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Abstract

Multiphase reactors’ performance depends on the mesoscale structures formed due to multiphase hydrodynamics. Examples

of mesoscale structures include gas bubbles in a fluidized bed and particle clusters in a riser. Experimental investigation of

these mesoscale structures is challenging and expensive. To this end, Computational Fluid Dynamics (CFD) simulations are

extensively employed; however, post-processing CFD data to capture mesoscale structures is challenging. This work develops a

DBSCAN-based methodology to capture and characterize mesoscale structures from multiphase CFD simulation data. DBSCAN

is an unsupervised machine-learning algorithm, which requires the value of two hyperparameters. A simple technique to calculate

these hyperparameters is provided and the performance of DBSCAN is assessed on CFD-DEM simulations of bubbling fluidized

beds and particle clustering. We demonstrate the computational complexity of DBSCAN to be Ο(n log n), lower than the

existing techniques, by testing its scalability on highly resolved grids (up to 100 million grid points).
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1 Introduction

Multiphase reactors are ubiquitous in the chemical industry and play an essential role in

producing chemicals and energy conversion.1,2 Bubbling fluidized beds and risers are the

two commonly used multiphase reactors employing gas and solid particles. These reactors

are characterized by mesoscale structures that are much larger than individual particles but

much smaller than the reactor size. For example, gas bubbles in a fluidized bed and particle

clusters in a riser3 are two important mesoscale structures that significantly impact the

reactor performance. In general, clusters reduce the mixing between gas and solid particles,

whereas bubbles lead to gas bypass, leading to poor reactant conversion. Hence, quantitative

characterization of mesoscale structures is essential to predict and optimize the performance

of multiphase reactors.

Experimental investigations focused on characterizing bubble and cluster properties are

challenging. The opaque nature of the solid phase makes visual investigations difficult.

Bubble characteristics in thin rectangular beds are obtained using high-speed cameras and

digital image analysis. However, these techniques fail in commonly used cylindrical beds.

For such configurations, intrusive techniques based on optical signals, electrical pulses, and

pressure fluctuations and non-intrusive techniques based on electrical capacitance, X-rays,

and MRI are employed.4 Pixel luminance of the images obtained from the non-intrusive

measurements is processed through image processing software, such as MATLAB, to obtain

bubble and cluster statistics.5–7 However, these techniques are expensive and challenging for

large-scale reactors and at high temperatures.

Increasing computational resources and the availability of commercial and open-source

software have made Computational Fluid Dynamics (CFD) simulations an integral part of

multiphase reactor investigations.3,8–16 High performance Computing is pushing the bound-
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aries of the level of detail and the reactor size simulated using CFD. Recently, CFD simulation

of a fluidized bed using one billion mesh elements on 36,000 processors was performed.17 This

simulation generated 200 TB of data for 25 s of physical time, making the post-processing of

the data a significant challenge. A few algorithms have recently been developed for bubble

identification.4,7,18,19 These algorithms, primarily based on image analysis, include flood-

fill method,7 maximum entropy,18 MS3DATA,4 and use of Visualization Toolkit (VTK).19

Among these techniques, the time complexity of the flood-fill method and MS3DATA is

known to be O(n2) and O(n1.3), respectively. Computationally fast algorithms to capture

mesoscale structures that are easy to implement with multiphase CFD simulations are im-

perative.

Machine learning algorithms are finding applications in expediting multiphase reactor

simulations.20–24 In the context of clustering data or finding patterns, unsupervised machine

learning algorithms can be helpful. These algorithms create groups in data based on the

similarity of data points to each other relative to the surrounding data points. Cluster-

ing algorithms can be broadly divided into hierarchical, centroid-based, density-based, and

distribution-based clustering.25 Centroid and density-based algorithms such as K-means,26

Mean-shift,27 OPTICS,28 and DBSCAN29 primarily rely on distance between points, making

them suitable candidates to process mesh- or grid-based CFD simulation data.

K-means is the most popular clustering algorithm and has been used for image analy-

sis to identify clusters in 2D riser simulations.30–33 However, its applicability is constrained

by the need for convex cluster shapes, sensitivity to initial conditions and outliers, and a

priori knowledge of the number of clusters. These limitations of K-means can be elimi-

nated using Density-Based Spatial Clustering of Applications with Noise34,35 (DBSCAN),

which is a density-based deterministic clustering algorithm. Unlike partition-based K-means

and other hierarchical clustering methods, DBSCAN operates on the notion of density and

requires minimal domain knowledge. It is highly effective in discovering arbitrary-shaped

distributions in large spatial databases with outliers. These qualities make DBSCAN an
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optimal choice for identifying and characterizing mesoscale structures in multiphase CFD

simulations. Moreover, DBSCAN34,35 is freely available as an open-source library in R,36

.NET,37 and Python,38 allowing it to be used in a modular fashion with existing CFD codes

and software.

In this work, we employ DBSCAN to identify bubbles and clusters of arbitrary shapes

and sizes in the fluidized bed and riser CFD simulations, respectively. A simple approach

to calculating optimal values of DBSCAN’s hyperparameters is also provided. This step

eliminates the time-consuming tuning process and makes DBSCAN fully automated. The

adequacy of DBSCAN is assessed against test data consisting of analytical shapes and CFD-

DEM simulations of a fluidized bed and particle clustering in a periodic domain. These

simulations are performed using NGA,3,39,40 a low Mach, variable density multiphase code

employing the Computational Fluid Dynamics – Discrete Element Method (CFD-DEM)

strategy. The computational complexity of DBSCAN is found to be close to its theoretical

value of O(n log n) by performing scalability analysis on highly resolved grids containing up

to 100 million grid points.

2 Methodology

This section describes the DBSCAN algorithm and the key steps in its implementation.

Section 2.1 describes the simulation setup NGA used to perform CFD-DEM simulations of

fluidized beds and particle clustering. Section 2.2 summarizes the working of DBSCAN. A

technique to calculate the optimal values of DBSCAN’s hyperparameters is demonstrated in

section 2.3. Pre-processing of data to implement DBSCAN is detailed in section 2.4. Finally,

section 2.5 summarizes the bubble and cluster properties calculation.
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2.1 Simulation setup

NGA,39,40 a reacting multiphase flow solver, is used to perform bubbling fluidized bed and

periodic riser simulations. NGA has been extensively used to investigate several multiphase

flow problems, such as fluidized beds,3,8,40 particle clustering,41,42 turbulent flows,43 and gas-

liquid flows.44 NGA implements a CFD-DEM approach40 to simulate gas-solid flows, where

the gas phase is modeled as a continuum and the solid particles are tracked individually.

The particle tracking is based on Newton’s second law of motion where particles experience

forces due to gravity, drag, and collisions. Four-way coupling is considered, including the

influence of particles on the gas phase and particle-particle and particle-wall collisions. The

collisions are represented using the soft sphere modeling approach of Cundall and Strack.45

A conservative immersed boundary (IB) method46 is employed to account for the cylindrical

geometry on a Cartesian mesh. More details about NGA can be found in refs.3,39,40

2.2 Mesoscale structure detection using DBSCAN

DBSCAN employs minimum density threshold criterion to separate regions of different den-

sities. Each point in a spatial database D either belongs to a clusterD or is noise (outlier).

Note that clusterD refers to a group of similar data points identified by DBSCAN and is

different from a particle cluster, which is a mesoscale structure. To classify the points as a

clusterD, the neighborhood of a given radius must contain a minimum number of points,

i.e., the density in the neighborhood must exceed some specified threshold. Noise points are

a set of points in D that do not belong to any of its clusterD.

Two internal parameters in DBSCAN need to be specified: eps and minPts. Based on

these two parameters, every point in D is labeled as a core point Ci, border point Bi, or noise

point Oi (outlier). Figure 1 shows a schematic of the key concepts of DBSCAN. DBSCAN

follows a two-step approach given the parameters eps and minPts. First, it selects a point P

from D and considers all neighbors within eps radius to be the members of the same cluster

as P (these points are referred to as direct density-reachable). If the eps radius consists
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of at least minPts data points, then P is labeled as a core point. All points within the

same clusterD set are density-connected, and non-core points are termed border points.

Finally, points that are not density-reachable from any core points of any clusterD are

called outliers.34

(b)

𝑙𝑑

Figure 1: (a) Illustration of the principle behind DBSCAN using minPts = 4 as an example.
Every core point Ci has at least four points (minPts = 4) within a circle (red region) of
eps radius, including Ci itself. All density connected points Bi are the border points inside
yellow circles, as there are less than four points in its neighborhood of eps radius. These
are not core points but are density reachable from Ci and belong to the clusterD. Points
Oi are outliers or noise within a circle (grey region) as they are neither core points nor are
density reachable from core points. (b) Schematic of two clustersD formed on a 2D grid
of spacing ld; the shortest distance between the clustersD is lc.

2.3 Estimation of DBSCAN parameters

DBSCAN algorithm requires the values of two parameters: eps and minPts. A few general

methods29,34,35 exist in the literature providing broad estimates of eps and minPts. We

demonstrate a straightforward technique to estimate the adequate values of these parameters

for 2D and 3D CFD simulations.

Consider two clustersD on a uniform grid with grid spacing or mesh size being ld,

and the shortest distance between the clustersD be lc (see Figure 1b). A lower bound for
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eps could be the maximum distance between two adjacent points, equal to
√
2ld for a 2D

square grid and
√
3ld for a 3D cubic grid. These values correspond to the distance between

the diagonally opposite points in a square and a cube, respectively. The upper bound

of eps should be lower than lc to identify two nearby clustersD as separate entities.

Thus, an adequate value of eps should lie between
√
2ld or

√
3ld and lc. Since lc varies

significantly in CFD simulations due to the dynamic nature of bubbles and clusters formation

and disappearance, eps based on the lower bound is more appropriate. Based on these

observations, we evaluate eps as

eps =


√
2fld for 2D

√
3fld for 3D

(1)

where f > 1.

To determine an optimal value of f , a parametric study consisting of two clustersD

(circles for the 2D database and spheres for the 3D database) with radii of 2 cm and 1.5 cm

is conducted. f is varied between 1 and 2. The minimum gap lc between the clustersD

is varied, such that ld < lc < 10ld. All sides of the computational domain are set to 10.2

cm and discretized using different grid resolutions (grid spacing from 0.5 mm to 2 mm).

DBSCAN correctly captures the clustersD when 1 < f < 1.3. We use f = 1.15 in all the

cases in this work.

Once eps is calculated, minPts is estimated as the number of data points in a circle

(sphere for 3D) of radius eps:

minPts =

 ρN · eps2 for 2D

ρN · eps3 for 3D
(2)

where ρN is the number density of the dataset. In CFD simulations, ρN ∼ 1/l2d for 2D and

1/l3d for 3D dataset is the ratio of the number of grid points and the area (volume for 3D) of
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the computational domain.

2.4 Data pre-processing

Fluid volume fraction εf or particle volume fraction, εp = 1− εf , data obtained from CFD-

DEM simulations is used to identify bubbles and clusters. A threshold or cut-off value is

defined for the fluid volume fraction ε∗f and particle volume fraction ε∗p for bubble and cluster

detection, respectively. The threshold values are such that in a bubble εf > ε∗f , whereas in

a cluster εp > ε∗p. In the literature, ε∗f is estimated to be in the range of 0.7 to 0.85.4,7,19,47

We use an intermediate value of ε∗f = 0.75 for bubble detection. The following expression48

is used to estimate ε∗p:

ε∗p = µ(εp) + nσ(εp) (3)

where µ(εp) and σ(εp) are the mean and standard deviation of εp, respectively. n is an

integer between 1 and 3.48–50 An intermediate value n = 2 is used in this work.

At every grid point, εf or εp value is replaced by δ, such that

δ =


1 if εf > ε∗f for bubble detection

1 if εp > ε∗p for cluster detection

0 otherwise

(4)

Positions of the grid points with δ = 1 are considered for DBSCAN, discarding the remaining

data. This step leads to a significant reduction in the memory and computing requirements

as the number of grid points that are part of bubbles or clusters is much smaller than the

total grid points in multiphase CFD simulation. Section 6 discusses the impact of this

pre-processing step on the calculation time in more detail.
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2.5 Calculation of bubble and cluster properties

After DBSCAN identifies clustersD, four clusterD properties are calculated: centroid,

area Ab (volume Vb in 3D), equivalent diameter db, and chord length CL. DBSCAN assigns

unique labels to the core and border points of identified clustersD. The centroid of a

clusterD is calculated as

(x̄, ȳ) =

(
1

nc

nc∑
i=1

xi,
1

nc

nc∑
i=1

yi

)
for 2D (5)

(x̄, ȳ, z̄) =

(
1

nc

nc∑
i=1

xi,
1

nc

nc∑
i=1

yi,
1

nc

nc∑
i=1

zi

)
for 3D (6)

where xi, yi, and zi are the core points, and nc is the number of core points in a clusterD.

Area-equivalent (volume-equivalent) diameter db is calculated as the diameter of a circle

(sphere) having the same area (volume) as the clusterD:

db =

√
4Ab

π
for 2D (7)

db =
3

√
6Vb

π
for 3D (8)

Here Ab = ncl
2
d and Vb = ncl

3
d.

The chord length CL is defined as the maximum length of a cluster and calculated

using the property of Convex Hull computed using the Qhull library.51 The algorithm iden-

tifies a convex enclosure and returns the unique and minimal convex set of points containing

all the points of a data group. The largest distance between any two points in the Convex

Hull set is considered to be CL.

3 Assessment of the methodology

The accuracy of DBSCAN and property estimation is assessed for 2D and 3D test datasets

consisting of circles, ellipses, spheres, and ellipsoids. These shapes of different sizes with
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varying ld and lc are considered for a robust assessment case. The computational domain

having a side length of 10.2 cm is discretized using different grid resolutions ld ∈ (0.5, 0.8, 1.4)

mm. The hyperparameters of DBSCAN (eps and minPts) are calculated using the method-

ology described in section 2.3. DBSCAN accurately identifies the clustersD for all the

test cases. Figure 2 shows the clusterD identified in a few 2D (first row) and 3D (second

row) datasets by DBSCAN.

(a) (b) (c)

(e)(d) (f)

Figure 2: Application of DBSCAN for 2D and 3D analytical shapes of various sizes in a
domain of side length 10.2 cm. First row: 2D dataset with (a) ld=0.05 cm, lc=0.83 cm,
eps=0.08 cm, minPts=3 (b) ld=0.08 cm, lc=0.27 cm, eps=0.13 cm, minPts=3, and (c)
ld=0.14 cm, lc=0.40 cm, eps=0.23 cm, minPts=3. Second row: 3D dataset with (d)
ld=0.05 cm, lc=1.43 cm, eps=0.10 cm, minPts=8 (e) ld=0.08 cm, lc=1.28 cm, eps=0.16
cm, minPts=8, and (f) ld=0.14 cm, lc=0.52 cm, eps=0.28 cm, minPts=8. For all the cases
f = 1.15. Note that the shortest distance between two shapes is reported as lc.

ClusterD properties: centroid, chord length, area, and volume, are calculated as de-

scribed in section 2.5 and compared with their analytical values. The corresponding maxi-

mum relative percentage error is provided in Table 1. The error in calculating 3D clusterD

properties is lower than that for 2D clustersD due to the larger number of points per clus-
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ter available for analysis. Moreover, the error primarily arises due to the discrete nature of

the data and is maximum for the lowest grid resolution case. DBSCAN is tested for more

complex shapes in section S1 of the Supporting Information.

Table 1: Error associated with the calculation of clusterD properties using DBSCAN for
test datasets.

Property Maximum % Error in 2D case Maximum % Error in 3D case
Centroid 0.3 0.2
Area or Volume 2.9 0.7
Chord Length 2.8 0.9

In a multiphase flow simulation, large variations could exist in the size of bubbles or

clusters. Applicability of DBSCAN is tested for varying relative sizes of clusterD. Two

clusterD in 2D and 3D are considered and the size of one clusterD is varied to have a size

ratio between 1 and 100. This size ratio covers a wide variation in mesoscale structure sizes

in multiphase CFD simulations. DBSCAN accurately identified the two clustersD for all

the size ratios tested. More details about this test case and schematic of the computational

domain are provided in section S2 of the Supporting Information.

In the following two sections, DBSCAN is employed to capture bubbles (section 4) and

clusters (section 5) in CFD-DEM simulations of a bubbling fluidized bed and particle clus-

tering in a periodic domain, respectively.

4 Capturing bubbles in fluidized bed simulations

The fluidized bed geometry simulated by Lu et al.7 is implemented in this work. The fluidized

bed is modeled as a vertical cylindrical pipe (for 3D simulations) and a rectangular domain

(for 2D simulations). The simulations are performed using NGA.39,40 Section 2.1 provides

more details about the simulation setup. Figure 3 shows the 2D and 3D computational

domains and Table 2 provides the simulation parameters. A grid independence study is

performed to evaluate the sensitivity of CFD-DEM simulations on the grid size. The details
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are provided in section S3 of the Supporting Information. A grid size of 3.5dp and 2dp is

used for the 2D and 3D simulations, respectively. For the 2D simulations, we adopt the grid

size used in the 2D simulations of Lu et al.7 For the 3D simulations, we use a finer grid

(2dp) to test DBSCAN on a different grid resolution. Moreover, a finer grid allows using

more processors, making the simulations faster. For both grid sizes, simulation results are

independent of the grid.

2
1

 c
m

3.5 cm

6
.6

3
cm

6
.6

3
cm

2
1

 c
m

(a) (b)

3.5 cm

Figure 3: Computational domain of CFD-DEM simulations of a (a) 2D fluidized bed and
(b) 3D fluidized bed geometry.

Air at room temperature is injected from the bottom of the bed to achieve fluidization.

The time required to achieve a statistically steady state is around 1.1 seconds (three times

the flow through time). The simulations are performed for nine seconds with a time step of 10

12



Table 2: Parameters for 2D and 3D fluidized bed simulations.

Parameter Value
Fluidized bed height [cm] 21
Solid bed height [cm] 6.63
Bed width/diameter [cm] 3.5
Mesh nx × ny × nz 120× 20× 1 (2D); 210× 35× 35(3D)
Mesh size ld [mm] 1.75 (2D); 1 (3D)
Particle diameter [µm] 500
Particle density [kg/m3] 2580
Number of particles 10152 (2D); 586560 (3D)
Restitution coefficient 0.9
Wall restitution coefficient 0.75
Friction coefficient 0.3
Inlet gas velocity [m/s] 0.57 (3Umf )

µs, and the output is saved every 0.01 seconds to have sufficient data for bubble statistics.

The 2D and 3D simulations required 16 and 89 hours on a high-performance computing

cluster using 20 and 48 cores (Intel Xeon Skylake 6148), respectively.

DBSCAN is used to capture gas bubbles and estimate their properties as described in

section 2. Figure 4 schematizes the steps involved in bubbles identification by DBSCAN

for 2D fluidized bed case. Figure 4a shows the simulated fluidized bed at a given instant

during fluidization. The fluid volume fraction εf at a grid point is calculated via the volume

averaging operation based on a filtering kernel.40 The data pre-processing step described by

eq. 4 in section 2.4 converts εf data into δ (0 for εf ≤ ε∗f and 1 for εf > ε∗f ) represented by

black (δ = 0, emulsion phase) and white (δ = 1, bubble phase) regions in Figure 4b. Two

bubbles can be identified based on visual inspection. The position of grid points with δ = 1,

shown as black regions in Figure 4c, is passed to DBSCAN, discarding the remaining data

(with δ = 0). This step leads to a significant saving in the time required by DBSCAN as the

number of grid points within bubbles is much smaller than the number of grid points outside

bubbles. In this work, the bubble phase constitutes around 10% and 15% of the total grid

points in the 2D and 3D fluidized bed simulations, respectively. Figure 4d shows the two

bubbles identified by DBSCAN along with their convex hull boundary and chord. DBSCAN
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required around 0.01 s to identify bubbles from the 2D simulation data at a given time.

(a) (b) (c) (d)(a)

0 1-1

Figure 4: Application of DBSCAN to capture bubbles in a 2D fluidized bed CFD-DEM
simulation. (a) The instantaneous position of solid particles in the fluidizing region at 4 s;
(b) After converting εf into δ during data pre-processing, δ = 0 (εf ≤ ε∗f ) in the black region
and δ = 1 (εf > ε∗f ) in the white region; (c) Position of grid points with δ = 1 is passed
to DBSCAN; (d) Two bubbles identified by the DBSCAN algorithm (using eps = 0.28 cm
and minPts = 3) shown in yellow and green. For the yellow bubble, the area, centroid, and
chord length are 3.98 cm2, (0.05, 5.09) cm, and 2.67 cm, respectively. For the green bubble,
the area, centroid, and chord length are 1.02 cm2, (0.73, 1.65) cm, and 1.17 cm, respectively.

Next, DBSCAN is tested for the 3D CFD-DEM fluidized bed simulation. Figure 5a

shows the isosurface of bubbles (εf = 0.75) identified by Ansys EnSight – simulation data

visualization software. The DBSCAN predictions are shown in Figure 5b, along with the

convex hull boundaries and the chord of each bubble. These visual observations confirm the

accuracy of DBSCAN in capturing bubbles in 2D and 3D fluidized bed simulations. DBSCAN

required around 1.5 s to identify bubbles from the 3D simulation data at a given time. A few

additional comparisons of DBSCAN predictions and Ansys Ensight are presented in section

S4 of the Supporting Information.
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(a) (b)

Figure 5: Application of DBSCAN to capture bubbles in a 3D fluidized bed CFD-DEM
simulation. (a) Isosurface with εf = 0.75 plotted using Ansys EnSight; (b) Three bubbles
identified by the DBSCAN algorithm (using eps = 0.20 cm and minPts = 8) shown in
yellow, red, and purple. For the yellow bubble, the volume is 2.08 cm3, the centroid is
(9.99, 1.65, 2.10) cm, and the chord length is 4.82 cm. For the red bubble, the volume is
19.76 cm3, the centroid is (5.81, 1.85, 2.01) cm, and the chord length is 4.77 cm. For the
purple cluster, the volume is 4.83 cm3, the centroid is (1.15, 1.74, 2.08) cm, and the chord
length is 3.28 cm.

DBSCAN results are analyzed to quantify the bubble size variation along the bed height.

In the bubbling fluidization regime, bubbles tend to nucleate at the bottom of the bed and

grow in size along the bed height. The variation in the bubble equivalent diameter with

the bed height for 2D and 3D fluidized bed simulations is shown in Figure 6a along with

the predictions of two correlations52,53 from the literature. Predictions of DBSCAN and the

correlations are in close agreement. Moreover, bubbles in the 3D simulation are slightly

larger than in the 2D simulation. This observation is related to the inability of the 2D

simulations to capture the coalescence effects accurately.54

Bubble size in a bubbling fluidized is known to follow the gamma distribution.7,55 Fig-

ure 6b and Figure 6c show the Probability Density Functions (PDF) of bubble equivalent
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Figure 6: Bubble statistics in 2D and 3D fluidized bed simulations. (a) Variation in equiv-
alent bubble diameter along the bed height obtained from 2D simulation (solid black line),
3D simulation (dash-dotted black line) Shen’s correlation53 (dashed blue line), Darton’s cor-
relation52 (dotted red line). PDF of equivalent bubble diameter at 25% (solid black line)
and 50% (dash-dotted red line) of the static bed height for (b) 2D simulation and (c) 3D
simulation.

diameters at 25% and 50% of the static bed height for 2D and 3D fluidized bed simulations,

respectively. These PDFs are obtained by fitting the gamma distribution to the bubble di-

ameter data obtained using DBSCAN and are qualitatively similar to those obtained in the

literature for similar fluidized bed configuration.7,55 The PDFs peak decreases and width

increases as the bed height increases, implying an increase in the fraction of larger bubbles.

Several investigations in the literature report a bimodal behavior of the bubble size dis-

tribution at higher bed heights. This observation is attributed to bubble breakage and

coalescence.7,55 The bimodal trend is captured by fitting the bubble diameter distribution

using a second-order Gaussian distribution. Figure 7a and Figure 7b show the bubble size

distribution for 2D and 3D fluidized bed simulations at 50% of the static bed height, re-

spectively. Both 2D and 3D simulations show bi-modality in the bubble size distribution;

however, the bi-modal behavior is much stronger in 3D simulations than in 2D simulations.

Such differences are reported in the literature.54
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Figure 7: Equivalent bubble diameter distribution at 50% of the static bed height obtained
from the CFD-DEM simulations of the (a) 2D fluidized bed and (b) 3D fluidized bed. His-
tograms are based on the bubble sizes estimated using DBSCAN. Solid lines represent the
second-order Gaussian distribution fitted to the histogram data.

5 Capturing clusters in riser simulations

A triply periodic domain is considered to model particle clustering in a riser using the CFD-

DEM approach in NGA.39,40 This simulation configuration represents the fully-developed

region of a riser far from the riser entrance and walls.56 Section 2.1 provides more details

about the CFD solver NGA and Table 3 provides the relevant simulation parameters. Parti-

cles are initially randomly distributed in the domain with a mean volume fraction of 0.015.

Particles fall under gravity, entraining the gas phase, and the two-way coupling between the

phases leads to particle clustering. A statistically steady state is reached in about 1 s. At

this point, the average cluster size reaches a steady value. The simulation is performed for

5.5 s with a time step of 5 µs seconds, and the data is saved every 0.1 s. The simulation

required 60 hours on 48 cores (Intel Xeon Skylake 6148) of a high-performance computing

cluster. Consequently, DBSCAN is used to capture particle clusters and estimate their prop-

erties, as described in section 2. DBSCAN required around 3.5 s to identify clusters from

the simulation data at a given time.

Figure 8a shows the isosurface of clusters with εp = 0.03 (calculated using eq. 3) plotted
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Table 3: Simulation parameters for particle clustering in a 3D periodic domain.

Parameter Value
Dimensions [cm] 3.072× 3.072× 3.072
Mesh nx × ny × nz 60× 60× 60
Mesh size ld [µm] 512
Particle diameter [µm] 200
Particle density [kg/m3] 500
Mean particle volume fraction 0.015
Restitution coefficient 0.8
Friction Coefficient 0.092

using Ansys EnSight. The size and shape of particle clusters are distinct from those of

bubbles in a fluidized bed. The clusters identified by DBSCAN and the corresponding

chords are shown in Figure 8b. A comparison of Figure 8a and b shows that DBSCAN

captures most of the clusters observed in the simulation. DBSCAN predictions for particle

clusters at other time stamps are provided in section S5 of the Supporting Information.

(a) (b)

Figure 8: Application of the DBSCAN algorithm to capture particle clusters in CFD-DEM
simulations of gas-solid flows in a 3D triply-periodic domain. (a) Isosurface with εp = 0.03
plotted in Ansys EnSight; (b) Clusters identified by the DBSCAN algorithm using eps =
0.10 cm and minPts = 8.

Figure 9a shows the PDFs obtained by fitting the log-normal distribution to cluster

equivalent diameter (solid black line) and chord length (dashed red line) data obtained using
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DBSCAN. The elongated shape of clusters makes the chord lengths larger than the equivalent

diameter, as seen by the wider spread of the chord length PDF than the equivalent diameter

PDF. The PDFs show that most clusters are smaller than 1 cm. However, the largest chord

length is around 3.7 cm, which is close to a priori estimate of the cluster size L = τ 2p g = 3.85

cm. τp is the particle response time given as41

τp =
ρpd

2
p

18µ
(9)

where ρp is the particle density and µ is the gas viscosity. τp is calculated to be 63 ms. We

note that the simulation domain size is comparable to L, constraining the cluster growth.

However, the simulation configuration is adequate to test the ability of DBSCAN to capture

particle clusters. Figure 9b shows the % volume of the computational domain occupied by

clusters of different sizes. Each data point represents the % volume occupied by the clusters

within a bin size of 0.5 cm. Although larger clusters (> 1 cm) are fewer, they occupy 63%

of the total volume occupied by clusters. These observations suggest the importance of

accurately capturing the entire spectrum of cluster sizes and their chord length.

In this work, DBSCAN is applied to CFD-DEM simulations; however, it can be used with

other CFD approaches, such as the two-fluid model where both gas and particles are solved

on an Eulerian mesh. DBSCAN requires the gas or solid volume fraction at grid points to

capture bubbles and clusters.

6 Calculation time

DBSCAN passes through each point in the dataset, solving the fixed-radius (eps in this work)

near neighbors problem. The theoretical runtime complexity of the DBSCAN algorithm is

O(n log n) with n being the size of the dataset. We calculate the time complexity of DBSCAN

using a 2D case consisting of two circles (radii: 1 cm and 2 cm) and a 3D case consisting of

two spheres (radii: 2 cm and 3 cm). lc is set to 1 cm and 1.06 cm for the 2D and 3D cases,
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Figure 9: Distribution of cluster size and volume obtained from the CFD-DEM simulations
of particle clustering using DBSCAN. (a) PDFs of the distribution of cluster equivalent
diameter (solid black line) and chord length (dashed red line) obtained by fitting the log-
normal distribution; (b) Distribution of the % volume of the computational domain occupied
by clusters as a function of chord length (black symbols) and the Gaussian distribution fitted
to the data (solid black line).

respectively. A side length of 10 cm is used for both domains. Grid size ld is varied from

0.7 cm to 10 µm for the 2D case and 0.7 cm to 400 µm for the 3D case, increasing the grid

resolution up to 100 million grid points.

First, DBSCAN is used while including the grid points inside and outside the circles.

For this case, Figure 10a shows the time required by DBSCAN to identify clustersD

for the 2D (red dashed line) and 3D (black dash-dotted line) datasets. Next, DBSCAN is

implemented after discarding the data outside the circles, which is the strategy used in this

work. The corresponding time required by DBSCAN is shown in Figure 10b. For both cases,

the time complexity is close to O(n log n) much faster than that of existing techniques.4,7

Moreover, discarding the data outside the domains of interest resulted in an 85% reduction in

the data, which is comparable to the reduction in the time required. In multiphase reactors,

only a small fraction of space is covered by mesoscale structures. Thus, discarding the data

outside these structures leads to a significant reduction in compute time in contrast to the

techniques that process the entire grid data. For all the cases, the time required to calculate

the clustersD properties is small in comparison to the DBSCAN execution.
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Figure 10: Scalability of DBSCAN for 2D and 3D computational domains. (a) for all the
data in the domain (inside and outside the circles); (b) for the data within the circles. Dash-
dotted red line: 2D case with ld varying from 1.2 cm to 10 µm for a fixed lc = 1 cm; Dashed
black line: 3D case with ld varying from 1.2 cm to 400 µm for a fixed lc = 1.06 cm.

7 Data Availability and Reproducibility Statement

The numerical data from Figures 2–10, and Figures S1–S9 are available as a .zip file in the

Supplementary Material. CFD simulation data is verified by comparing the bubble statistics

with the literature. The developed DBSCAN-based methodology is verified by comparing

its predictions with the CFD data visualizations using Ensight software.

8 Conclusion

Quantifying the mesoscale structures present in multiphase reactors, such as bubbles in a

fluidized bed and clusters in a riser, is imperative in designing efficient multiphase reactors.

For this purpose, multiphase CFD simulations are becoming common, complementing limited

and expensive experimental measurements. However, large-scale CFD simulations require

computationally fast post-processing tools to capture and analyze the mesoscale structures.

This work demonstrates the suitability of DBSCAN, a freely available unsupervised ma-

chine learning algorithm, to identify gas bubbles and particle clusters in 2D and 3D reactor

simulations. DBSCAN calculates the distance between the nearest points to identify groups
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such that for each point in a group, the neighborhood of a given radius contains at least

a minimum number of points. DBSCAN is assessed for analytical shapes and CFD-DEM

simulations of bubbling fluidized beds and particle clustering. Bubble and cluster proper-

ties, such as centroid, equivalent diameter, and longest chord length are calculated. These

properties obtained at consecutive time frames can be further used to trace the bubble move-

ment and calculate the bubble velocity as described in the literature. The computational

complexity of DBSCAN is calculated using a high-resolution mesh and is found to be close

to its theoretical value of O(n log n), which is much faster than the available bubble and

cluster detection algorithms. Moreover, DBSCAN only requires the gird information that

lies within the bubbles/clusters, significantly reducing the calculation time. Along with cap-

turing bubbles and clusters in fluidized beds and risers, DBSCAN can be easily extended to

capture mesoscale structures in other multiphase flows, such as bubbles in a bubble column

and preferential concentration of droplets or particles in a turbulent flow.
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(47) Rüdisüli, M.; Schildhauer, T. J.; Biollaz, S. M.; Wokaun, A.; van Ommen, J. R. Com-

parison of bubble growth obtained from pressure fluctuation measurements to optical

probing and literature correlations. Chemical engineering science 2012, 74, 266–275.

(48) Wang, J.; Ge, W.; Li, J. Eulerian simulation of heterogeneous gas–solid flows in CFB

risers: EMMS-based sub-grid scale model with a revised cluster description. Chemical

Engineering Science 2008, 63, 1553–1571.

(49) Qi, X.-B.; Zeng, T.; Huang, W.-X.; Zhu, J. J.; Shi, Y.-F. Experimental study of solids

holdups inside particle clusters in CFB risers. Sichuan University Engineering Science

Edition 2005, 37, 46–50.

(50) Sharma, A. K.; Tuzla, K.; Matsen, J.; Chen, J. C. Parametric effects of particle size

and gas velocity on cluster characteristics in fast fluidized beds. Powder Technology

2000, 111, 114–122.

(51) Barber, C. B.; Dobkin, D. P.; Huhdanpaa, H. The quickhull algorithm for convex hulls.

ACM Transactions on Mathematical Software (TOMS) 1996, 22, 469–483.

(52) Darton, R.; LaNauze, R.; Davidson, J.; Harrison, D. Bubble growth due to coalescence

in fluidised beds. Trans Inst Chem Eng 1977, 55, 274 – 280.

(53) Shen, L.; Johnsson, F.; Leckner, B. Digital image analysis of hydrodynamics two-

dimensional bubbling fluidized beds. Chemical Engineering Science 2004, 59, 2607–

2617.

28



(54) Bakshi, A.; Altantzis, C.; Bershanska, A.; Stark, A.; Ghoniem, A. On the limitations

of 2D CFD for thin-rectangular fluidized bed simulations. Powder Technology 2018,

332, 114–119.

(55) Busciglio, A.; Vella, G.; Micale, G.; Rizzuti, L. Analysis of the bubbling behaviour of 2D

gas solid fluidized beds: Part I. Digital image analysis technique. Chemical Engineering

Journal 2008, 140, 398–413.

(56) Beetham, S.; Capecelatro, J. Biomass pyrolysis in fully-developed turbulent riser flow.

Renewable Energy 2019, 140, 751–760.

29


