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Abstract

In this paper, we focus on the global well-posedness of solutions to three-dimensional incompressible Boussinesq equations with
temperature-dependent viscosity under the smallness assumption of initial velocity fields $u_0$ in the critical space $\dot_{B}_-
{3,1}"0%. The key ingredients here lie in the decomposition of the velocity fields and the regularity theory of the Stokes system,
which are crucial to get rid of the smallness restricition of the initial temperature $ heta_0$. In addition, we mention that the

improved decay estimates in time is also necessary.
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1 Introduction

The Boussinesq system derived by the French mathematician Joseph Valentin Boussinesq [6] us-
ing the law of conservation of mass and momentum usually describes many physical phenomena
such as large air flows, thermal convection, geophysical flows and conductive flows. The classical
Boussinesq equation reads as follows:

Ou+u-Vu+Vr =pAu+fey, xRN t>0,
0 +u - Vo = vAD,

(1.1)
divu = 0,
(’LL, 0)|t=0 = (Uo, 00)7
where 0, u = (ui(t,z),- - -,un(t,x)) represent the temperature and velocity fields of the fluid,
respectively, II = TI(¢,z) is a scalar pressure function, ey = (0,- -+, 1)! is a unit vector field

in RN, and p, v > 0 represent the kinematic viscosity coefficient and the thermal diffusion
coefficient respectively.

*The research is partially supported by the key research project of National Natural Science Foundation
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"E-mail: wlul130@163.com



Due to its profound physical background, there have been many progresses on the well-
posedness of solutions to system . For the 2D case, Cannon-DiBenedetto [§] showed the
global existence and uniqueness of smooth solutions to for 4 > 0 and v > 0. Chae [9]
and Hou-Li [I5] independently proved the global existence of smooth solutions to for either
u>0and v =0or u=0and v > 0. Abidi-Hmidi [3] obtained the global well-posedness for
when the initial data satisfies (6o, uo) € 33,1 X (Bo_o{l N L?) for p >0 and v = 0. When N > 3,
ey = (0,---,1), » =0 and g > 0, Danchin and Paicu [I1] proved the gl%bal well-posedness of
this system with 8y € L¥ (RY) 0 B, (RY) and uo € LN(RY) N B | ¥ (RY) for p € [N, o]
provided that

ol + 7 160l] 5 < e, (1.2)
for some sufficiently small constant c. In addition, further results on the existence and uniqueness

of Boussinesq systems with critical dissipation can be found in [4, 12, [13], 14, 23] and so on.
Compared to system ([1.1]), the dissipative term p(6), which depends on the temperature,

increases the difficulty. Recently, more progress has been made in the global well-posedness of

system (|1.1)) with the temperature-dependent viscosity (), especially with v(6) = f(6) = 0,

ie,

O — div(2u(0)Du) + v - Vu+Vr =0, 2z €R3t>0,

8t9 +u-VO= 0,

divu = 0,

(u,8)]t=0 = (uo0, o).

It is easy to see that system (|1.3)) has a scaling-invariant transformation. If (6, u) solves equation
with initial data (6g, ug), then for V A > 0,

(1.3)

(0, u)x(t,z) = (O(N*t, \x), \u(N\?t, \x)) (1.4)

is a solution of ([1.3) with initial data (6p(Az), Adug(Az)). A functional space for data (6, u)

or for solution (A, u) is said to be scaling-invariant of the equation if its norm is invariant
N N

—1+
under transformation 1} Obviously, By x Bp, 7 with (N,r) € [1,00]? is an example of
homogeneous critical Besov spaces of Boussinesq equation (|1.3)).

Similar to the classical system , it is natural to ask the global well-posedness of system
under some suitable assumptions on (6, ug) in the critical spaces? Until now, there are only
several results related to this topic. For two-dimensional Boussinesq equations with temperature-
dependent viscosity, Abidi [I] proved the global well-posedness when the solenoidal vector fields
ug € L? 0350171 (R?) and 6 € B%J(RQ) on the basis of the two smallness assumptions on \|00||321 )

and ||(69) —1|| oo . Niu-Wang [19], 20] obtained similar results only under the smallness condition
of ||;(6p) — 1|| o< . For three-dimensional system with the viscosity u(6), depending on the
temperature 6, Abidi-Zhang [5] obtained the global strong solutions of under both of the
smallness conditions, i.e.,

luoll gg | + l4(B0) — L[z <e. (1.5)

Without the size constraint on the initial temperuature, Niu-Wang [2I] proved the global well-
posedness of (|1.1)) provided that
<e, (1.6)



where ¢ is a sufficiently small constant. More results aboutglobal well-posedness of 3D Boussinesq
system with temperature-dependent viscosity can be refferred to [16, 17, 22] and so on.

Throughout this paper, we shall always assume that

0<pu<pu®), p)eW R and p(0)=1. (1.7)

The purpose of this paper is to study the solvability of (1.3)) with ug sufficiently small in the
critical Besov spaces Bgl without any size restriction on 6y. Our main theorem can be stated
as follows:

. 3
Theorem 1.1 Let ug € B3, (R®) be a solenoidal vector field and 6y € B3 (R?). Then there
exists a positive time T* so that (1.3 has a unique local-in-time solution

3 . .
(6.u) € Cy([0,T7]; B3 1 (R?)) x Co([0, T*]; B 1 (R?)) N L' ([0, T7]; BS, (R)).
Furthermore, let g € (3,00) and & € (3,2). Assume that the initial data (0, uo) satisfy

p< p(0) < fi, up € H*, V(o) € L.

Then there exists a small positive constant ¢ depending on q, p, fi, [|6o] s . ||uol g—25 and
= B

3
2
2.
|V 1(60)|| e such that when '
luollgo < e. (1.8)

3,1

the Cauchy problem (1.3|) admits a unique and global strong solution (0,u, V) which satisfies
for any 0 < T < oo that

3
0 €C((0,7];B5,),  Va(0) €C (10T} L9),
we e ([0.7 B8, ) n Lt (0,71 53, ). (1.9)
mell ([o,T]; 12N B?{J) and u; € L® ([O,T]; Bg,l) ,

Remark 1.1 [t should be noted here that our Theorem holdstrue for any function p(6)
satisfying and with a smallness assumption on the Bgl-norm of the initial velocity ug,
which is contrast to Abidi-Zhang [5] where they need the smallness assumptions on both HUOHBg )

and ||14(60) — 1| o

Scheme of the proof and organization of the paper. Motivated by [5], we intend to
investigate the global well-posedness of (1.1) under the assumption that ug is sufficiently small
in the critical Besov space Bg,1? The proof of global well-posedness can be devided into two
steps.

To begin with, we investigated the local existence and uniqueness of solution to (|1.3) when
initial data ug being sufficiently small in the critical spaces Bg,1 inspired by the idea of [2]. Then
we prove that there exists some ¢y € (0,1) such that

lu(to)ll gy \pz , < Clluollgg - (1.10)

One can check the proof of Proposition for more details.



Second, the key ingredient to prove the global well-posedness of system comes from the
expected uniform energy estimate of L!'((ty,00); L) of Vu in general. However, because the
viscosity term () strongly depends on the temperature 6 and lack of the smallness assumption
of (@) — 1 in L*°, it is not applicable. Indeed, the Stokes equation transformed from the
momentum equation of can be stated as follows:

™ . 2Du-Vpu(0) N V(@)  Ou+u-Vu
1(0) () 1(0)? p)

The regularity theory of Stokes equation indicates that the desired energy estimate of of L!((tg, 0);
L) of Vu is coupled with the a priori uniform estimate of L>°(0, 0o; L?)(q > 3) of V(@) , which
in turn heavily depends on the uniform estimate of L'((¢p,00); L>) of Vu. The possible solu-
tion is by means of the bootstrapping argument, which is crucial to prove the small bound of
LY((to,00); L) of Vu. According to the embedding theory, it can be transferred to the small
bound of L>((tg,c0); L?) norm of Vu.

Now we are in a position to derive the uniform estimate of L°((to,00); L?) of Vu in terms
of |Ju(to)l] B9 which is sufficiently small through (1.10). However, the dependence on 6 of

viscosity term g (6) bring the difficulty to close the estimate of L*((t, 00); L?) of Vu directly.
The important observation is based on the decomposition of the velocity fields. Indeed, we split
the solution u of into two parts, i.e., u = v+ w, where v satisfies the classical Navier-Stokes
equation with constant viscosity

Au—V( (1.11)

ow~+v-Vv—Av+ Vmr, =0,
dive =0, (1.12)
U|t:to = u(to),

and w, as well as 6 is the solution of the perturbated system:

00 + div(f(v + w)) = 0,

dw + (v + w) - Vw — div(2u(0)Dw) + Vr,, = —w - Vo + div(2(u(0) — 1)Do),

(1.13)
divw = 0,
Oli—, = 0(t0), wli—y, = 0.
For system (1.12), we can easily see from [2] that for s € [0, 2],
101 Eee t0,001335,,) 1022 t0.00p:35%52) < Cllulto)llg, < Clluollgg - (1.14)
According to the embedding theory Bél — L°°, we can easily prove that
IVOll Lt .00)iz) < Cliuoll g - (1.15)

which implies that the smallness of the time-independent bounds on the L!(tg, T’ Béol) norm
of v. More details can be referred to Proposition later. As for system (1.13)), the zero initial
value of w and (|1.15]) are very helpful to obtain

oo
sup [ [VuPds <20 [ ol dt < 2Cuoly (1.16)
teto,00] JR3 to 3,1 3,1



where s1 € [1,2]. In addition, we emphasis that the improved decay estimates in time also assist
the uniform estimate of (1.16)), which explain that it is necessary to assume ug € H~2°,§ > %
in Theorem One can refer Proposition [5.4] for more details.

The paper is organised as follows. In Section 2, we recall some basic Littlewood-Paley theory,
as well as some necessary lemmas. In Section 3, we obtain some linear estimates of the Boussi-
nesq equations. With these estimates we will prove the local well-posedness of the solution to the
system in Section 4. The proof of Theorem is completed in Section 5, where we obtain
the decay estimates of v,w and the global well-posedness of with smallness assumptions

).

Let us complete this section with the notations we are going to use in this context.

Notations Let A, B be two operators, we denote [A, B] = AB — BA, the commutator
between A and B. For a < b, we mean that there is a uniform constant C, which may be
different on different lines, such that a < Cb. We shall denote by (a|b) the L?(R?) inner product

of a and b. For X a Banach space, we denote ||(f,g)|/x = | fllx + llgllx. Finally, (¢;)jez (resp.
(d;)jez) will be a generic element of ¢*(Z) (resp. ¢*(Z)) so that djez c? =1 (resp. > ez dj =1).

2 Preliminaries

In this section, we introduce some notations and conventions, and recall some standard
theories of Besov space which will be used throughout this paper. Since the proof of Theorem
[I.T] requires a dyadic decomposition of the Fourier variables, we will first recall the Littlewood-
Paley decomposition. More details can be referred to [7].

Definition 2.1 ([7]) Let (p,r) € [1,00]%, s € R and u € S'(R?), we set

def

def A
lullss, = @[ Aqullie)ir,  Nullgy = 2% Aqulle)ir- (2.1)

Definition 2.2 ([7]) Let (p,\,7) € [1,0]?, s € R, T € (0,+00], and u € S'(R3), we set
ullz C @) Agullpao)irs Nulza g ) S %1 Agull pa o) (2.2)
Ly(Bj,.) PN Ly(Lr) )l IA(Bs.,) qUllL(Lp) )i :

Lemma 2.1 ([7]) Let C be the annulus {¢& € RN :3/4 < |£| < 8/3}. There exist radial functions
X and @, valued in the interval [0, 1], belonging respectively to D(C), and such that

VEERN, Xx(©)+D p(279) =1,
Jj=0
VEERY, Y 027 =1,
JEL
7= 7'l = 2 = Suppp(277%) NSuppp(27) = 2,
j > 1 == Suppx NSuppp(27%) = 2.
the set C = B(0,2/3) + C is an annulus, and we have

j—j|>5=2'Cn2C=0. (2.4)



Remark 2.1 ([7])
1. We point out that if s > 0 then B, , (R3) = B;r (R3) N LP (R3) and
lullzg, =~ lullz, + lullzo.

2. It is easy to observe that the homogeneous Besov space 3572 (R3) coincides with the clas-

sical homogeneous Sobolev space H® (Rg) .

3. Letse R,1<pr<oo,anducS (R3). Then u belongs to B;’T (R3) if and only if there
exists {Cjr};cq such that |[cjll, =1, and

HAjuHLp < ch,TQ_jSHUHB;_’T for all j € Z.

Lemma 2.2 ([7]) Let C be an annulus and B a ball. There exists a constant C > 0 such that for
any nonnegative integer k, any couple (p, q) in [1,00]? with ¢ > p > 1 and any u of LP satisfying
1. If Supp @ C AB, we have

sup [[6%ul|ze < CFFINTNG =D | o (2.5)

|a|=k
2. If Supp 4 C XC, we have

CFIN¥ ullze < |DFullze < CFFINF|u)| 2o (2.6)

In the rest of the paper, we shall frequently use homogeneous Bony’s decomposition:

w =Ty + Tou = Ty + Tyu + R(u,v), (2.7)
where ) ) ) )
Tuv = Z Sq—1ulgv, Téu = Z Sq+2vAqu,
€Z €7
R . (28)
R(u,v) = Z AquAgv, Agv = Z Agv.
q€Z lg’—q|<1

Similarly, we can obtain inhomogeneous Bony’s decomposition [7].

Next we shall introduce some results about the transport equation, such as the commutator’s
estimates, which will be frequently used throughout the succeeding sections. The proof process
can be referred to [7]. We omit them for simplicity here.

Lemma 2.3 ([7]) Let r € [1,00], p € [1,00], =1 < s <1 and divv = 0. Then there holds
1. If s = —1,
t
sup 2791[0- V3, flszin S [ 190150, 15115,1, (2.9
q :

2. If -1 <s<1,

t
ST A r 1 .
(2o V: Aol yan) |19l (2.10)



3. Ifs=1,
t
S 2o i lyn S [ Vol 16115, (211)
q

Lemma 2.4 ([7]) Assume that ag € Béyl(R?’) and Vu € LIT(BgoJ) with divu = 0, and the
function a € C([0,T]; B%ﬂl(R‘g)) solves

oa+u-Va=0, (t,x)e(0,T]xR3

(2.12)
a]t:() = ag.
Then there holds that for ¥ t € (0,T]
Ja®llg;, < Claollgy exp{ClITul 0 )} (213)
and
o = Skallzeag,y < 3218000l + ooy, {xpCIVulya 3 -1}, @10

>k

3 Linear estimates

In this section we first prove the local well-posedness of solution to ([1.3)) by examining some a
priori estimates of the basic energy.

Proposition 3.1 Let a € E%o(B%,l(R?’)) with 1 +a > b. Let u, v be a solenoidal vector field
such that (u,v) € C([0,T7; Bgl(R?’)) N L (0,T]; Bil(R?’)) solves

loc

Ou+v-Vu —div(2(1 + a)Du) + Vr = f,  (t,z) € Ry x R3,
divu =0, (3.1)

u]t:() = Uup.
If there exist some sufficiently small positive constant ¢ and some integer k € 7Z, there holds
— Spall~ < :
HCL SkaHL%O(Bél) > 6 (3 2)
then for 0 <t <T, one has
lellzzesp el psz ) + 197y o ) S ol + 115y g
! aky & 12
+ [ g, lolag ar + 2™ Sucl oy Il g g,
Proof We first get from 1 + a > b that

1+ Spa=1+a+ (Spa—a) >

N | IS



Correspondingly, we rewrite the u equation of (3.1); as
o — v - Vu — div(2(1 + Spa)Du) + Vi = div(2(a — Spa)Du) + f. (3.4)

We now decompose the proof of Proposition [3.1] into the following steps:

Step 1. The estimate of H“HEgO(Bgyl) + HuHL%(B:%J).
Let P = I + V(—A)~!div be the Leray projection operator, Applying AjIP’ to 1) gives
O Aju— AjP(v - Vu) — A;P{div(2(1 + Sra)Du)} = A;P(div(2(a — Sga)Du) + f).  (3.5)
By applying a standard commutator process, we find

A P{div(2(1 + Sga)Du)} = A;P{2(1 + Spa)Au + 2V SpaDu}

= (1+ Spa)A;PAu — [Sga; AjP|Au + A;P{2V S,aDu}, (3.6)
Where . . . . . .
(1+ Spa)A;PAu = div((1 + Spa)A;Vu) — VSia - A;jVu. (3.7)
As a consequence, we obtain
A ju—v - VAju —div((1+ Spa)A;Vu) = AP{div(2(a — Spa)Du} + A;Pf 58)

— VSka - AjVu — [Spa; AjP|Au+ AP{2V SkaDu} + [v - V; AjPlu.

Multiplying the above equation by ]Aju]Aju and then integrating the resulting equations on
x € R3 leads to

1d . Ajul? Vo C
d 1A jul3 +/ v- V‘jgmd:v / div((1 + Ska)A;Vu)|Aju|Ajudx
R3

3dt RS
. L X . i . 3.9
SIA 1A, (dv(2(a — Sea)Du)lgs + 1A £l + 1VSka- A, Vulys &)
+ [I[Ska; AP Aul s + (| A {2V SkaDu} || s + [[[v - Vi AjPlul| s}

Yet applying Bernstein-type inequation ([7]) ensures that for some positive constant ¢

—/ div((1 + $xa) A, V) - |AjulAjudz > 22| Aul2. (3.10)
R3
Notice that divv = 0 guarantees

S lAgull s + 22 Agull o S I14,(div(2(0 — Sxa)Du)llzs + |V Sha - Ay Ve s )

1A fllzs + [Ska APl Aul s + | A;{2V SgaDu} | s + [|[v - V3 AjPJul| 5.

Intergrating the above inequality over [0,¢] and summing up the resulting inequality over j € Z,
we achieve

Il zpe g Hll g 2 ) S ol g, + Il divi2(a — Ska)Dul s s

1Ly + IV Skallzslull sy + D IN[Skas AF)Aul|y 1)
’ ' JEZ
=+ HVSICCLDUHL%(BgJ) + Z H[’U . V; AjP]uHL%(L?’)'
JEZ

(3.12)



In what follows, we shall deal with the right-hand side of (3.12)). Firstly, applying Lemma
and Lemma [2.2] yields

I div(2(a — Spa)Dull g9 ) < lla - SWHZ?(Bé,o”“”L%(B??JV (3.13)
IV Skabull g9 ) < IV Skallze sy oz Il )

For [Ska; AjIP’] Au, we get, by means of homogeneous Bony decomposition [7], that
[Ska; AjP]Au = [T, o5 APl Au + T,A-A Ska — AjP(TauSka) — A;PR(Au, Sa).
AU
Hence, due to Lemma implies that

DT APIAUl s S 277 Y IVS1Shalle | A Aul s

jez jez lj—1|<4
<SS S 259 VSall 2 A A s
JEL|j—1|<4

S IVSkallzeeffull gy -
Similarly, we have

SUITS auSkalle S0 3 ISisedsAuls | Adpall

JEZ JELI>j—2
S22 IAuls > 22 Al
JEL 1>5—-2

S HVSkaHLooHUHB;’I-
The same estimate holds for Aj(T AuSka). Notice that

ST IAR(Aw, 8ol s S 322 AR(Aw, Sia)

I, 2
JEZ JEZ
S>> 2 A A 127 | Ay Skal s
JEZ1>j-3

SIVSkallgs llulls -

1 1
Therefore, using the interpolation inequality ||ul| Bl S lullZ, llull, and Young’s inequality,
, 3,1 3,1

we deduce for any 7 that

% [18k0; APl Al 1) S IVSkalFe py o 0l sy, + 1l yis (3.14)
jE

The estimate of [v - V; AjIP]u, we get, by virtue of Lemma that

t
Sl VA Blul i S [ I90lsg, luleg (3.15)
JEZ
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Substituting (3.13] , and (| into ( and taking n small enough, we achieve

ll oo+ HuHLHBgJ) < HUOHBgJ +lla— Shallz gy ol a i

t (3.16)
#18g0s,) + ISkl e iy gy lagigy + [ ol Tl
Step 2. The estimate of |]V7r||L%(Bg’1).
In order to estimate the pressure function 7, we get by taking div to (3.1)); that
A = — div(v - Vu) 4 div div(2S;aDu) + div div(2(a — Spa)Du) + div f. (3.17)

Taking L? inner product of the above equation with \Aﬂr\Aﬂr and using a similar argument as

(3.12), we find
V7l sy, S Nl div( - V)l gy gy + 1 (Ska — a)Vall g )+ 1 sy )

(3.18)
+ ||VSkaDu||L%(Bo + | dlv(SkaAu)HLl Bh T | (a — S’ka)]D)uHLl Bl

We now estimate term by term in (3.18). Due to dive = divu = 0. Then applying Lemma

yields
ldiv(v - V)l sy ) S IVu- Voll gy STVl ;)

t (3.19)
170 Pulgagy + IR Digon S [ Tl ol .
Similarly, we can deduce that
HVSkaDUHLg(Bg,l) S Hvskaﬂzgo(gioomoo)||U||Lt1(35,1)a (3.20)
l|(a — Ska)DuHLg(Bgyl) N Skauigo(géyl)H“HL}(BgJ)- .
While thanks to Bony’s decomposition and divu = 0, one has
div(SraAu) = Ty, ,Au+ TauV Ska + div R(Ska, Au).
Hence we obtain

| diV(SkaAu)HL%( < | vskaAu”Ll y T HTAUVSkaHLl (3.21)
+ IR (Ska, Au)HL%(BgJ) < uvskauz?o(gémmm)nunw;,l)-

Substituting ((3.19 , and - ) into (| , we obtain

t
o < : ~ k| Foo '
197l e, < / N N T L T .
+lla = Skall g g lull iz ) + 111y,
According to Lemma [2.1] and Lemma we may get

HVSkaHztoo(B% ALy S 22| Skall oo (19, (3.23)
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which combining (3.2)) and (3.16)), we achieve

el zpe gy Hlell iz )+ 1971 g g ) S loll g, + 171y

t en e (3.24)
+ [ g, lolag dr + 2% Sucl oy Il g g
This completes the proof of Proposition [3.1
Remark 3.1 In the particular case when v = w in Proposition [3.1], it holds true, i.e.,
lullzo g,y + Nullyesz ) + IV ALy )
(3.25)

t
.
<Complt2¥Sialie ) {luolsy, + [ Tullsg sy, dr + U1y |

Proposition 3.2 Let a € E%O(B%J(R:ﬂ)) with 1+a > b > 0. We assume that ug € H 2 (R3)
with 6 < 2. Let u, v be two solenoidal vector fields satisfying Vv € L%(B?l,,l(sz’)), u €

C’([O,T];HEQ.‘S(R?’)) N LY ([0,T]; H2A-)(R?)), and

loc

O +v-Vu —div(2(1 +a)Du) + Vr = f, (t,x) € Ry x R3,
divu =0, (3.26)
Uli=o = up.
If there exists some sufficiently small positive constant ¢ and some integer k € 7, satisfies
lla — SkaHE%O(BéJ) <e, (3.27)
then for 0 <t <T, one has

etz -2y + el 2 gz -y S llsoll s + 1o i)}

JTRRR. (3.28)
X eXp{HVUHLtl(B%J) + 2 ||Ska||~?o(L3)}
Proof We first rewrite the u equation of (3.26) as
Oy — v - Vu — div(2(1 + Sga)Du) + Vi = div(2(a — Spa)Du) + f. (3.29)

Let P =1 + V(—A)~!div be the Leray projection operator, Applying AjIP’ to (3.29)) gives
A ju — AjP(v - Vu) — AP{div(2(1 + Ska)Du)} = A; div(2(a — Sga)Du) + f). (3.30)

Multiplying the above equation by Aju and then integrating the resulting equations on x € R3
leads to

Al + 27| Ajull 2 Sllv- Vs AjPlul 2 + 27[|[Ska; AP Dul| 2
+ 1A div(2(a — Ska)Du)| 2 + | A; £l 2

(3.31)

In what follows, we shall deal with the right-hand side of (3.31]). Firstly applying homoge-
neous Bony’s decomposition yields

[v-V; APl = [Ty - V; AjPlu + T/VAqu — AjP(Tyuv) — AjPdiv R (u,v).



It follows again from the above estimate, which implies that
T - Vi APl 2 S 277V Sgorv] oo | AVl 2
li—k|<4

S Y 2Vl | Al 2
l—kl<4

522]'5 Z 2(k—j)(1+25)HVUHLN2—2I§§”Aku”L2
l7—k|<4

S 22| V| e [lull 2.

The same estimate holds for T/v A, V- Note that

J

IAP(Touv)llz2 S D I1Sk-1Vullz2 | Agol|
|[k—j|<4

<2¥0 3 92D G ]| Ao e
|k—7|<4

S 2% ull -5 | V0| o
For AP divR(u,v), we have
1A P div R(u,v)| 2 S 2% || APR(u, )|, o

$2% ) I Agull g2 | Akl s
k>j—3

k>7-3

< cjfﬂuuuwku%.
From which, we obtain
t
A jo
o V5 A Blul g az) S 2 [ 9ol -
The estimate of [Ska; A ;P|Du, we get, by virtue of Lemma ﬂ that
6—
[[Ska: ABIDull 12 < €2 VI VSkal o gyl g 120

Along the same line, for § < 1, one has

1A, div(2(a - s‘kamu)n@(m) < 52500 = Syallzze gy el g oy

12

(3.32)

(3.33)

(3.34)

Substltutlng into , and using the interpolation inequality ||u||j1-2s <

HuH we write

H—26 HuHH2(176)7
t
”uuigo(g—zé)“'HuHZ%(H2(176>) < ||UOHH—25 +C/0 ||VU||B§Y1HU||H726dT
t
k
+ Ol -2 + C2 Skl gy | llgasie

. 1
+ Clla = Siallze sy I8l pa-s) + 5 Ml ooy

(3.35)
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which along with (3.27)) ensures that

t
[ll 7o 26yl 71 gr2-0)) < o]l g2 +C/ IVoll gyl gr-2sdr
0 (3.36)

t
+ Ol g a2y + C2* S0l e 1o, / Jull-asdr.

Applying Gronwall’s lemma to (3.36)) leads to (3.28]).

Corollary 3.1 Under the assumptions of Proposition we can find some t; € (7,t) and there
holds
Il Zoe . gsn2) + I i)

. (3.37)
SHllwoll -2 /8] + I £1l 1 (fr,:02) } €xP {||UHLt1(B§71) + t24k\|5ka\|%?o(L3)} .

Proof Thanks to Proposition we can find some 0 < 7 < t; < t such that u(r) € L.
Moreover, we deduce by a similar proof of Proposition

lll o (rgin2) + 1MEs (i)
SUlw() 2 + 1 ey} eXP{HUHLg(Bg,J) + t24kHS'kaH%oo Lg)}
Sl g b+ 1 et oo {10l sz ) + 251 Skall2 o )
Sl ir-2/8 + £l 2 grareyy exo {0l y s ) + 12%11Skal 2 1o

from which, we can obtain the (3.37).

4 Local well-posedness of (|1.3

The goal of this section is to prove the following local well-posedness result of ([1.3)).

Theorem 4.1 Let ugy € Bgl(R?’) be a solenoidal vector field and 0y € B§71(R3). There exists a
small positive constant €y, such that if

HUoHBg1 < o, (4.1)
then (L.3|) has a local solution (6,u, V) satisfying for T > 1 that

0 € Cy([0,T]; B5 1 (R%)), u € Co([0, T); BS, (R*)) N LH([0, T]; BE 1 (R%)). (4.2)

3
Furthermore, if 0y € 322,1; then the solution is unique.

4.1 Local existence

We begin with the proof of local existence of solutions in Theorem by solving an approxima-
tion problem, and then perform the uniform estimates for the approximate solutions. Finally,
the existence part of the Theorem is reached by a compactness argument.
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Step 1. Construction of smooth approximate solutions.
For n € N, let
00 = Snbo — S_nbp and wuj = Spup — S_nup.

Then [I] ensures that the system (1.3) with the initial data (67, u{j) generates a unique local-in-
time smooth solution (6", u", V™).

Step 2. Uniform estimates to the approximate solutions.

We shall prove that there exists a positive time 7 such that (6", u", V7™) is uniformly
bounded in the space

Er = L%O(Bé,l) X (L%O(Bg,l) N LlT(Bg,l)) X LlT(Bg,l)-

In order to do so, let u}(t) = emug. Then it is easy to observe that
_et22i
il e < lollgg, amd ikl gy S 30— e uoll e (43)
: . : =

Let u" = u} + @". Then (6", a", V7") solves

00" + (uf +u") - VO" =0, (t,7) € Ry x R,
o + - V" — div(2(1 + a")Da") + V" = H,,

(4.4)
divu™ =0,
(@, u")|i=0 = (ag,0),
where
H, =—-u"-Vu" —a" - Vu} —u} - Vu} + div(2a"Dul).
For notational simiplicity, we denote by
an uw@)—1 and 0" + (u} +a")-Va" =0. (4.5)

Now let us turn to the uniform estimates of (", a", ™). Firstly, as 6y € B§71(R3), we define

m € Z by

b ntfg € 23 28 (1(0) — 1)l12 < cob), 0

Jjzq
for some sufficiently small positive constant cg.

Notice that div(u} + @") = 0 and (4.5)), applying Lemma to 0" equation of (4.4)); leads
to

16" e oy ) S 160053, 50 {IVeR 31 ) + IV llcyms,) )
o™l e zani) < 16§ lzsnz < 16ollpy, and fla gy, < 653, (47)

While thanks to Lemma [2.2] one has
[a" - Vat| g S lla"ll g Nl ps s [a® - Vupllge S Iu"llgg lluillps

- Vel g | S lubllsp Iublzs, and | div2(@Dup)ll sy, < la®ll sy Ikl
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Therefore, applying Proposition to (4.4]), we arrive at

t
”anHZtOO(Bgl) + ||ﬁn||L%(B§’1) + ”VT('"HL%(B??’I) < /0 D(t)HﬂnHBg’ldT (4.8)

t t t
A P PP R T P T Py R PO P

with
def

D(t) < 260|125 + g 3

def |\ _ : s :
Let Z"(t) = HunHZgO(Bg’l) + Hu"HLtl(BgJ) + HVTr”HL%(Bg’l). Then applying Gronwall’s inequality

to (4.8) leads to

t
Z°(t) < C exp{ / DWdry {20 + (IEl o ) + I ey ) WEllpeey b (49)

under the assumption that .
la” = Ska™ |z 1,y < 2€0b. (4.10)

However, thanks to (4.3]), one has

def

t
| Pty = 2160l + ol g, W)

so that (4.9) ensures

Z7(t) S exp AW (1)} 4 270 + 1001l gy exp { Cllluol g, + 2" } 301 =) | Ajul s ¢

JEZ
under the assumption (4.10]), or equivalently, we have
Z™(t) < Crexp{CLW ()} Z"(t)* + O(t) exp{C1 Z"(t)} (4.11)

with O(t) being determined by

def 227 A
O(t) © Crexp { LW (1) + lluoll g, + 160l 3 )} D1 = €2 Azl 1o,
JEZL

for some large enough constant C';.
On the other hand, applying Lemma to the transport equation of (4.4); together with
[E9), (@7 and

e* —1<ge® for >0,

gives rise to
n S N )
la” = Skl sy,

<> 24 (u(80) — 1)l 2 + 1ol gy {exp{C(Z" (&) + kg )} — 1}
Jjzk

<cob+ Cll60ll gy, (Z7(t) + 1t 1y gy ) xPACZ™ (1) + skl 1y oy )}
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which along with (4.3]) and the definition of a implies

la" = Ska™ || gge s ) < Cob+C2H90HE';1 exp{C(Z"(1) + [luoll gy )}
O+ (=)Aol

JEZ

Now for some sufficiently small g9 > 0, we take
0 < T} <min {1,80(401 exp{C1(W(1) + HUOHBQ ) + He()HBé 1)})_1} ,

and
€0

27
(1= e ugl| s < .
2 P 10 exp{CH WD) + ol g, + ol )}

Then it follows from (4.11f) that for ¢t < T}

Z™(t) < Crexp{C1W (1)} Z"(t)? + g¢ exp{C1 Z"(t)},
provided that

Collfoll 53 , exp{Co(Z" (1) + Iluoll 59 ) )+ 3 (1= e lug| 1) < cob. (4.13)
’ JEZ

Let T5(eo) =y sup{t € [0,T1(c0)]|Z"(t) < 4ep}. Without loss of generality, we may assume that
€o is so small that

16C1e0exp{C1W (T2)} <1 and 4egexp{C2(4eo + ||u0|]3g1 + HHOHBR{ 1)} < ¢pb.
Then for t < Ty(ep), we infer from (4.1)) that (4.13)) holds, and moreover (4.11)) ensures that
Z"(t) < 4C1epexp{C1W (t)} Z"(t) + eeo,

which along with (4.12)) shows that there holds (4.10) for ¢ = T»(ep) and
4
Zn(t) < 5680 for t < TQ(€0).

This together with (4.3) and (4.7) ensures

{0™,u™, V" fnen is uniformly bounded in Ery ). (4.14)

Step 3. The local existence part of Theorem with large data.

Thanks to , we can repeat the compactness arguement in Step 3 to the proof of
Theorem 5.1 in [I0] to conclude that there exists a subsequence of {6",u", V7" },en which
converges to a solution (6, u, V), which belongs to Cy([0, T3]; B3 1 (R?)) x Cy([0, T2); Bgvl(Rg’)) N
Ll([O,Tg};Bg’l(RS)) x L1([0, Ty); Bg,l(RS)) of on [0,T%(g9)]. Moreover, for some integer k,
there holds

la — Skal| 7o < 2cob. (4.15)

T2 (e0)
Step 4. Large time well-posedness of li for [Jup| B9, small.

(B31)
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In the case when |lugl| By, s sufficiently small, we denote (6™,u",V7™) to be the unique
solution of (T.3) with the initial data (ag,ug), and

def
X"(t) S g sg y + Iy, + 19 g -

Then if there holds , applying Remark and using gives rise to

X7(1) < Cyexp {Cor200]3 } {luol gy, + X" (1)} (4.16)

While thanks to and , applying Lemma to the a™ equation leads to
la™ — Sk@nHZgo(Bgyl) < cob+ [[foll 51 , (exp{C3X" (1)} — 1)

(4.17)
< cob+ CsX"(t)H@oHB% ) exp{C3X"(t)},
provided that
C3Xn(t)||90HB§ ) exp{C3X"(t)} < cob. (4.18)
Without loss of generality, we may assume that 7% < 1. We define
et sup {T >0: X"(T) < 4C3||UOHB’§ ) eXp{C3t24k||90H%3}} . (4.19)
Then we infer that for T' < T*
4k 2 n 1
Cyexp{Cst2™A0]3:} X" (1) < . (4.20)
which together with (4.16)) leads to
4
X™(T) < S Cylluoll gy exp{C512* 16035 (4.21)

This contradicts (4.19)), and thus 77 > 1.

On the other hand, applying Lemma applied to the transport equation of (4.4); yields
10"z g1,y < Callfolipy , exp{CaX™ ()} for T < T

Therefore, (0™, u™, Va™) is uniformly bounded in Ep«. With this bound of (6", u", Vz™), we can
repeat the argument in Step 3 to conclude that the lifespan to the solution (6, u, V) obtained
there is greater than 1. Futhermore there holds (4.2). This completes the existence part of

Theorem [4.1]

4.2 Local uniqueness

To prove the uniqueness of solutions in Theorem we need the following Propositions:

1 _1 1
Proposition 4.1 Let a € LF(B3,), f € L'([0,T]; By?) and b € LF (B3 ) with 1+ a >b>0
1

and 140> b > 0. Let u, v be two solenoidal vector field which satisfy u € C([0,T]; By 1) N
3
LY([0,T]; B3,), ve L'([0,T]; B, ,), and

Ou+v-Vu—div(l +a)Du) +Vr = f, (t,z) € Ry x R3,
divu =0, (4.22)

u|t:0 = Uup.
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Then there holds

t
s <ol + / lul 1ol dr
L?O(B2,12 Lt1(322,1) B2,12 0 B2,12 Boo’l (4 23)

t
2
g+ [ ol e,y + 151,

2.1)
Proof Applying A; to (4.22); and using a standard commutator process. we easily obtain
8tAju +v- Aju — diV((l + CL)A]']D)U) + AjVﬂ’ = ['U -V; A]]u — diV[CL; A]]]D)u + Ajf

Let ufl % o — A_ju. Then multiplying the above equation by Aju and then integrating the
resulting equations on = € R?, which leads to

d ) .
gl + 2| Aju || 2 < |[v- V5 Ajlull 2 + 27]|a; Aj1Dul 2 + || A |l 2. (4.24)

Intergrating the above inequality over [0, 7] and multiplying it by 2_%, and then summing up
the resulting inequality over j € Z, we achieve

+> 278 |[v - Vs Ajlull e
Jer (4.25)

2
+> 25 |[a; AjDu oy + IF Ly
]EZ Lt(BQ,l)

full. 1+ e s Sl _y
L (B, 7) LiBZ) "~ B,

In what follows, we shall deal with the right-hand side of (4.25)). Firstly applying Lemma
yields

X t
_J
S oo Vi Agull ey S / ll ol dr. (4.26)
JEL t 0 Ba.1 =

For [a; Aj]Du, the homogenous Bony’s decomposition implies
[a; Aj]Du = [Ty; Aj]Du + T/A],Dua — Aj(Tpya) — AjR(Du, a).
It follows again from the above estimates, which implies that

> 23 |[Tw; AjIDull e $ 3278 Y ([VSioaall e [ Ak Vul| 2

JEL JEZ li—k|<4
SN 27300 Va2 | ARV 2
JEL |j—k|<4

S HVCLIILw\IUIIBé1

The same estimate holds true for T’AjDua. Note that

- i
> 22| Tapuallze SO 2% D (19428, Vaul 2| Aal L

JEZ JEZ  k>j-2
S 2EA Ve Y 22 ARb e
JEZ k>j-2

<
S HaHB;OJHUHBél-
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Similarly, we have

Y2218 (Tpua) 2 S D 22 [1SkeoVull 2] Aral

JEZL JEZ k>35-3
<Y ) 220275 SVl 22" Agal
JET k>j—3
< llallps_
3.1
Therefore, we can deduce that
222”@ APIDul| 12y S /HaHBl lull g dr. (4.27)
JEZ B3a
Plugging the above estimates into (4.25) and using the interpolation inequality |[lul| 1 S
B3,
1 1
llul|? 1 |lul|?s and Young’s inequality, we achieve
2,1 B22,1
H
[0 P | [ [ 54 Slluoll 3 +/ HUH 3 HvllB1 dr
Ly(By 1) L; (B3, (4.28)
/ ol g+ 071
00,1 2,1
H
which along with HuH 32% : S lu H 32% )+ [ullL1(z2) leads to (4.23).

In order to get the uniqueness of solutions in Theorem we need to recall the following
Proposition [4.2]in [2], where we omitted the details.

_1 _1
Proposition 4.2 Let F € B, { (R*) and V7 € B, 2 (R?) solving
Am = div F. (4.29)

Then it holds true that

IVall 3 SIFI - + [ div F]| (4.30)
2,1

~3 ~ -3
B, | B, B,

Proof of the uniqueness in Theorem Let (6%, u*, Vr®) with i = 1,2 be two solutions of

(1.3). We denote
(00, 6u, Vo) = (0% — 0' u? — !, v — vrl).

Then the system for (66, ou, Vim) reads

0400 + u? - Véh = —bu - VO,

Opdu +u? - Vou — div(2(1 + a?)Déu) + Vér = O F,
divdu = 0,

(00, 0u)|t=0 = (0,0),

(4.31)
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where 0 F' is determined by
©F s vl + 2 div(daDul).

OF =
For du, we first write the momentum equation of (4.31)), as
ou + u? - Véu — div(2(1 + Ska?®)Déu) + Vér = H (4.32)
with
d—efdlv{Z(a — Spa®)Déu} — du - Vu' 4 2 div(saDu').
Applying Proposition [£.1] we yields that for V0 <t < T
loull ., -3 +loull Sexp{2*TYHH|| ;.
g kel LiB, ) (4.33)
When taking div to the du equation of (4.31))2, it leads to
Ar =divG (4.34)
with
G =div{2(a* — Spa*)Déu} — u* - Véu — du - Vu' + 2div(saDu’)
5
+div(2(1 + Spa®)Déu) € 3G,
i=1
Then with the helpf of (4.30)), we get by applying Proposition E that
HV&TH 1 S|G 3 + || div GH 3 . (4.35)
LiB, ) ™ Li(B By 1)
According to Lemma and Bony’s decomposition, one can see
Gl 1 Slla® = Skd®|| 5 [lull | g
LA(B; E) i) L) (4.36)
Noticing that div du = divu? = 0, one gets by applying Remark m that for any n > 0
G ,,+G <76 +c/5 +“- dr, (4.37
121, 3, + 161, oy S lowl, s Ioull 'y, + 13y Jar, (43
where we used the fact that [|dul| .1 < [|6ull 1 < ||5u\| : 1 HéuH : . Similarly, we can deduce
B2 BZ 1 2 1 ,1

,1

+ 1 Tpurdal

N m\»-t

1G4l SleaDul|| 4 S| Ts DUl
Ll isg) ~ T sy Y(BZ,)

+( 2,1

+

1
R(S ’]D) ) oo D 1
+ [ R(da, Du)| sdy SIallzeanPutl o (4.38)

HVulHLg(Loo)HMH ) / H5aH 1 Hu Iz dr.
2

L1 _1
where based on the fact that B, } — B, {, and utilizing the Bony’s decomposition, we obtain

that for any n > 0
+ [|Adu - VSpa®| s
Li(By 1)

G5 _3 +||divG; _3 5 l—l—SkaQ Déu 1
| HL%(Bz,f) | HL%(Bz,f) It ) HL%(Bz,f) 2.1
(4.39)
1 dT.

t
< nlléu +o22k/1+ Sy.a?||? Sull
Sl ”Lg(351> 0 O( | Sk HB?{J)H HBZ?

+ HVSkaz]D)(SuH _1
Li(By{)
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Taking k sufficiently large and ¢ small enough, one may achieve for any k > kg,

2 2
-5 <ec. 4.40
Io? = Sia”l_ 4 S (4.40)

Therefore, plugging (4.36)-(4.39) into (4.33) and (4.35)), rescpectively, and taking c¢ sufficiently
small, it follows that

lowll, -3 +loul , _5 +|[Vorl]

LE(By 1) (B2 i) Li(By 1)

12 2112
Salsull g+ [ Noul_y (1071, + iy, ) a (4.1

t
1. 2k 212
+/0 ||5aHBQ%1||u HB§71dT+C772 /0 (1—1— ISka ”Bé,l) ||5uHB %dT
On the other hand, we get from (4.31)); that
dba +u? - Via = du - Vat,

by means of the classical results of transport equation (see [7] for example), we obtain that

1(6a,60) .y S exp{Clu?|lyp }H5UH " H91H ) (4.42)
Lfo(BQJ) B3, B3 1)
Substituting the above inequality into (4.41]) and taking 7 small enough, we obtain
0 du \VT 5 12 212 d
e s -y (1, + 12l ) o

t
2k 2112 1
w2 [ (116718, ) ||6urrB;§dT+/ ol 5 I

Applying Gronwall’s inequality to the above inequality, we obtain that dJu = Vdér = 0, which
together with (4.42)) implies that 60 = 0 for all ¢ € [0,T") with 7" small. The inductive argument
implies that du = Vdm = 60 = 0 for all £ > 0. This completes the proof of uniqueness of Theorem
41

Corollalg'y 4.1 Under the assumptions of Theorem we can find some ty € (t1,1) such that
u(ty) € H-2 N H*(R3) N B3, for s € [0,2], moreover, there holds lj and

o)l -25re 5 ol r-as (1 + 1/68) exp { ol g | + 211601135} (4.43)

Proof Let (6,u, ) be the unique solution of (1.3)) constructed in Section 4.1. While thanks to

(3.28)), one has
el e gr-23) + 1l 3 2000 S lluoll a5 exp{lluoll gg | +2*[160llZs}-
( ) )
Then for any 0 < t; < 1 < T*, with T* being determined by Theorem we deduce that
4 k
el g 12y 10l gy S -2/ exp { ol o | + 21160125 } (4.44)

This together with (4.21]) concludes the proof of Corollary
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5 Global well-posedness of (1.3

The goal of this section is to prove the global well-posedness part of Theorem [1.1] provided
that ||ugl| B9, is sufficiently small. As a convention in the remaining of this section, we shall

always denote to to be the positive time determined by Corollary |4.1] . We shall prove has
a unique global solution (6, u, 7) on [tg, 00) with u = v+w and v solving (1.12)), w solvmg

Strategy of the proof of Theorem [1.1} Based on the result of Theorem [£.1, we conclude
that: for given 6y € B3, L(R%) and ug € B 71(]1%3) with Hu0||Bg1 sufficiently small, 1) has a

3 .
unique local solution (6,u) satisfying 6 € C([O,T*);Bf’l(R3)) and u € C([O,T*);B?O)’l(R?’)) N
L} ([0, T*); B§71(R3)) for some T* > 1, and we can find some tg € (0, 1) such that
lulto)ll gz, < Clluollpg - (5.1)

Notice from that |lu(to)]| 59 np2 , 1 very small provided that lluol| B9, is sufficiently small.

Moreover, applying Corollary [4.1] -, it mfers that

luto) | fr-zsnrz S ol 26 (1 +1/13) exp {HUOHBg,l + 24’“!\90\\%3} : (5.2)

Then we shall prove the global well-posedness of u on [ty,00) with u = v + w, where v solves
the following system

ow~+v-Vv—Av+ Vm, =0,
dive =0, (5.3)
U|t:t0 = u(to),

and the perturbation w = u — v satsifying

0:0 + div(f(v + w)) =0,

Ow + (v +w) - Vw — div(2p(0)Dw) + Vry, = —w - Vo + div(2(u(0) — 1)Do),

divw = 0,

Oli—, =0 (t0),  wley, =0,

(5.4)

which can be reached through energy estimate in the L? framework. The detailed information
of v is presented in Proposition and that of w is in Subsection 5.3. Our aim of what follows
is to prove that T™ = oo.

In order to get the global solution of system (|5.3)), we need to recall the following proposition
which is introduced in Proposition 5.1 of [2] and we skip the proof for simplicity.

Proposition 5.1 ([2/.) Let (v,m,) be a ungiue global solution of (5.3) which satisfies (|1.8]).
Then for s € [0,2], it holds true that

100z (19,00):35 ) F 102 (pt0.001i512) = Clluollg - (5:5)

and
||8t”HLoo([tO,oo);Bg,l) + Hatv||L1([t0,oo);B§7l) < CHUOHBgJ- (5.6)
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Since v has been obtained above, we will pay attention to the global well-posedness of w in
to complete the proof of Theorem |1.1, For simplicity, in what follows, we just present the
a priori estimates for smooth enough solutions of system on [0,7%). Before estimating w,
we first need the following large time-decay estimate of v.

Lemma 5.1 ([18]) Let vy € B§71 N H-2(R3) be a solenoidal vector field for some § € 1,2)
and s € [0,2]. Assume that the function v solves

ov+v-Vv—Av+Vr =0,

dive =0, (5.7)

vli=ty = u(to),
then there holds for all to <t <T,

 2s54+45+1
(@), < O+ 1) 55)

Proposition 5.2 ([18]) Let (v,m,) be the unqgiue global solution of which satisfies @
Then for s € [0,2] and B(s) 2 24041 yhere holds

1870l Fo g g, 180l o 532 < (5.9)

and

2)_ 2)_
Htﬁ( ) UtHZOO([tUJ};Bg’l) + ||t5( ) vt”il([to,t];Bil) <C (5.10)

Proposition 5.3 ([21,[18/) Under the assumptions of Theorem we have for any t € [ty, T,

(w0, w) |22 < CHo(t)™®  with (&) €14t (5.11)

where
def
Ho S 1t u(to)l13 s + (ko) 22 (1 + 1602 + Ilu(to) |22). (5.12)

Proof: We first get from the classical Navier-Stokes equations (|1.12]) that
[v][72 < CHo(t) ™%, (5.13)
and the proof of u is rather standard. Notice that w = u — v, one has

lwl|72 < CHo ()~

5.1 Higher Regularity of w

As a convention, in the remainder of this subsection we will always denote s; € [1,2]. The
following regularity results on the Stokes equations will be useful for our derivation of higher
order a priori estimates, and the proof process can be referred to [21].
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Lemma 5.2 ([21]) For positive constants p, i, and q € (3,00), in addition, assume that ()
satisfies
Vu@) e LT, 0<p<p(d) <p<oo. (5.14)

Then, if F € L™ with r € [%,q], there exists some positive C' depending only on p, fi,q and r

such that the unique weak solution (w,n) € H' x L? to the Cauchy problem

—div(2u(0)Dw) + V7 = F, (t,z) € Ry x R3,

divw =0, (t,z) € Ry x R3, (5.15)
w(z) — 0, |z — 0
satisfies
L{
IV2wllr2 S I1F |2 + V@)l [Vl 2, (5.16)
and
2 gfé;:gg —1 1.
IVowl[or S Fler + IVu@) " I Vwllze + [[(=A) 7" div F| g2} (5.17)

Proposition 5.4 There exists some positive constant €y depending only on q, fi, i and M, such
that if (0,u, ) is a smooth solution of (1.3) on R3 x [0, T satisfying

sup ([Vu(@)llra +[[VOlls) <4M  and  sup |[Vull72 <A4C|uol%y (5.18)
tG[O’T} tG[to,T] 3,1

, the following estimates holds:
1

def
where M = ||Vu(0o)||re + ||90||B

3
2
2,

sup (IVi(0)||pa + |VO||z3) <2M and  sup ||[Vul7. < 2C’Hu0H?E-;SJ , (5.19)
tG[O’T} tG[to,T] 3,1

provided that H“O”Bgl < go.

Before proving Proposition [5.4] we establish some necessary a priori estimates from Lemma
5.3 to Lemma

Corollary 5.1 Under the assumptions of Pmposition one has for q € (3,00),

IV2wlze S 0mwllze + [Vl 2 + [Vewlgz + vl 54 - (5.20)

Proof The momentum equations can be rewritten as follows,
—div(p(0)Dw) + Vi = —0w — (v + w) - Vw —w - Vo + div (2(p(6) — 1)Do) . (5.21)
By virtue of Lemma one has

V2wl 2 SIVwl g2 + 18wl g2 + [I(v + w) - Vaol| 2

, (5.22)
+ [[w - Vol gz + || div (2(u(6) — 1)D) || 22
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Then, by virtue of Proposition and the Gagliardo-Nirenberg inequality, we obtain that

V2wl 2 S Vw2 + 10wl g2 + wll o[Vl s + o]z Vel 22
+llwllzs[Vollgs + [(1(0) = DAv[| 2 + [[Do - Viu(6) ]| 2

3 1
S IVl + 10wl 2 + [Vl 22 V2w 22 + lluoll gg IVl 2
+ 11(0) = L 6| Av][ s + Vol Lol (0) VOl 5.
By Young’s inequality, we can deduce for s; € [1,2],

IV*wllze S ll0rwlize + [Vl + [IVellzz + ol g1 -

5.2 The a priori estimates related to the System ([1.13))

Next, we are going to derive some a priori time-weighted estimates. Noticing that the regularity
of initial velocity in Bgl is not enough, we intend to obtain some higher order estimates, which
are independent of time.

Lemma 5.3 Under the assumptions of Proposition one has

T
sup / \w|*dx +/ / |Vw|?dzdt < CHU()HQBO . (5.23)
] JRS to JR3 3,1

tE[to,T

where C' is independent of t.

Proof: Firstly, we get by using standard energy estimate to the w equation of (1.13)) that

%%Hw”%z + Vw3, < ‘/RB w - Vo|lwdz| + /RS 2(u(0) — 1)Do : Dwdx
< w721V ollzee + 11(8) = Ulzs [Vl L2 [Vl 1o (5.24)
< S IVwls + Cllal Fel = + Clool3sl Tl
Hence, one has
L2 + 190l 5 ol g, s + ol (5.25)

Integrating in time over [to, T yields
w0l (19, 71:02) + 1 V0N L2 10 71512y S ol -
This completes the proof of Lemma [5.3

Corollary 5.2 Under the assumptions of Theorem |1.1], we have
120 e g2y + 187~ Ve0ll T2y 17,02) < CHo, (5.26)

where Ho is given by (5.12)).
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Proof Multiplying (5.25) by #2%- and then integrating the resulting inequality over [to, T], we
get, by applying (5.11)), that

o— 2 o— 2
1=l oo o,y z2) + 187 Vol 1y,12)
< T (=1)— |46 2 ’ 25— 2 ’ (5.27)
SO I e+ [ ol dt bexol [ ol de)
0 0 0
Hence, one has
1820117 (10 1:22) + 1877 VllT2 gy 71212y < CHo-

We completes the proof of the Corollary [5.2]
Lemma 5.4 Suppose (8, w, ) is the unique local strong solution to (5.4) satisfying (L.8]). Then
it follows that

1 T
/ e [2dadt + sup / Vuldz < 2C|uol2, . (5.28)
vV Jty JR3 tefto,T] JR3 3,1

Proof Multiplying the momentum equations by w; and integrating over R3, it yields
9 d
|we|*de + — [ w(0)Dw : Dwdz
R3 dt Jps

< + (5.29)

/ (w - Vv)|wpdx
R3

/R3 div(2(u(8) — 1)Dw)|Orwdx

+ Op(0)Dw : Dwdzx| +

/ (v +w) - Vw|wdz
R3 R3

Applying the Gagliardo-Nirenberg inequality, we know that

IN

[wel 2llwl| 2 [ Vol e

/ (w - Vv)|wpdz
R3

< Slwnl + Cllwl3s Vol
and
[, @v(u(6) = Do)lovwds| < [(u(6) = 1o+ Do~ Vo)l
< C {14(6) ~ ol el o + Vol ol 9l 2} ool
< glhunlZa + C(l6oll s, Mol
Similarly,

Ope(0)Dw : Dwdz| <

/ (v+w) - Vu(0)Dw : Dwdx
R3 R3
< OOl s [Vl 2Vl s (lwllzee + [|v]| o)
3 3
< C(M)|[Vwl 21Vl 72 + C(M)[|Vwl| 2 VZwl| 2 [[v]| o

Here we have used the fact that

Oen(0) + (v + w) - Vu(f) =0,
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which is a consequence of mass equation by means of the fact divu = 0. Notice that

< flwell 2 {[[Vwl s llwll s + [Vl 2 [v]| <}

/ (v+w) - Vw|wdz
R3

3 1
< lwell 2 Vw221V w22 + [lwell 2 [Vl g2 [ ol| o

Hence, by Young’s inequality and Corollary it infers that

d
/ lwi|?de + — [ pu(0)Dw : Dwdz
R3 dt R3

3

1 2 2
<Slwnls + IVl g, {18l g2 + 19wl g2 + 19wl + vl g, } (5.30)

+ Cllwlal Vel + CIVwl zallvlze {18l + [Vullz2 + I Vwls + ol g2, )
1

3 1
+ Cllolhen + Cllwdll2Vwl 3z 100w 2 + IVl 2 + [[VwllFe + ol g 17
3,1 3,1

from which together with (5.5) it yields that

/ |lwy|*dx + d/ w1(0)Dw : Dwdz
R3 dt Jrs

7

<<lhwill2: + Vel + CIVwlls + OVl + Cllolye +Clluwld: | Tolf. (531
7

<<lwillZs + CIIVwlSs + CIVw]3s + Cllole, + Clluwl2:1Vo]3

Integrating with respect to time on [tg, T it gives that

T
//|wt|2dazdt—i— sup / \Vw|*dz
to JR3 t€lto,T] JR3

T T T
<0 [ 1vulfdt € [ 9l o [,
to to

T
L dt +C sup Hw||%z/ [ Vvl|2 s dt.
to 1 to

’ tefto, T

Applying Gronwall’s inequality,

T T
| [zt + s [ Ve < Clualy, -exp{C [ [Vulldr).
to JR3 R3 B3,1 to

te(to,T)

Such that if

luollzg, <1 and - sup [ Vulfs < 4Cluoly <1 (5.32)

then
T T
/ [Vwl[$.dt < sup HVwH%Q-/ [Vw||2,dt
to to

te(to,T)

(5.33)
< sClhully, < Iy

Hence, we arrive at

T
/ / lwy|*dzdt + sup / |Vw|?dx < C’Hu0||j2§0 'exp{C’HUOHQBO }. (5.34)
to JR3 t€(to,T] JR3 3,1 3,1



Choosing some small positive constant £; = min{,/ %, h‘%}, we easily deduce (|5.34

ing to (5:32).

As a byproduct of the above estimates, we have the following result.
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accord-

Lemma 5.5 Suppose (6,w, ) is the unique local strong solution to (5.4) satisfying (L.8]). Then

under the assumptions of Proposition we have

T
/ Hlwrladt + sup ¢Vl < CHo,

to tefto, T

where Hog is given by (5.12)).

Proof: Multiplying (5.31)) by ¢, as shown in the last proof, one has

T T T
/ HlwilPadt + sup ¢ Va2 sc/ \Vw”%zdtJrC/ Vw6 dt
t to to

0 te[to,T

T T T
e tHVw||2L2dt+C/ ol di +C sup \|w||§2/ HIV 0|2 dt.
to 4

to te [to ,T] to

According to Lemma [5.4] and Proposition [5.2
g 2 2 g 2
|1l < ol and ool <
for s1 € [1,2]. With the help of 1| for 6 > %, we obtain that

T T
| thunlBade+ sup 9wl <Cllunly, + [ 675 6 e
to t€(to,T] 3,1 to

T
+ 1)exp {C/ va”igdt} < C*Hp.

to

This completes the proof of Lemma [5.5

(5.35)

(5.36)

(5.37)

(5.38)

Lemma 5.6 Suppose (6, w, ) is the unique local strong solution to (5.4) satisfying (L.8]). Then

under the assumptions of Proposition we have
T
sup tlurlf+ [ Vuilade < O,
tG[to,T} to

and

T
sup |w|72 +/ 2| Vw3 .dt < CHG,
telto,T] to

where Hy is given by (5.12)).

(5.39)

(5.40)



29

Proof Taking t-derivative of the momentum equations, it follows that

Opw + (v + w) - Vwy — div(2u(0)Dwy) + Ve = —(ve + wy) - Vw

5.41
+ div(20;(0)Dw) — Oy (w - V) + div(20;u(0)Dv) + div (2(u(0) — 1)Duy) . (5.41)
Multiplying ((5.41)) by w; and integrating over R3, we get after integration by parts that
2 pr / |wy|*dx + 2 / w(0)Dw; : Dwyda
=— / (vt + wy) - Vwlwpdx — 2/ Oyu(0)Dw - Vwydr — 8t(w - Vo) |wedz (5.42)
R3 R3 .

-2 [ Owu(0)Dv - Vuwdx + / div (2(u(8) — 1)Doy) |widz ey Z J;.
R3 R3

Now, we will use the Gagliardo-Nirenberg inequality and Corollary to estimate each term
on the right-hand side of (5.42)). First, notice that

J = —/ (ve + wy) - Vw|wdz
]R3

< Cllotll s [Vl 2 llwil o + Cllwl sl[well sl V]l 2

(5.43)
1 3
< Cllogll s Vwl 2 Vw22 + Cllwe|| 22 1 Vwe|| 22 [V 2
<nllVwilZz + ClIVwlZa vl + CllwelZ2 [ VewllL:.
for any n > 0. Second, utilizing the equation for u(6), we know
Jy = —2/ (v+w) - Vu(0)Dw - Vwdx
R3

< O(||v]|ree + |lw|| Lo |1 (O)VO| 3| Vw)| 6 || Vwe || 2

(llll [[wllzoe) | () VO 3 | Vwl| Lo [[ Ve[ (5.44)

1 1
<C(M) <HU||L°° + Hlelig\lvzw\liz) V2l 2 [ Ve | 2
<l Vw|z: + CIVw|Zal[v] T + Cl Vw2l Vw72

Third, according to Corollary and assumption ({5.18)), it holds that

Js = —/ wy - Volwdr — / w - Vu|wde,
R3 R3

and
- /3 wy - Vlwidz < Cllw|| 2 ||wi]| o | Vol s < nll V|7 + C\thHiszll2 o1
R

and
- /RS w - Vogwdz < Cllw e[ Vol psllwll 2 < nl| V|7 + H’wHQmHUtH%é -

Hence, we deduce that

[Js] < 0l Vel gz + Cllwell 22 vl e + CllwliZalvelGy - (5.45)
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Finally, taking into account the equation for ;(f) again, we arrive at

Jy+Js = 2/ (v+w) - Vu(0)Dv - Vurdr — 2/ (1(0) — 1)Dvy - Vwedx
R3 R

3
< C(|lvllzelIVollzs + Vol e wllze) |4/ (0) VOl 3| V| 2
+ Cllu(0) = Ul s [Vorll s [ Vewe 2

< iVl + Ol M, [ule) (Il o, + el + ol )

(5.46)

Substituting (5.43))-(5.46)) into (5.42)) and applying Corollary for any n > 0 and ¢ € [to,T],

we have

d
7 / |wi*de+|| Vw72 < 0llVwel| 72 + Cllwl|7z + Cllo e

RS 3.1 (5.47)
+Clloelfy + ClIVwlzs + ClIVul: + C|Vwll.

Taking 1 small enough and multiplying (5.47)) by t one easily deduces that

d
IVt LA IVEVwllZe S lwdllZe + Vw72 w2 + vl s,

+ el + IVEVwlL{IVwlZe + IVl + [Vwl;2}

Integrating with respect to time on [tg, 7] and using Gronwall’s inequality, it follows that

T T
sup tflwe|7a +/ tIIthllizdt,S{Ith(to)\I%2+/ t(lloll e + lloel%y )dt
te(to,T) to to 3,1 3,1

(5.48)
T T
+/ IVEVw|2s (|[Vw|2s + Vw72 + Hwniz)dt}exp{o/ ||wt||%2dt}.
to to
Whereas taking L2-norm of the w; at t = to and using (5.1)-(5.4)), it gives rise to
[[we(to)l| 2 <[|(v +w) - Vw(to)ll L2 + || div(2u(0)Dw)(to) | 2 + [Jw - Volto)| 12
+ [ div(2(p(0) — 1)Dv)(to)|l L2
<1916)to) a1 Pulto)] o2 + 1(B0) — L=l Auto)] (5.19)
q=3 3
<M|[Vu(to)ll 3 IV2u(to)llf2 + 160l Lo | Aulto)]| .2
<C(M, |00 o) [[u(to)]| g2
Thanks to (5.9) and (5.10), we conclude that
T T
/ ol dt+/ turls, di<C. (5.50)
to 3,1 to 3,1
According to Lemma and
T
| IVEvulEs (1wl + [Vl + [ Vo) a
0
2 2 6 g 2 (5.51)
< sup [[ViVw|iz- |1+ sup [Vwlfz + sup [Vwllfe |- [ [[Vwl[jzdt
telto, T t€to,T) te(to, T to

<CHy.
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Plugging (5.51]) and ( into ( , we have

T
sup t]|w||3. +/ t|| V|| 2dt < CHo. (5.52)
te(to,T) to

On the other hand, multiplying (5.47) by t2, one has

d
Zltwl a4V willze S IVEwllz + [[twdlze lwillze + 2ol

+ el + IVEVwlz2 {1+ [Vw|[fz + [ Vwllz:}.
Thanks to (5.9) and (5.10), we conclude that
T T
u/ﬂm%ﬂﬁ+/tﬂM%“ﬁ§G (5.53)
to 3,1 to 3,1
Owing to Corollary we get for § > %,

T T
/|NNM@&<sw|NNM@/m#%HﬁVM@ﬁ<C%.
to

telto,T] to
From which and Gronwall’s inequality, we can deduce
T
sup 2|w|32 +/ 2| Vw3 .dt < CHG. (5.54)
te(to,T) to

This completes the proof of Lemma

5.3 The L'([ty,T]; BL ,(R?)) estimate for w

The goal of this subsection is to present the a priori L!([to, T); Béo,l(RS)) estimate for w, which
is the most important ingredient used in the proof of Theorem

Lemma 5.7 Let p € (2, -2 1+5 ) f ord € (3,3) and ay = %. Assume that (0,w, ) is the

unique local strong solution to (5.4) satisfying (1.8)). Then under the assumptions of Proposition
we have

3aq(p—2)

IVell i o 20, ) < C’nguouBg lzp . (5.55)

where Hg is given by (5.12)).

Proof: By virtue of Lemma one has for r € (3, min{q,6})
IV2wllzr S Vw2 + [1F ][z + [(=A) 7" div Fl 2 (5.56)

with
F=—-0w—(v+w) Vw—w-Vu+div(2(u(d) — 1)Dv).
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Thus, we can obtain that for any t € [tg, 7] and n > 0
[E N Sllwellzr + 1[0+ w) - Vwllzr + [lw - Vol zr + | div(2(u(0) — 1)Do)[ -
Sllwtllz2 HthHLzZ + o+ wlps [Vl o+ [lw]l e[ Vo] e
+ ([ (1(0) = DAV zr + [[Dv - V(O )HL’“

-6 6(r—1) 4r—6

6— 3r—6
Sllwdll & [Vl 3 +HU0||Bg’1HV7~U”L2 [V H"” P IVl 570 VRl

Vel lluoll g, +H90HUHAUHE';1 F V) e[ Vol | o

6(r—1)

<ol VA o + HthLz HthHL " [Vl + IVwlla™ +llollgs, + 1ol
and utilizing the fact that divw = dive = 0, one has
I(=A)" div Flly Sli(o +w)- Vull g + [0 V|| ¢ +[1(2(6) = D]l
SlollzallVwll gz + [lwl s Vwll g2 + [wll 2|Vl s 4 [[0(0) = 1] 2] Vol 2
SIVwlrz2 + IIMII%QHVUJII%z +C([100]2) (X + fJwllz2)llv] 21,

where we used Lf < W12, Substituting the above inequality into |i and taking n > 0
sufficiently small, we arrive at

6(r—1)
IVl SIVuloe+ [Tulm + 0+ ol ol
6r ot P (5.57)
ol g, + Tl 19wl 5 + ol 2 Tl
and it is easy to observe that

T T — T

[ 1wl s [ 19wl [ 19l as [l ol g

0 o 0 0 | (5.58)

T T 6-r 3r—6 T 1 3
[ olag e [ wdiE 1w e+ [l Vel
to ’ to to

By virtue of Corollary we get for 6_ > %,

T T
| 19 wliade < 6Vl ayan( | a0 < O,
to to

and

T 6(r—1) 6 T ) )
/Nwmew<sw\wwy-/ﬁwwmwsmwmm
tefto,T) to 31

Similarly, applying Lemma and Proposition we arrive at
T T
sup (L Jwll2) [ lollggyde+ [ foilggde <
telto,T) to 31 to 31
and
T 6—r 3(r—2) T 6— 3(r—2) )
/ 10wl T |Vl F dt </ ltowwl 5 [tVw > -t Ldt
to to

T T

6—r 2 3(r—2) _ A4r 6+

<( sup |[[tdpw|z2) = ~(/ [tV wy |[L2dt) ™ ~(/ torredt) ar
to

t€(to, T to
<CH3.
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1 3
The same estimate holds true for ftf w7 Vw|7.dt, i.e

T 1 3 5 1 T s 2 3 T 35 1
[ lelivulfar < ¢ osu [@uli ([ 10-Vulidoi] oS-y
to tE[tQ,T} to

< OH}.

Therefore, according to (5.58)), we can deduce

to

T
/ V2w p-dt < CHE. (5.59)
to

On the other hand, applying the Gagliardo-Nirenberg inequality, we have
1 1

a1
0=""+ (1= an( -~ 3). (5.60)

Let p be a positive constant which will be determined later on. By virtue of Corollary [5.1] we
infer that

T T T T
| IVl s [ 19%lade S [ IVuliedi+ [ ola
to

to to to

T T
/ |92w][Sadt + / ol dt S [ IVwlade+ [ OBt G0
to ’

to to

T
+osup [Vallt,. / IV w|2adt + / ol de S lluoly
te(to, T to

IVwllgo | < IVwl|f V2wl for

where we used the embedding inequality H' < LS in the first inequality. Notice that

o_ 1
”t(l @2)8 vw”LQ(to T);LP) < ”vaLQ ([to,T);LS) Ht Vw||L2OE,520 T];L2)’ (5'62)
where o satisfies

1 1-— -2
- = %"‘ a2 or o9 = 73(]? )
2p

p 6 2
Taking p € (2, T 5 ) for 6 € (%, %), we get, by using Holder’s inequality, that

6-ps T p—6s5 1
IVl < Ol Vullagayan( [ ¢7dt)!
to

3(p—2)

< CHluoll 5"

which along with (5.59)) yields

vaHLl([to,T];BO < ||VwHL1 (to,T];:LP) ||V2w||}:1(at10 T);L™)

3ay(p—2)

< CHlluol

This completes the proof of Lemma
With Lemma at hand, we are in a position to prove Proposition
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Proof Since u(0) satisfies

9 (p(0)) +u-Vu(8) =0, (5.63)
the standard caclulations show that
d
G IVHO)llze < gl VullL=|[Vu(0)]| e, (5.64)
which together with Gronwall’s inequality and ({5.55|) yields
T to
sup [Va(O)]is < [Vabo)lvexp{e [ [Vulumdt+q [ [Vulumd)
t€[0,7) to 0 (5.65)
3a;(p—2) )
< IVutt)lorexo { Clul g, + CHlual gy ™ |-
3,1 31
Hence, one has
sup [[Vu(0)||ze < 2([V(6o)| s,
te(to,T]
provided that
3a;(p—2) def 1
luollpg < ez and extey ¥ H2E Ctn2. (5.66)

Similarly, we can obtain

V615 < 20604
32,1

Choosing ¢ = min{1,e1,e2}, we directly obtain (5.19) from (5.64)-(5.66). Then The proof of

Proposition [5.4] is completed.

5.4 Proof of Theorem [1.1]

In this part, we will finish the proof of Theorem To begin with, we rewrite the momentum
equation in ([1.3))2 as
Ou+u-Vu— p(0)Au+ Vi = 2DuV (). (5.67)
Applying the operator AjIP’ to 1' we derive
A ju+u-VAu — div{u(0)A;Vu} = [u-V; A;Plu (5.68)
— [u(0); A;PIAu — Vu(6) - AjVu + A;P(2DuV u(6)). '

Utilizing that divu = 0 and p(6) > p and multiplying 1' by |Aju|Aju and then integrating
the resulting equality over R3, we obtain

d . - . .
Aullzs + 27 Ajullzs < ll[w- V5 AjPJullzs + [1(0); APl Aul| s
+ | Vu(0) - A;Vull s + [|A;P(2DuV 1u(6))]| 3.

Intergrating the above inequality over [tg, T] and multiplying (5.69) by 27, then summing up the
resulting inequality over j € Z, we achieve

(5.69)

el Zoe g3y Nl oz )
< llulto)ll gy, + D Nl V3 AiPlull g uo,ryszey + Y N(0): A1 A 1 gy ;)
JET JEL

+ Z HVM(Q) . AjVu\|L1([t07T];L3) + HDUVN(H)‘|L1([to,T];Bg71)'
JEZ

(5.70)
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In what follows, we shall deal with the right-hand side of (5.70). By virtue of Lemma

T
>l Vi A Plulsoas S [ 19ulioeul gy . (5.71)
JEZL to

For [11(0); A;P|Au, we denote f def w1(0) — 1, then the homogenous Bony’s decomposition implies
[14(0); AjPlAu = [f; AjP]Au = [Ty; AjP]Au + T/A]Auf — AjP(Tauf) — APR(Au, f).
It follows again from the above estimate

DT AP S0 D 25 IVSoi fllea2 | Apdul| g

JEZ JEZL |j—k|<4
3k .
S0 VS lle2 [[ApVul| s
JEZL |j—k|<4
SIV Azl s

31

where % + q% = % Similarly, one has

STITE s D0 D7 USkeadgAull g 1A f o

JEZL JEZL k>j5—-2
<SS 2 A Al YD P AY s
JEZ k>j—2

S
B3,1

Notice that ' ' '
STIAPTauf)llzz Y- D 27FISk1Aullor 25 Ar £ 1o

jeL JEL [k—j|<a
Sllull s IVl o
BS,lq

The same estimate holds true for A;PR(Au, f). Therefore, we obtain

T
S 100)s &Pl sorasy S [l V0 s (5.72)
JET to B3,1

Along the same line, one has

Z IV (6) - AJ’VUHLl([tO,T];m) + [[Du - Vﬂ(e)HLl([to,T];Bg’l)
JEZL

T T
S _ngwmumdw IVl 90 gt (5.73)
0 0 ’

3,1

T 3 T
S / Jul ||u|| ||w< )l padt + / IVl o< 6] 55,
o ,

to

3 +3
where we use the interpolation inequality ||u| 43 S < ||u|| Hu|| By virtue of Lemma
B

3,1
one has

T
10175y, < 190llag, exp {C [ \Vu||3&,ldt}. (574
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Yet due to Lemma[5.7] and (5.5]), one has

T ) 3a(p—2)
| 19l dt < Cluol gy, + CHBlluoly (575)
0 00,1 3,1 3,1
Plugging the above estimates into ((5.70) and applying Young’s inequality, we arrive at

all oo 1t 2,39 ) 12l 1 g 7152,y S (llwoll g |+ 1160ll 55 )

20 ) (5.76)
exp { (14 TITu(t0) 72" xo (43}
The similary estimates holds true for Vr and w;. Hence, direct calculations leads to
el Zoe (0, 71:89 ) HIV Tl 2 10,71589 ) S (luollpg | + 1160l )
(5.77)

2¢_
< oxp {{1 TV 0) 77} exp {%8}} ,

which completes the proof of Theorem
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