problem (5) is a noncon-
vex problem. Nevertheless, [10] proves that when 𝑸𝑸𝐻 is an identity
matrix, the globally optimal solution of the optimization problem (5) can
be obtained in polynomial-time computational complexity (by SDR and
rank reduction techniques, see [9]). Otherwise, to efficiently obtain the
global solution to (5), additional sufficient conditions are necessitated.

Not only does the steering vector exhibit error, but there’s also a dis-
crepancy between �̂� and 𝑹𝑖+𝑛. In this study, we explore MVDR robust
adaptive beamforming, focusing on optimal estimation of the target sig-
nal steering vector and the INC matrix. The problem can be formulated
as follows,

minimize
𝑹,𝒂, 𝑡

𝑡 (6a)

subject to
[

𝑹 𝒂
𝒂𝐻 𝑡

]
⪰ 0 (6b)

∥𝑹 − �̂�∥2
𝐹 ≤ 𝛿 (6c)

(5b) − (5d) satisfied. (6d)

The constraint (6c) states that the INC matrix 𝑹 (for convenience, the
subscript 𝑹𝑖+𝑛 is removed in the above optimization problem) is located
within the sphere centered at �̂� with radius

√
𝛿.

If the optimal solution (𝑹★, 𝒂★, 𝑡★) of problem (6) can be found,
then the MVDR robust adaptive beamformer is defined as:

𝒘★ =
1

𝒂★𝐻 (𝑹★)−1𝒂★
(𝑹★)−1𝒂★ =

(𝑹★)−1𝒂★

𝑡★
. (7)

A Tightened SDR Technique Solution to Problem (6): We apply the
tightened SDR technique to problem (6), aiming at that it will yield rank-
one optimal solutions for the SDP relaxation problem for (6). It is known
that applying the SDR technique to problem (6) yields the SDP problem,

minimize
𝑹,𝑿 ,𝒂, 𝑡

𝑡 (8a)

subject to
[

𝑹 𝒂
𝒂𝐻 𝑡

]
⪰ 0 (8b)

∥𝑹 − �̂�∥2
𝐹 ≤ 𝛿 (8c)

tr (�̃�𝑿 ) ≤ Δ0 (8d)

𝑁 (1 − 𝜂1 ) ≤ tr 𝑿 ≤ 𝑁 (1 + 𝜂2 ) (8e)

tr (𝑸𝑸𝐻𝑿 ) − 2ℜ(𝒂𝐻𝑸𝑸𝐻𝒂0 ) + 𝒂𝐻
0 𝑸𝑸𝐻𝒂0 ≤ 𝜖

(8f)[
𝑿 𝒂
𝒂𝐻 1

]
⪰ 0. (8g)

When the optimal solution (𝑹★, 𝑿★, 𝒂★, 𝑡★) of the SDP problem
has an element 𝑿★ that is a rank-one matrix, i.e. 𝑿★ = 𝒂★𝒂★𝐻 , then
problem (8) is equivalent to the original problem (6). When 𝑿★ is a
high-rank solution, we seek to solve the original problem (6) using the
tightened SDR technique. In fact, tightened SDR reduces the feasibility

set by adding reasonable constraints to the SDP problem, making it more
likely that its optimal solution will become a rank-one solution 𝑿★ =

𝒂★𝒂★𝐻 .
Toward this end, note that the second inequality constraint in (5c) is

∥𝒂∥ ≤
√︁
𝑁 (1 + 𝜂2 ) . (9)

For any given non-zero vector 𝒃 ∈ C𝑁with 𝒂𝐻𝒃 ≠ 0, we have

∥𝒂 (𝒂𝐻𝒃) ∥ ≤
√︁
𝑁 (1 + 𝜂2 ) |𝒂𝐻𝒃 |. (10)

Using phase rotation technique (i.e. letting 𝒂 = 𝒂𝑒 𝑗 arg(𝒂𝐻𝒃) ), (10) can
be equivalently restructured as

∥ (𝒂𝒂𝐻 )𝒃∥ ≤
√︁
𝑁 (1 + 𝜂2 )ℜ(𝒂𝐻𝒃) , (11)

where SDR form is

∥𝑿𝒃∥ ≤
√︁
𝑁 (1 + 𝜂2 )ℜ(𝒂𝐻𝒃) . (12)

In other words, (𝑿 , 𝒂) satisfies the convex form[ √︁
𝑁 (1 + 𝜂2 )ℜ(𝒂𝐻𝒃)

𝑿𝒃

]
∈ SOC(𝑁 + 1) , (13)

where SOC(𝑁 + 1) = {
[

𝑡

𝒙

]
∈ R+ × C𝑁 | 𝑡 ≥ ∥𝒙∥ }.

Thus, by adding (13) to the optimization problem (8), we obtain a
tightened SDP problem of (6):

minimize
𝑹,𝑿 ,𝒂, 𝑡

𝑡 (14a)

subject to (8b) − (8g), (13) satisfied. (14b)

Let
𝒃 = 𝑸𝑸𝐻𝒂0. (15)

If (𝑹★, 𝑿★, 𝒂★, 𝑡★) is an optimal solution for problem (14), with 𝑿★ =

𝒂★𝒂★𝐻 , then (𝑹★, 𝒂★, 𝑡★) is an optimal solution for problem (6).

An SCA Algorithm Solution to Problem (6): If the tightened SDP prob-
lem still ouputs a high-rank solution 𝑿★, we design an SCA algorithm
to solve the original problem (6).

Note that the only nonconvex constraint in (6) is the one in (5c):

∥𝒂∥2 ≥ 𝑁 (1 − 𝜂1 ) . (16)

By Cauchy’s inequality,

∥𝒂∥ ≥ ∥𝒂𝐻𝒂𝑙 ∥
∥𝒂𝑙 ∥

≥ ℜ(𝒂𝐻𝒂𝑙 )
∥𝒂𝑙 ∥

, (17)

where 𝒂𝑙 is the current steering vector, it can be seen that when the linear
condition

ℜ(𝒂𝐻𝒂𝑙 )
∥𝒂𝑙 ∥

≥
√︁
𝑁 (1 − 𝜂1 ) (18)

holds, then the nonconvex constraint (16) must be satisfied. Therefore,
consider using (18) in place of (16). To solve (6), in the 𝑙th iteration, one
only needs to solve the following SDP problem,

minimize
𝑹,𝒂, 𝑡

𝑡 (19a)

subject to
ℜ(𝒂𝐻𝒂𝑙 )

∥𝒂𝑙 ∥
≥
√︁
𝑁 (1 − 𝜂1 ) (19b)

∥𝒂∥ ≤
√︁
𝑁 (1 + 𝜂2 ) (19c)

(6b), (6c), (5b), (5d) satisfied, (19d)

obtain the optimal solution (𝑹𝑙+1, 𝒂𝑙+1, 𝑡𝑙+1 ) , update 𝑙 by setting 𝑙 =

𝑙 + 1, and continue solving (19) until a stopping condition is met. The
procedure is summarized as Algorithm 1. It holds that the optimal values
{𝑡𝑙 } for SDP problem (19) in the iterative process are descend, namely

𝑡𝑙 ≥ 𝑡𝑙+1, 𝑙 = 1, · · · . (20)

Hence, the process for solving the optimal estimation problem for the
steering vector and INC matrix (6) is as follows: solve the tightened SDP
problem (14) (where 𝒃0 is taken according to (15)), obtain the optimal
solution (𝑹★, 𝑿★, 𝒂★, 𝑡★) , if the rank of 𝑿★ = 𝒂★𝒂★𝐻 is one, then
end, otherwise, use the SCA algorithm 1 to solve the optimal estimation
problem (6).
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Algorithm 1 SCA Algorithm for Solving Problem (6)

Require: �̂�, �̃�, 𝑸, 𝛿, Δ0, 𝜖 , 𝜂1, 𝜂2, 𝜉 ;
Ensure: A solution (𝑹★, 𝒂★, 𝑡★) of problem (6);

1: Assume (𝑹0, 𝒂0, 𝒂0𝐻 (𝑹0 )−1𝒂0 ) is a feasible solution of problem
(6); set 𝑙 = 0;

2: repeat
3: Solve the SDP problem (19) to get the optimal solution

(𝑹★, 𝒂★, 𝑡★);
4: Set 𝑹𝑙+1 = 𝑹★, 𝒂𝑙+1 = 𝒂★, 𝑡𝑙+1 = 𝑡★;
5: 𝑙 = 𝑙 + 1;
6: until |𝑡𝑙 − 𝑡𝑙−1 | ≤ 𝜉

Simulation results: In this section, we present several simulations aim-
ing to evaluate the performance of the proposed MVDR robust adaptive
beamformers. In all cases, results are averaged over 200 simulation runs
for consistency and precision.

Simulation 1. Signal Look Direction Mismatch: A uniform linear
array setup, featuring 𝑁 = 12 omni-directional antennas half a wave-
length apart, is used. The array noise is a spatiotemporally white Gaus-
sian vector with zero mean and covariance 𝑰 . Interfering signals from
angles 𝜃1 = −5◦ and 𝜃2 = 15◦ possess an INR of 30 dB, while the con-
sistent desired signal appears in the training data cell. With a sample size
of 100 for the covariance matrix, T, each sample encompasses the target
signal, interference, and array noise.

The angular sector of interest, denoted as Θ, ranges from 0◦ to 10◦,
and the presumed direction 𝜃0 set at 5◦. However, the actual direction is
𝜃 = 4◦, demonstrating a uniform direction mismatch. For the proposed
beamformer, parameters 𝜂1 and 𝜂2 are both 0.3, with 𝜖 at 0.25𝑁 . The
condition

√
𝛿 = 10−5 ∥ �̂�∥𝐹 is applied for parameter 𝛿.

In each simulation run, three optimization problems are solved,
resulting in three MVDR robust adaptive beamformers. In this case, for
the optimization problem (6) in this paper, which consider 𝑸 as the iden-
tity matrix (i.e. 𝑸 = 𝑰 ), is named as "Proposed beamformer 1" . The
optimization problems (8) and (16) in reference [10] are named as "KVH
Beamformer" and "Beamformer 1", respectively.
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Fig 1 (a) display the average beamformer output SINR versus SNR; (b)
showcase average beamformer output SINR versus training sample size T,
with SNR = 30 dB; (c) present the comparison of normalized beampatterns
of the beamformers, with 𝑇 = 100, and SNR = 30 dB.

Figure 1(a) reveals that the beamformer proposed in this study
exhibits higher output SINR in the medium SNR range. Figure 1(b)
demonstrates that regardless of the training sample size, the beamformer
proposed in this work yields a superior output SINR. Furthermore, as
seen in Figure 1(c), the normalized beampattern of our beamformer,
while maintaining the same main lobe, features reduced sidelobes. In
summary, the beamformer proposed in this paper offers the best perfor-
mance.

Simulation 2. Beamforming Based on an Ellipsoid Constraint:
In this simulation, both the nominal and actual target signal directions
are set at 9◦. Interference signals come from angles 𝜃1 = −15◦ and
𝜃2 = 15◦. Unlike simulation 1, we consider wavefront distortion in a
non-homogeneous medium [8], causing irregular distortions across the
steering vector. This distortion, attributed to wave propagation, intro-
duces phase increments, modeled as independent Gaussian variables
with zero mean and a 0.01 standard deviation, which are consistent
across simulations. The parameters 𝜂1 and 𝜂2 for the proposed beam-
former are set as 0.45, and the similarity constraint parameter 𝜖 satisfies
𝜖 = 0.15∥𝑸𝒂0 ∥2

𝐹
.

In contrast to the previous simulation, the 𝑸 and 𝒂0 in constraint (5d)

are defined the same as in the third example of reference [10].
The three beamformers resulted from the optimization problem (6)

in this paper, and the optimization problems (8), (15) in reference [10].
They are termed "Proposed beamformer 2", "KVH beamformer" and
"Beamformer 2", respectively.
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Fig 2 (a) display the average beamformer output SINR versus SNR; (b)
showcase average beamformer output SINR versus training sample size T,
with SNR = 30 dB; (c) present the comparison of normalized beampatterns
of the beamformers, with 𝑇 = 100, and SNR = 30 dB.

In Figure 2, it is evident that the beamformer proposed in this study
still achieves higher output SINR and lower sidelobes. Thus, even when
adopting the ellipsoid constraint, the beamformer proposed in this paper
further enhances performance.

Conclusion: In this paper, the MVDR robust adaptive beamforming
problem based on the optimal estimation of the INC matrix and the
steering vector is studied. The optimal estimation problem is to max-
imize the array output power, subject to a constraint on the direction
of the target signal restricted within a given angular sector, the double-
sided constraint on the norm of the steering vector, the general similar-
ity constraint, and the spherical constraint on the INC matrix. To tackle
this non-convex problem, a tightened SDR method is proposed to obtain
a globally optimal solution of the optimal estimation problem, and an
SCA algorithm is designed to obtain a locally optimal solution of the
optimal estimation problem. Simulation results show that the MVDR
robust adaptive beamformers proposed in this paper outperform the other
MVDR robust adaptive beamformers by solutions for those problems
estimating only the steering vector.
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