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Abstract

Point cloud registration is a vital task in 3D perception, with several different applications
in robotics. Recent advancements have introduced neural-based techniques that promise
enhanced accuracy and robustness. In this paper, we thoroughly evaluate well-known neural-
based point cloud registration methods using the Point Clouds Registration Benchmark,
which was developed to cover a large variety of use cases.

Our evaluation focuses on the performance of these techniques when applied to real-complex
data, which presents a more challenging and realistic scenario than the simpler experiments
typically conducted by the original authors. The results reveal considerable variability in
performance across different techniques, highlighting the importance of assessing algorithms
in realistic settings. Notably, 3DSmoothNet emerges as a standout solution, demonstrating
good and consistent results across various datasets. Its efficacy, coupled with a relatively
low GPU memory footprint, makes it a promising choice for robotics applications, even if
it is not yet suitable for real-time applications due to its execution time. Fully Convolu-
tional Geometric Features (FCGF) also performs well, albeit with greater variability among
datasets. PREDATOR and GeoTransformer are promising, but demand substantial GPU
memory, when handling large point clouds from the Point Clouds Registration Benchmark.

A notable finding concerns the performance of Fast Point Feature Histograms (FPFH), which
exhibit results comparable to the best approaches while demanding minimal computational
resources. Overall, this comparative analysis provides valuable insights into the strengths
and limitations of neural-based registration techniques, both in terms of the quality of the
results and the computational resources required. This helps researchers to make informed
decisions for robotics applications.
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1 Introduction

Point clouds registration is the problem of finding the rototranslation that best aligns two point clouds, i.e.
two sets of points with 3D coordinates.

Point clouds registration algorithms can be used in many different applications. For example, robots typically
require maps to accurately locate themselves in an environment; point cloud registration techniques are often
used to create these maps. Remote sensing of natural environments is another application, as most 3D sensors
produce point clouds that are partial views of the environment and need to be aligned. However, point cloud
registration does not necessarily have to be applied to complex scenes, as in the previous applications: it
can also be applied to single objects or small scenes.

The requirements of the different types of applications are very different. Therefore, in this work we focus
on robotics applications solely, which usually involve large, complex scenes. For the same reason, we focus
on rigid point clouds registration, which is most commonly used and most effective when dealing with large
and complex scenes, rather than individual objects.

The difference between different fields of application lies in the usage conditions and assumptions. For
example, in case a point clouds registration technique is used as part of an architectural reconstruction
pipeline, we can expect a static world, carefully calibrated acquisition poses, a large overlap between the
point clouds to be aligned, and no occlusion. In addition, poorly acquired or too noisy point clouds can be
discarded or acquired again. Of course, the same does not apply to robotics and especially not to mobile
robotics. Furthermore, execution times and memory usage are much more critical for robotics applications,
which are often ultimately intended to work in real time. At the same time, lower accuracy can be accepted,
considering that the sensors themselves are usually less accurate as well (although, with properly aligned
point clouds, noise can be reduced with smoothing techniques, another important application of registration
techniques in robotics). Of course, there are overlaps between different but closely related fields of study.
They are not completely separate worlds, but the benchmark we use is eminently robotic and may not
adequately represent the advantages and disadvantages of algorithms for other applications. For example,
we test different approaches under very difficult conditions, such as low overlap, high noise, or in highly
repetitive environments. These are all challenges that are common in robotics but may be unnecessary for
other applications.

The main difficulty in aligning two point clouds is finding correspondences between the two sets of points.
With the exception of point clouds created with RGB-D sensors, point clouds are usually sparse. For this
reason, it is much more difficult to describe the neighborhood of a point than it is, for example, with images.
Therefore, 3D features are usually less effective than the 2D counterpart.

The first approach to registering point clouds was Iterative Closest Point (ICP), independently developed
by Zhang et al . (Zhang, 1994), Besl and McKay (Besl and McKay, 1992), and Chen and Medioni (Chen and
Medioni, 1992). ICP attempts to solve the correspondence problem by approximating the true unknown
correspondences with a closest neighbor policy. This means that for each point in the first point cloud,
called “source”, the match is the closest one (using a Euclidean distance) in the second point cloud, the
“target”. The generated set of correspondences is used to create an optimization problem that is solved using
Singular Value Decomposition (SVD). The whole process is repeated until the convergence criteria are met.
ICP, despite its simplicity, works reasonably well. However, two conditions must be met: the two point
clouds must already be roughly aligned, and there should be a large overlap between the two point clouds.
Nevertheless, even if these two conditions are met, ICP can lead to incorrect solutions, mainly because it
tends to fall into local minima and because its data association strategy can lead to a large number of
incorrect correspondences.

For this reason, several variants of ICP have been proposed in recent years. These variants may aim, for
example, to improve the quality of the result, to speed up the algorithm, or to relax the constraint of overlap



or initial misplacement between point clouds. A comprehensive comparison of ICP variants was performed
by Pomerleau et al . (Pomerleau et al., 2013). Important variations of the original ICP algorithm are those
involving the error function to be optimized. For example, the Generalized ICP (GICP) algorithm uses
not only the distances between two points, but also the covariances computed in a neighborhood of the
points (Segal et al., 2009). In this way, it can better represent the underlying geometry of the clouds and
produce much better results than the original version (Fontana et al., 2021). Instead of using a point-to-point
association strategy, another option is to associate points to planes, planes to planes, or even one point with
many points and weight them probabilistically (Agamennoni et al., 2016).

One of the main problems with the basic version of ICP is that if the overlap between the two point clouds
is not complete, which is almost always the case, a large number of false associations are inserted into the
optimization problem. To mitigate this issue, a number of outlier rejection strategies have been developed
(Babin et al., 2019). There are also registration algorithms which do not use a closest-point based data
association. For example, Normal Distributions Transform (NDT) aligns two point clouds by representing
them as a set of Gaussians and searching for the most likely alignment (Biber and Straßer, 2003).

Despite the improvements, a major drawback of ICP-like approaches is their limitation to small initial
misalignments: they were designed to solve the so-called local registration problems. These are defined as
problems where the point clouds are already roughly aligned or for which there is an initial guess about their
alignment. In many real-world cases, an initial guess can be provided by other sensors such as inertial units,
odometry, or GPS. However, there is another class of problems: global registration problems. In this case,
the misalignment between the two point clouds is not bounded. Obviously, global registration is a much
more difficult problem, of which local registration is a subset. Traditionally, however, global registration
algorithms produce inferior results, which usually need to be refined with a local technique.

Many global registration algorithms are based on geometric features that aim to represent the geometric
structure in the neighborhood of a point by a vector. Of these, Point Feature Histograms (PFH) (Rusu
et al., 2008), its faster variant FPFH (Rusu et al., 2009), and Angle Invariant Features (Jiang et al., 2009)
are notable examples. In addition, SIFT features extracted from a depth image generated from a point cloud
have been used for the same purpose (Sehgal et al., 2010).

Geometric descriptors allow to estimate a set of correspondences between the two point clouds. From
these correspondences, the rototranslation can be estimated using, for example, RANSAC (Fischler and
Bolles, 1981). However, the number of false correspondences that these descriptors entail usually makes the
rototranslation estimation step challenging. Approaches such as Fast Global Registration (Zhou et al., 2016)
or TEASER (Yang et al., 2020) address this step and allow the estimation of a rototranslation even in the
presence of a high number of outlier correspondences. TEASER is particularly able to produce very good
results in challenging scenarios (Fontana et al., 2021).

More recently, neural network-based solutions for point cloud registration have been proposed. Two different
types of approaches have been proposed. The first type aims to represent a point cloud with a single feature
vector. Two point clouds are then matched by finding the rototranslation that minimizes the distance
between the two feature vectors. Examples of the first category include PCRNet (Sarode et al., 2019) or
PointNetLK, which implements PointNet and the classical Lukas-Kanade algorithms in a single recurrent
deep neural network (Aoki et al., 2019). While representing a point cloud as a single feature vector is an
elegant and efficient solution, it is particularly problematic when aligning point clouds with partial overlap
or moving objects. This is because in these cases the two feature vectors differ greatly, even when properly
aligned. In our opinion, this type of technique is therefore suitable for applications other than robotics,
whose use case commonly implies a partial overlap".

The second type of technique is similar to traditional feature-based approaches in that multiple feature
vectors are extracted from a set of keypoints or even from each point of the point clouds. These features
allow to estimate a set of correspondences that are then used with algorithms such as TEASER or Fast
Global Registration. An example of such an approach is FCGF, which are produced in a single pass by a



fully convolutional neural network (Choy et al., 2019).

Another example is 3D Match, a 3D convolutional neural network that uses a 3D patch around a point and
computes a feature descriptor (Zeng et al., 2017). A smaller distance between two descriptors means a higher
probability of matching. The descriptor was trained in an unsupervised manner using correspondences from
existing RGB-D reconstructions.

3DFeat-Net, on the other hand, is a deep-learning approach based on a Siamese architecture (Chicco, 2021)
that learns to recognize whether two given point clouds are from the same location (Yew and Lee, 2018). It is
trained in a weakly supervised manner using pairs of point clouds with a GPS and inertial-based localization.
It uses PointNet (Qi et al., 2017) to represent point clouds and, unlike 3DMatch, combines both a feature
detector and a descriptor extractor. PPFNet is another approach based on PointNet. It uses points, normals,
and Point Pair Features (PPF) to compute feature descriptors that are highly rotationally invariant (Deng
et al., 2018).

A particular end-to-end approach is Feature Metric Registration (FMR). Despite being based on features,
it solves the registration problem by minimizing the projection error onto a feature space without requiring
an explicit search for correspondences (Huang et al., 2020).

Deep ICP (DCP) revises the classical ICP algorithm from a deep learning perspective (Wang and Solomon,
2019). The result is a neural network that maps source and target point clouds to transformation invariant
embeddings. These are used by an attention module that predicts the match. Finally, a differentiable
singular value decomposition layer estimates the transformation.

3DSmoothNet is a neural-based descriptor built using a voxelized smoothed density value representation
with a Siamese deep learning architecture and fully convolutional layers (Gojcic et al., 2019). It achieves
excellent results in the 3DMatch benchmark dataset (Zeng et al., 2017). It also enables the registration of
laser scans of outdoor vegetation, even when trained only on indoor RGB-D data.

GenReg uses a completely different approach (Huang et al., 2021b). Instead of estimating a set of correspon-
dences, it directly generates an aligned point cloud using a deep generative neural network. Other examples
of neural-based approaches to point cloud registration include RGM (Fu et al., 2021), RPM-Net (Yew and
Lee, 2020), PointGMM (Hertz et al., 2020), and Corsnet (Kurobe et al., 2020). However, these were only
tested on registration problems involving single objects, not complex scenes, which are a much more difficult
problem.

In contrast to other approaches, PREDATOR is a machine learning-based technique that explicitly aims at
solving registration problems with low overlap (Huang et al., 2021a). Thanks to an overlap attention block,
this approach is able to estimate the common areas of the source and target point clouds and therefore
concentrate the keypoints in this area. Thanks to this strategy, it can significantly increase the success rate
for problems with low overlap. The attention given to problems with low overlap is noteworthy because they
are often the most difficult to solve, they are relatively common in practice, and many other approaches
assume complete or at least high overlap to work properly. Another approach that targets problems with
low overlap is GeoTransformer (Qin et al., 2023). However, it uses a different strategy than PREDATOR.
Rather than estimating the overlap region, it searches for correspondences over downsampled superpoints
that are able to capture the geometric structure of a patch of the point cloud and that are transformation
invariant. Furthermore, it uses an overlap-aware circle loss to focus on superpoint pairs with higher overlap,
to obtain a correspondence-free method that can work efficiently in low-overlap scenarios.

In contrast to previous feature-based methods that mainly focus on the extraction of rotation-invariant
descriptors, Rotation-guided Retistration (RoReg) is a point cloud registration approach that utilises oriented
descriptors and estimated local rotations (Wang et al., 2023). RoReg utilises the estimated local rotations to
improve the accuracy and robustness of the registration process. The core idea is to incorporate the rotation
information into the descriptor matching and transformation estimation phases. This approach should help



to improve the accuracy of the registration, especially for problems with large rotations.

While many different approaches have been proposed, their field of application, such as large scenes or single
objects, and their advantages are not always clear. Most approaches are tested on very limited datasets
or on datasets that are too simple to represent the real-world scenarios of robotics applications. There is
usually no indication of how much the parameters of an approach have been tuned to a particular dataset.
This is especially important given how many parameters most techniques have and that it is often impossible
to tune them except by trial and error. We believe that the ability to produce good results even when the
parameters have not been fine tuned to a specific scenario is critical to a truly useful point cloud registration
technique. In addition, most works do not compare different techniques to each other, or compare only to
very old techniques, such as ICP.

We believe that testing point cloud registration approaches against a common benchmark is critical. In
particular, we want to test whether recent advances in registration techniques offer real benefits through the
use of neural networks. That is, we want to test the actual applicability of neural-based techniques. This
means that we do not just want to know whether a technique performs well in a few controlled experiments.
Instead, we want to answer the following questions:

• How does it perform on a variety of real complex scenes with partial overlap?

• How well do the pre-trained models provided by the authors perform?

• Is the technique very sensitive to parameter settings?

• Is there an increase in performance compared to traditional and well consolidated techniques?

All these questions can be summarized in one very important but often neglected question: “Are neural-based
techniques for point cloud registration applicable in practice?”

For these reasons, we selected the most remarkable neural-based point cloud registration techniques presented
in the literature and compared them on the Point Clouds Registration Benchmark (Fontana et al., 2021).
The results are then compared to a known traditional technique. Since we believe that the reproducibility of
the experiments is an essential requirement for a sound comparison, we provide all the details to reproduce
the tests: the version of the software used, the model and the values of the parameters. We also provide
the raw results of the experiments and instructions to reproduce them in a GitHub repository: https:
//github.com/iralabdisco/neural_registration_comparison.

2 Material and Methods

2.1 Algorithms selection

The choice of techniques for point cloud registration is huge, even if we restrict ourselves only to neural-based
approaches. Therefore, it is impossible to compare them all. Moreover, point cloud registration can be used
in many different applications. In our opinion, it is not useful to compare techniques developed with different
objectives, such as a technique for aligning small objects, with a technique for reconstructing a large outdoor
scene.

Since our goal is to compare point cloud registration techniques for robotics applications, we defined the
following requirements to decide which techniques to test:

Req1 It must be able to align not only individual objects but also large, complex scenes.



Req2 It must work with partial overlap problems. That is, part of the scene represented in one point cloud
might not be represented in the other.

Req3 It must also work in presence of moving objects. That is, even if the two point clouds represent the
same scene, some objects may have moved between the acquisition of the two point clouds. This
and the previous requirements may also occur together.

Req4 There must be a public open source implementation of the technique.

Req5 There must be a pre-trained model available for the technique.

Req6 The technique should be neural based. That is, it should use a neural network for at least one step
of the registration pipeline.

The first three requirements have led us to discard techniques that align two point clouds by minimizing
the distance between two vectors, each of which represents an entire point cloud, such as PCRNet (Sarode
et al., 2019) or PointnetLK (Aoki et al., 2019). The embedding vectors of two point clouds with only partial
overlap will indeed be very different, even if they are correctly aligned, since they actually represent two
very different sets of data. The same is true for moving objects. Another problem is the dimension of the
embedding vector, which might be too small to represent a large, complex outdoor scene. To support our
conclusions, we observe that these approaches are often tested only on single objects, almost always from
the ModelNet40 dataset, which consists of 3D CAD models of objects (Wu et al., 2015). Therefore, this is
a use case very different from that of this work, namely robotics.

Requirement 4 is due in part to the need to test the techniques and adapt them to our chosen benchmark.
Although this is not strictly necessary, open source software definitely facilitates this step. Also, and most
importantly, we would like to encourage research in point cloud registration and advocate for the use and
development of open software in academic research.

Requirement 5 arises from several considerations. First, we want the comparison to be useful to the potential
users of these techniques. Successful training of a neural network depends heavily on a good choice of
parameters, which usually requires a lot of trial and error and, most importantly, a lot of computational
resources. To choose the right parameters, one needs to know how the network works. Therefore, we think
it is highly impractical and unlikely that a user will retrain the network. Furthermore, if we retrain the
networks, the poor performance of an approach could be due to our poor training rather than the technique,
and we consider this unacceptable. Most importantly, we believe that testing the ability of a network to
generalize to environments other than those used in training is fundamental to the practical utility of a
network. Because the applications for point cloud registration are so large and training is so impractical, we
believe this capability is essential. At a minimum, a network should be able to generalize to environments
that are similar, but not identical, to those used in training. For example, an office environment that is
different from the one used to train the network. Finally, finding training data for point cloud registration
with high quality ground truth is not an easy task. This is confirmed by the fact that most of the works
were trained on few real datasets, such as Kitti (Geiger et al., 2012) or 3DMatch (Zeng et al., 2017), or on
synthetic datasets, such as ModelNet40. Obviously, we cannot use the Point Clouds Registration Benchmark,
since it is used in the testing phase.

Regarding Requirement 6, some of the techniques we considered are end-to-end. That is, they implement the
entire registration pipeline. Others, however, generate feature descriptors that must be used in conjunction
with other techniques to estimate a rototranslation. We have treated all the different types as “neural-based”
regardless of whether the entire pipeline is implemented as a neural network.

The algorithms we selected for comparison, together with their implementation are:

• 3DFeat-Net - https://github.com/yewzijian/3DFeatNet



• DCP - https://github.com/WangYueFt/dcp

• 3DSmoothNet - https://github.com/zgojcic/3DSmoothNet

• FCGF - https://github.com/chrischoy/FCGF

• FMR - https://github.com/XiaoshuiHuang/fmr

• PREDATOR - https://github.com/prs-eth/OverlapPredator

• GeoTransformer - https://github.com/qinzheng93/GeoTransformer

• RoReg - https://github.com/HpWang-whu/RoReg

Initially, we also selected other algorithms that we believe are noteworthy, but that we still had to discard.
DeepVCP, for example, is an end-to-end registration algorithm that achieves comparable results to con-
ventional non-neural methods but has higher robustness against initial alignment errors (Lu et al., 2019).
However, according to the authors’ experiments, which involved a random uniform initial misalignment in
the interval [0, 1] meters for translation and [0°, 1°] for rotation, it still appears to be a local registration
algorithm. We believe that it would be unfair to compare local and global algorithms. On the one hand, it
is well known that local algorithms perform much better than global algorithms on problems with smaller
initial alignment errors (Fontana et al., 2021); on the other hand, local algorithms are not able to solve global
problems. Since all other approaches we selected are global, we therefore had to discard DeepVCP.

We also discarded PPFNet, GenReg, and CorsNet because we could not find an official implementation.

Eventually we did not test RGM, RPM-Net, and PointGMM because, according to the experimental activity
reported in the corresponding papers, they are focused on the alignment of single objects rather than complex
scenes.

We believe that neural-based approaches should also be compared with traditional techniques. Since the two
categories aim at solving the same problem, there is no reason not to compare one with the other. Therefore,
we have also added a state-of-the-art geometric descriptor to the comparison, namely FPFH .

2.2 Data and methods

Choosing the right dataset is an essential step for a comparison. We chose the Point Clouds Registration
Benchmark (Fontana et al., 2021), which is very suitable for testing algorithms for robotics applications. It
consists of 15 sequences of data collected with different sensors and representing different types of environ-
ments. Specifically, the represented outdoor environments are:

• a forest, both summer and fall, a garden with a gazebo in summer and winter, and a plain, from the
ETH datasets (Pomerleau et al., 2012);

• a reproduction of a planetary exploration environment, from the Planetary datasets (Tong et al.,
2013);

• an urban road environment, from the Kaist datasets (Jeong et al., 2019).

The indoor environments, on the other hand, are:

• an indoor house environment and a college building, from the ETH datasets (Pomerleau et al., 2012);

• office environments, from the TUM datasets (Sturm et al., 2012).



(a) Hauptgebaude (b) Gazebo_winter

Figure 1: Hauptgebaude (a) and gazebo_winter (b) sequences from the ETH datasets.

Figure 2: The box_met sequence, from the planetary datasets.



Figure 3: The pioneer_slam sequence, from the TUM datasets.

Figures 1 to 3 show some of the sequences used for the experimental activity.

The methodology used for the experimental activity is that proposed for the Point Clouds Registration
Benchmark. This provides, in addition to the data, sets of registration problems, i.e., pair of point clouds
to be aligned and initial misalignments to apply to the source point cloud. The overlap between the source
and target point clouds, i.e., the area of the scene they have in common, strongly affects the difficulty
of a registration problem. For this reason, the Point Clouds Registration Benchmark provides problems
consisting of pairs of point clouds sampled to cover a range of overlap between 90% and 60%. The same
is true for the initial misalignment associated with a problem: it is randomly generated to cover the entire
range of possible misalignments.

There are two versions of the benchmark: for local algorithms and for global algorithms. Since all of our
chosen methods appear independent of the initial misalignment, they should be able to solve the global
version of the benchmark, which includes random rotations between 45° and 180° for rotation and a large
dataset-specific range of translations.

Further details on the data and the methodology used to generate the registration problems can be found
on the work of Fontana et al . (Fontana et al., 2021) and on the original papers of the datasets (Sturm et al.,
2012; Tong et al., 2013; Jeong et al., 2019; Pomerleau et al., 2012).

The algorithms we selected are of different types. Some are end-to-end approaches to point clouds registra-
tion, others are neural networks used for keypoint detection and descriptor extraction, still others are for
descriptor extraction only. Thus, although they serve the same purpose, they need to be tested in different
ways. Therefore, we set the parameters of the different approaches to obtain the best results within the
limits of the available hardware. Nevertheless, we have ensured the greatest degree of uniformity of testing
conditions and thus comparability of results.

In the case of techniques that extract keypoints and generate feature descriptors, we used three different
algorithms to estimate the rototranslation from a set of correspondences: RANSAC, FastGlobalRegistra-



tion, and TEASER. The latter two algorithms are state-of-the-art and have proven to be very effective in
estimating a transformation even when there are a large number of outliers. RANSAC, on the other hand,
is still one of the most popular algorithms and we therefore think that its results can be valuable to the
community. Regardless of the network used to generate the descriptors, we used the same parameters for
the transformation estimation algorithms. These are:

• To search for the most similar descriptors in the other point cloud, i.e., to estimate correspondences,
we used the L2 distance. That is, each descriptor in one point cloud is associated to the one in the
other cloud that has the smallest Euclidean distance. To speed up the calculation, we used a KDtree
data structure.

• correspondences were filtered out based on a “mutual distance” filter. That is, a pair (descriptorS,
descriptorT) is considered a true correspondence and used for the transformation estimation step
only if descriptorT is closest to descriptorS and vice versa.

• For RANSAC, we used as “max_correspondence_distance” a value equal to V OXEL_SIZE · 1.5

• For Fast Global Registration, we used as “max_correspondence_distance” a value equal to
V OXEL_SIZE · 0.5

• For TEASER we used as “noise_bound” a value equal to V OXEL_SIZE

V OXEL_SIZE is the leaf size of the voxel grid filter we used to downsample the point clouds. This
parameter is specific to each approach and specified below.

The values of these parameters have been chosen according to suggestions of the Open3D framework we used
for the experiments (Zhou et al., 2018).

For approaches that generate feature descriptors but do not extract keypoints, we used 5000 uniformly
sampled points as keypoints.

As preprocessing step, we applied a voxel grid filter with a leaf size of 0.1 meters to each point cloud. This
step is the same for most of the approaches. Exceptions are PREDATOR, GeoTransformer, FCGF, and
RoReg. PREDATOR and GeoTransformer requires a specific voxel size, depending on the dataset used for
the training. Therefore, we used a leaf size of 0.025 meters with the model trained on 3DMatch and of 0.30
meters with that trained on KITTI, as recommended by the authors. FCGF has an internal voxel filter;
therefore, we did not use an external one. The leaf size we used is the same of the other approaches, hence 0.1
meters. The voxel size for RoReg was determined using a specific procedure described in the corresponding
section.

Other parameters are algorithm specific and are described below.

2.2.1 3DSmoothNet

3DSmoothNet uses a voxelized smoothed density value representation (SDV). Therefore, we generated it for
5000 randomly selected points. The voxel grid has a size of 16x16x16, with a radius of 0.5 and a smoothing
kernel width of 1.75. It should be noted that these are mostly default values provided by the developers. As
we will see in the experimental section, they work quite well for a variety of data. We only changed the voxel
radius because most of the point clouds we used were too sparse to use the default value. Still, we used the
same value for each point cloud, regardless of density.

The feature extraction network does not require any special parameters except the feature size, which we
set to 64.



2.2.2 Feature Metric Registration

For Feature Metric Registration FMR we used 10 iterations as suggested by the authors. We performed
experiments with two different pre-trained models, trained with the ModelNet40 and 7Scenes datasets.

2.2.3 FPFH

FPFH is a non-neural feature. We did not change any parameter compared to the default settings specified
by the authors.

2.2.4 3DFeatNet

With 3DFeatNet we used the following parameters:

• Radius for sampling clusters = 2.0

• Maximum number of points to consider per cluster= 64

• Feature dimension size = 32

• Radius for non-maximal suppression = 0.5

• Minumum response ratio= 1e-3

• Maximum number of keypoints = 1024

2.2.5 Fully Convolutional Geometric Features

There are various pre-trained models for Fully Convolutional Geometric Feature. We used the two models
that gave the best results according to the original work. These are the models trained on 3DMatch and
Kitti.

The parameters used with the model pre-trained on 3DMatch are summarized below:

• model = 3dmatch_normalized_5cm_32

• output features = 32

• normalized = true

• conv 1 kernel size = 7

• D = 3

Those used with the Kitti pre-trained model, instead, are:

• model = kitti_notnormalized_20cm_32

• output features = 32

• normalize = False

• conv 1 kernel size = 7

• D = 3



Table 1: Statistics on the number of points composing the point clouds in the various sequences. The point
clouds have been downsampled using a voxel grid filter with leaf size of 0.1m.

Mean number of points Max Min
sequence

plain 10961 12656 8884
stairs 12685 20243 6873
apartment 8355 12275 3966
hauptgebaude 32111 36767 28622
wood_autumn 34660 38786 31601
wood_summer 36352 46369 31436
gazebo_summer 23626 34458 15221
gazebo_winter 26397 33054 21270
box_met 41452 56521 23909
p2at_met 18113 32751 6369
pioneer_slam 3802 7834 261
pioneer_slam3 3379 7467 1286
long_office_household 1834 5596 147
urban05 12170 20126 5581

2.2.6 DCP

Although we wanted to test the benchmark with DCP as well, we could not use it with the larger point
clouds because we kept running out of memory. This also happened with a very aggressive down-sampling
step. Therefore, we unfortunately had to discard this approach.

For the experiments, we used an NVidia GeForce GTX 1080 Ti GPU with 11Gbytes of memory. DCP
stores point clouds as PyTorch tensors with float32 elements. Therefore, with our hardware we can use
point clouds with a maximum of 5350 points, that is, 64200 bytes. In table 1 we show the mean number
of points which composes the point clouds of the sequences of the benchmark. As can be seen, even if we
doubled the available memory, we could not apply DCP to most sequences (take as an example the sequence
wood_autumn with an average size of 36352 points or the sequence box_met with an average size of 41452
points).

2.2.7 PREDATOR

The parameters used with the model pre-trained on 3DMatch are summarized below:

• voxel size = 0.025m

Those used with the Kitti pre-trained model, instead, are:

• voxel size = 0.3m

2.2.8 GeoTransformer

The parameters used with the model pre-trained on 3DMatch are summarized below:

• voxel size = 0.025m



Table 2: The voxel size we used to test RoReg

Sequence Voxel size [m]

apartment 0.07
gazebo_summer 0.2
gazebo_winter 0.2
hauptgebaude 0.2
plain 0.2
stairs 0.1
wood_autumn 0.2
wood_summer 0.2
pioneer_slam 0.04
pioneer_slam3 0.06
long_office_household 0.03
box_met 0.2
p2at_met 0.3
planetary_map 0.7
urban05 0.7

Those used with the Kitti pre-trained model, instead, are:

• voxel size = 0.3m

2.2.9 RoReg

RoReg also requires a specific voxel size to function properly. We have calculated it according to the following
methodology.

The model we used was trained on 3DMatch with a voxel size of 0.025m; on average, the spatial extent of
the point clouds in the 3DMatch dataset is 4 metres. To determine the voxel size we use for testing each
sequence, we found the bounding box of each point cloud and used this to calculate the extent of the point
cloud. We averaged these values over each sequence and used as voxel size the value:

avg_extent

4
· 0.025

The actual voxel size we used for each sequence is shown in table 2.

3 Results

We measure the quality of the results using the normalized distance defined by the Point Clouds Registra-
tion Benchmark (Fontana et al., 2021). That is, given a source point cloud S, composed of n points Si,
the rototranslation T estimated by a registration technique, and the ground truth rototranslation G, the
quality of the results is measured by the distance between the source point cloud aligned with the estimated
rototranslation and the source point cloud aligned with the ground truth rototranslation. The distance is
defined as follows:

D(G · S, T · S) =

∑
i
∥G·Si−T ·Si∥

∥Si−S∥

n
(1)



(a) Aligned with the ground truth (b) Result with an error of 0.01

Figure 4: A pair of point clouds from the Apartment sequence of the ETH datasets, aligned obtaining a final
error of 0.01. Notice how the alignment is substantially perfect.

where S is the centroid of S, T · S is the application of the rototranslation T to S, and ∥x∥ is the L2 norm
of the vector x.

The distance D represents the average distance between the ground truth and the estimated positions of a
point, normalized by the average distance to the centroid of the point cloud. We chose this distance firstly to
allow comparison with other experiments on the same benchmark, as described in the work of Fontana et al ..
Second, because normalization using the distance to the centroid allows meaningful calculation of aggregate
statistics such as the median. The details and complete rationale for this distance can be found on the
original paper (Fontana et al., 2021). It is not always easy to visualize how large an error is just by looking
at the metric, as it is dimensionless. For this reason, we show images of example results corresponding to
different degrees of error along with the ground truth for better visualization. These are shown in figs. 4
to 7. Note that an error of 0.01 corresponds to an essentially perfect alignment, while errors of more than
0.5 lead to unusable results.

Tables 3 to 12 report the median and the 0.75 and 0.95 quantiles of the experiments performed with the
different algorithms. The statistics were computed both for the results of the registration problem in each
sequence and for all sequences together (the row named “Total”). Feature extractors require other approaches
to match the extracted features and estimate a rototranslation from them. For this step, we used RANSAC,
FastGlobal Registration, and TEASER, all of whose results are shown in the tables. FMR, RoReg, and
GeoTransformer, on the other hand, are end-to-end approaches; for this reason they have only a single set
of results.

The metric proposed by the Point Clouds Registration Benchmark is a dimensionless quantity, since each
error is scaled by the average distance from the centroid of the point cloud. Therefore, it is not always easy
to identify how large an error is. For this reason, we also give the residual errors, with respect to the initials.
These are shown in table 14, which depicts the residual error in percent with respect to the initial error.
Given an initial error erri and a final error errf , the residual res is defined as:

res =
errf
erri

· 100

Similar to the other columns, this shows the median of the residuals in each sequence and among the entire



(a) Aligned with the ground truth (b) Result with an error of 0.1

Figure 5: A pair of point clouds from the Apartment sequence of the ETH datasets, aligned obtaining a final
error of 0.1.

(a) Aligned with the ground truth (b) Result with an error of 0.5

Figure 6: A pair of point clouds from the Apartment sequence of the ETH datasets, aligned obtaining a final
error of 0.5.



(a) Aligned with the ground truth

(b) Result with an error of 1.1

Figure 7: A pair of point clouds from the Apartment sequence of the ETH datasets, aligned obtaining a final
error of about 1.1. Notice how the rotation of the red point cloud is completely wrong.

benchmark. Therefore, a residual of X% means that for half of the problems, the final error was X% of the
initial error or better. We believe that these tables can help to better identify how effective an algorithm is.

To facilitate the comparison of the different results, we also show the median residual error of the various
approaches in figs. 8 and 9. The y-axis is truncated at 20%, as otherwise the smaller residuals, which are
the most interesting, would be indistinguishable from each other.

In addition to the quality of the results, we also show statistics on the computational resources required by
each approach. These have been collected using a machine equipped with an Intel Core i7 - 6850K CPU,
with 64GByte of RAM and a NVIDIA GeForce GTX 1080 Ti with 11GByte of memory GPU.

Since neural networks are almost exclusively used on GPUs nowadays, we show the GPU memory required
by each technique. This is a critical requirement as GPUs with large memory are still very expensive and,
if the required memory is not available, the approach simply cannot be used. Table 15 and fig. 10 show the
maximum GPU memory used by the different approaches in each sequence of the benchmark. It should be
noted that the displayed value was calculated considering only the cases when the required memory did not
exceed the available memory, so that the network did not receive Out-Of-Memory (OOM) errors. However,
there are cases where OOM errors actually occurred; for PREDATOR and GeoTransformer (other technique
never got OOM errors) these are indicated in table 16. Moreover, we also show the time used by each
approach to align a pair of point cloud, divided into different phases.

The acronym “n.a.” in tables 9, 11 and 12 stands for “not available”. This appears when we were unable to
produce results, mostly due to OOM errors. The exception is GeoTransformer on sequences from the TUM
datasets (pioneer_slam, pioneer_slam3 and long_office_household), which could not produce results due
to the required voxel-based subsampling (0.3 meters ), which in these particular sequences did not allow to



Table 3: Results obtained by employing 3DFeatNet features in conjunction with RANSAC, FastGlobal, and
TEASER. Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error.

TEASER RANSAC FastGlobal
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

sequence

plain 6.96 11.76 17.23 4.19 7.76 14.28 10.92 14.03 17.00
stairs 1.91 2.58 5.48 2.06 2.72 4.15 2.58 3.65 7.94
apartment 1.54 1.76 2.35 1.42 1.76 2.17 1.78 2.04 2.48
hauptgebaude 1.50 2.15 7.13 1.91 2.66 5.62 2.43 3.36 4.60
wood_autumn 2.28 3.38 5.14 2.88 3.98 5.92 2.23 2.77 3.67
wood_summer 2.05 2.69 3.90 2.54 3.68 5.24 2.20 2.72 3.72
gazebo_summer 2.25 3.59 6.26 2.66 4.04 6.32 2.63 3.44 5.33
gazebo_winter 1.97 3.63 6.37 2.51 3.75 7.10 2.76 3.45 5.60
box_met 14.35 32.12 79.55 9.57 14.19 21.64 8.70 10.87 15.33
p2at_met 9.15 17.00 29.90 8.46 15.42 26.89 7.34 12.90 19.80
planetary_map 42.42 63.00 103.86 35.98 52.49 97.70 27.64 42.94 59.72
pioneer_slam 1.45 2.32 9.62 1.33 1.91 7.64 4.60 6.18 9.85
pioneer_slam3 3.44 6.59 10.58 1.89 4.58 9.02 4.60 6.26 9.43
long_office_household 1.61 2.21 13.86 1.62 2.05 9.71 2.09 3.73 9.26
urban05 2.00 3.15 5.98 2.13 3.20 6.86 2.70 3.42 4.65
Total 2.36 6.34 39.62 2.52 5.50 25.46 3.15 6.92 22.77

find enough neighbours in each voxel.

Table 17 and fig. 11 shows the execution time of the different approaches, averaged over all sequences. The
times are divided into Voxel Grid, SDV Voxelization, Features and Registration times, to distinguish between
the different steps of the registration pipeline. “SDV Voxelization” refers to the Smoothed Density Value
voxelization of 3DSmoothNet and does not include the time required by the voxel grid filter, which is shown
in the column named “Voxel Grid”. FCGF already includes a voxel grid filter and therefore we did not use
an external one. For this reason, its execution time also includes the application of its internal voxel grid
filter. “Feature” refers to the time required for feature extraction. It is only given for the approaches that
have separate feature extraction and registration steps, not for the end-to-end approaches. “Registration”
refers to the remaining steps, i.e. the estimation of rototranslation from the set of correspondences using
TEASER, for the techniques that require it, or the execution time of the end-to-end approaches.

Finally, we also reproduced a very robotic problem. The sequences from the TUM datasets were originally
recorded by a robot navigating in an office-like environment. Therefore, we decided to reconstruct the robot’s
trajectory by aligning each point cloud with the previous one, as is done in Simultaneous Localization And
Mapping (SLAM), but without loop closure, which is beyond the scope of this paper. We then compared the
estimated poses with the ground truth and computed the errors and the corresponding statistics according
to eq. (1). For these experiments, we selected the best approaches that emerged from the previous results
in terms of quality of the alignment. These are: 3DSmoothNet, RoReg, FPFH , PREDATOR and FCGF .
Table 18 shows the results of these experiments.

4 Discussion

4.1 Quality of the registration

Before discussing the results, we need to make some considerations. First, the Point Clouds Registration
Benchmark is very challenging, especially in its global version that we used. In particular, the datasets in the



Table 4: Results obtained by employing FCGF features with the model trained on 3DMatch in conjunction
with RANSAC, FastGlobal, and TEASER. Results are reported as the median, 0.75 quantile, and 0.95
quantile of the residual error

TEASER RANSAC FastGlobal
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

sequence

plain 0.34 2.38 3.33 1.51 6.44 12.33 0.60 1.66 2.38
stairs 0.02 0.04 4.97 0.05 0.08 3.07 0.04 0.09 2.83
apartment 0.03 0.06 1.91 0.04 0.06 1.31 0.04 0.10 1.46
hauptgebaude 0.75 1.56 2.11 0.58 1.41 2.12 0.55 1.11 2.04
wood_autumn 0.03 0.05 0.43 0.93 3.01 4.61 0.11 0.18 0.50
wood_summer 0.03 0.04 0.13 0.11 2.13 4.19 0.11 0.23 0.60
gazebo_summer 0.02 0.04 0.17 0.03 0.06 2.65 0.05 0.19 1.59
gazebo_winter 0.02 0.03 0.06 0.05 0.14 2.90 0.08 0.17 0.68
box_met 7.80 10.25 14.58 7.44 10.04 13.79 7.72 9.86 12.89
p2at_met 5.70 8.43 14.19 8.81 12.50 17.48 4.30 7.60 11.21
planetary_map 52.37 71.92 104.37 11.08 15.63 21.71 30.21 41.74 67.31
pioneer_slam 0.11 0.32 1.60 0.13 0.27 1.51 0.11 0.30 10.35
pioneer_slam3 0.06 0.09 0.18 0.07 0.11 0.15 0.05 0.08 0.18
long_office_household 0.18 0.86 2.55 0.15 0.48 12.39 0.22 1.88 10.46
urban05 3.05 4.19 7.47 2.57 3.75 5.35 1.17 1.83 3.80
Total 0.09 2.48 31.10 0.21 4.00 13.03 0.22 1.95 18.42

Table 5: Results obtained by employing FCGF features with the model trained on KITTI in conjunction with
RANSAC, FastGlobal, and TEASER. Results are reported as the median, 0.75 quantile, and 0.95 quantile
of the residual error

TEASER RANSAC FastGlobal
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

sequence

plain 9.37 13.93 23.33 6.93 9.58 16.63 3.17 6.44 11.51
stairs 2.93 4.48 8.08 2.44 3.33 7.78 2.21 3.33 5.51
apartment 1.68 2.06 3.22 1.42 1.78 2.18 1.45 1.79 2.23
hauptgebaude 3.16 5.02 8.79 2.74 3.36 4.36 1.26 2.77 6.03
wood_autumn 2.65 3.69 5.94 2.98 3.98 5.39 0.71 1.67 3.24
wood_summer 1.98 2.76 3.54 2.93 3.73 5.23 0.69 1.55 3.07
gazebo_summer 2.93 4.37 7.16 2.73 3.75 5.23 0.95 2.06 4.30
gazebo_winter 3.05 4.55 7.17 3.62 4.78 5.87 0.67 1.84 4.48
box_met 12.96 17.29 28.75 9.08 13.99 22.34 7.79 9.86 13.37
p2at_met 10.59 16.31 27.74 10.67 13.45 21.27 7.15 9.21 14.53
planetary_map 42.37 62.96 99.80 11.41 16.00 28.81 28.93 40.79 67.32
pioneer_slam 6.22 11.74 17.24 2.79 9.89 16.96 5.53 7.98 12.64
pioneer_slam3 9.76 13.51 17.73 4.38 9.36 13.58 4.34 6.04 7.31
long_office_household 2.36 8.18 18.02 1.68 3.55 15.09 3.49 6.93 11.31
urban05 3.35 5.25 12.04 2.68 4.04 6.43 1.70 2.62 4.61
Total 3.78 10.05 29.48 3.36 6.98 16.66 2.28 6.11 19.47



Table 6: Results obtained by employing FMR with a model trained on Modelnet40 and a model trained on
7scene. Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error

7scene Modelnet40
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q

sequence

plain 2.14 2.63 3.54 2.03 2.37 2.88
stairs 2.70 4.89 11.05 1.90 3.72 8.81
apartment 1.64 1.90 2.33 1.65 1.85 2.16
hauptgebaude 1.79 2.24 2.81 1.72 2.12 2.50
wood_autumn 2.01 2.39 3.17 1.95 2.33 2.81
wood_summer 1.78 2.31 3.44 1.76 2.06 2.64
gazebo_summer 1.75 2.28 3.43 1.63 2.00 2.90
gazebo_winter 3.04 4.19 7.21 2.71 3.90 6.62
box_met 2.42 2.99 3.35 2.45 2.90 3.29
p2at_met 2.51 3.36 7.20 2.28 2.91 5.18
planetary_map 11.96 18.09 24.69 7.06 10.38 13.64
pioneer_slam 2.13 2.83 4.13 2.26 3.81 9.04
pioneer_slam3 2.14 2.94 3.69 1.93 2.78 3.58
long_office_household 2.03 3.46 18.11 1.94 3.53 13.89
urban05 2.50 4.27 8.64 2.08 3.47 7.96
Total 2.17 3.12 12.20 2.03 2.83 8.42

Table 7: Results obtained by employing FPFH features in conjunction with RANSAC, FastGlobal, and
TEASER. Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error

TEASER RANSAC FastGlobal
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

sequence

plain 0.14 1.22 4.81 5.93 8.09 12.32 0.78 1.59 2.66
stairs 0.05 0.51 4.47 1.91 3.86 7.46 0.24 0.72 4.86
apartment 0.02 0.04 1.64 0.10 1.62 4.16 0.05 0.14 1.55
hauptgebaude 0.56 1.59 2.15 1.63 2.82 3.86 0.55 1.16 2.02
wood_autumn 0.06 0.32 2.26 3.02 4.07 5.39 0.31 0.53 1.78
wood_summer 0.05 0.22 1.21 2.88 3.73 5.23 0.34 0.60 1.55
gazebo_summer 0.03 0.07 1.37 2.65 3.56 4.79 0.24 0.57 1.49
gazebo_winter 0.03 0.08 0.68 3.03 4.43 5.85 0.23 0.50 2.10
box_met 7.34 10.29 14.35 7.57 10.84 13.79 7.71 10.14 13.75
p2at_met 4.21 7.64 11.72 8.85 12.57 17.48 4.42 7.55 11.22
planetary_map 45.92 66.15 97.65 11.41 15.67 28.66 29.63 41.77 67.47
pioneer_slam 0.09 0.20 2.04 0.10 0.24 1.45 0.09 0.23 10.37
pioneer_slam3 0.05 0.08 0.28 0.06 0.12 0.35 0.06 0.11 0.33
long_office_household 0.10 0.26 2.38 0.13 0.31 9.25 0.12 1.34 11.68
urban05 2.64 3.71 6.34 2.46 3.62 5.17 1.47 2.27 3.12
Total 0.11 1.95 24.58 2.55 5.00 13.19 0.41 2.10 18.17



Table 8: Results obtained by employing 3DSmoothNet features in conjunction with RANSAC, FastGlobal,
and TEASER. Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error

TEASER RANSAC FastGlobal
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

sequence

plain 0.03 0.05 2.51 0.05 0.09 7.37 1.28 1.96 2.91
stairs 0.01 0.02 0.08 0.03 0.05 4.61 0.98 2.47 5.10
apartment 0.01 0.01 0.02 0.03 0.04 0.05 0.56 1.41 1.85
hauptgebaude 0.79 1.03 2.37 0.01 0.80 1.70 0.66 1.10 2.02
wood_autumn 0.01 0.02 0.02 0.02 0.03 0.06 1.22 1.66 2.91
wood_summer 0.01 0.01 0.02 0.02 0.02 0.04 0.85 1.43 1.97
gazebo_summer 0.01 0.01 0.02 0.01 0.02 0.07 0.73 1.71 3.17
gazebo_winter 0.01 0.01 0.02 0.01 0.02 0.03 0.46 1.39 2.78
box_met 6.95 10.97 16.18 7.03 10.48 14.03 8.79 10.80 15.63
p2at_met 0.12 0.73 9.59 3.73 9.03 15.92 5.46 8.04 13.84
planetary_map 39.20 62.76 103.36 10.80 15.22 20.95 29.88 41.41 68.35
pioneer_slam 0.04 0.09 0.19 0.12 0.24 0.78 0.04 0.10 0.13
pioneer_slam3 0.02 0.03 0.06 0.05 0.08 0.15 0.01 0.03 0.07
long_office_household 0.05 0.12 0.25 0.09 0.20 0.41 0.04 0.10 0.92
urban05 0.62 1.84 3.55 2.24 3.61 4.83 1.70 2.21 3.29
Total 0.02 0.18 23.29 0.04 1.34 12.21 0.97 2.37 18.47

Table 9: Results obtained by employing PREDATOR, trained on 3DMatch, in conjunction with RANSAC,
FastGlobal, and TEASER. Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual
error

TEASER RANSAC FastGlobal
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

sequence

plain n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
stairs 0.27 1.96 3.59 0.80 3.28 6.64 2.13 2.56 3.45
apartment 0.15 1.23 2.03 2.78 4.03 5.01 1.50 1.70 2.00
hauptgebaude n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
wood_autumn n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
wood_summer n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
gazebo_summer n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
gazebo_winter n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
box_met n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
p2at_met 0.07 0.08 0.09 5.85 8.61 10.81 2.50 2.64 2.76
planetary_map n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
pioneer_slam 0.05 0.07 0.86 0.03 0.07 0.77 0.22 1.43 5.80
pioneer_slam3 0.02 0.03 0.09 0.02 0.03 0.13 1.21 2.35 3.79
long_office_household 0.03 0.06 0.57 0.04 0.08 0.32 0.32 1.39 6.57
urban05 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Total 0.04 0.12 1.91 0.05 1.64 4.57 1.21 1.80 3.99



Table 10: Results obtained by employing PREDATOR, trained on KITTI, in conjunction with RANSAC,
FastGlobal, and TEASER. Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual
error

TEASER RANSAC FastGlobal
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

sequence

plain 0.21 0.66 2.77 0.20 0.27 1.22 0.44 1.08 2.60
stairs 0.24 1.52 5.71 0.19 0.36 3.23 0.53 1.81 4.23
apartment 0.37 1.40 1.90 0.13 0.19 1.66 0.34 1.35 1.77
hauptgebaude 0.11 1.59 6.18 0.10 0.88 4.18 4.90 6.17 7.52
wood_autumn 0.05 0.07 0.15 0.06 0.10 0.25 2.73 3.08 3.82
wood_summer 0.04 0.07 0.13 0.07 0.10 0.97 2.41 3.07 3.83
gazebo_summer 0.04 0.07 2.03 0.07 0.10 0.82 0.68 2.63 4.37
gazebo_winter 0.03 0.05 0.33 0.06 0.09 0.79 2.21 3.35 5.01
box_met 6.90 10.37 13.44 7.71 10.26 15.52 8.46 10.69 15.92
p2at_met 0.48 5.08 13.54 0.50 6.72 14.14 5.83 9.53 15.92
planetary_map 58.77 85.97 112.36 13.96 21.05 118.67 38.36 53.04 77.98
pioneer_slam 0.62 6.32 10.06 0.42 0.99 3.72 1.62 6.31 7.52
pioneer_slam3 0.33 0.59 2.17 0.23 0.37 0.55 0.31 0.99 6.57
long_office_household 0.64 1.18 3.78 0.29 0.38 3.47 1.14 5.28 578845.55
urban05 0.07 0.28 2.33 0.16 2.06 4.42 0.71 1.68 4.40
Total 0.14 0.99 10.41 0.14 0.59 9.77 1.89 3.97 10.97

Table 11: Results obtained by employing GeoTransformer when trained on 3DMatch. Results are reported
as the median, 0.75 quantile, and 0.95 quantile of the residual error

median 0.75 Q 0.95 Q
sequence

plain n.a. n.a. n.a.
stairs n.a. n.a. n.a.
apartment n.a. n.a. n.a.
hauptgebaude n.a. n.a. n.a.
wood_autumn n.a. n.a. n.a.
wood_summer n.a. n.a. n.a.
gazebo_summer n.a. n.a. n.a.
gazebo_winter n.a. n.a. n.a.
box_met n.a. n.a. n.a.
p2at_met n.a. n.a. n.a.
planetary_map n.a. n.a. n.a.
pioneer_slam 0.02 0.03 0.05
pioneer_slam3 0.02 0.02 0.06
long_office_household 0.03 0.04 0.08
urban05 n.a. n.a. n.a.
Total 0.02 0.03 0.07



Table 12: Results obtained by employing GeoTransformer when trained on Kitti. Results are reported as
the median, 0.75 quantile, and 0.95 quantile of the residual error

Median 0.75 Q 0.95 Q
sequence

plain 0.02 0.04 0.14
stairs 0.03 0.05 1.29
apartment 0.05 0.07 1.56
hauptgebaude 0.01 0.02 0.38
wood_autumn 0.01 0.01 0.02
wood_summer 0.01 0.01 0.02
gazebo_summer 0.01 0.02 0.04
gazebo_winter 0.01 0.01 0.03
box_met 0.16 1.86 2.86
p2at_met 0.03 0.07 1.90
planetary_map 5.28 8.06 12.84
pioneer_slam n.a. n.a. n.a.
pioneer_slam3 n.a. n.a. n.a.
long_office_household n.a. n.a. n.a.
urban05 1.47 1.81 2.42
Total 0.03 0.19 4.67

Table 13: Results obtained by employing RoReg when trained on 3DMatch. Results are reported as the
Median, 0.75 quantile, and 0.95 quantile of the residual error

median 0.75 Q 0.95 Q

plain 5.60 12.87 25.96
stairs 0.02 0.03 0.06
apartment 0.25 1.51 2.56
hauptgebaude 0.03 0.13 10.73
wood_autumn 0.09 0.17 9.31
wood_summer 0.07 0.19 7.04
gazebo_summer 0.05 0.14 9.84
gazebo_winter 0.04 0.09 12.52
box_met 9.93 14.77 26.33
p2at_met 19.58 30.44 40.42
planetary_map 48.62 68.85 105.97
pioneer_slam 0.03 0.07 0.24
pioneer_slam3 0.01 0.03 0.05
long_office_household 0.03 0.05 0.10
urban05 5.22 9.82 14.94
Total 0.11 6.33 37.53



Table 14: Median of residual errors (%). For non end-to-end approaches, the transformation has been
estimated using TEASER

sequence 3DFeatNet FMR FCGF FPFH 3DSmoothNet PRED. GeoTr. RoReg

plain 98.35 83.05 4.48 2.17 0.46 3.19 1.14 70.32
stairs 37.29 68.36 0.59 1.21 0.35 6.01 1.19 0.43
apartment 45.75 49.02 1.10 0.86 0.28 11.39 1.79 9.41
hauptgebaude 59.93 103.86 26.95 15.75 21.23 4.77 0.67 1.35
wood_autumn 69.64 98.16 1.09 2.07 0.38 1.49 0.58 3.13
wood_summer 69.48 82.93 0.92 1.71 0.31 1.44 0.58 2.43
gazebo_summer 79.68 83.44 0.62 0.91 0.31 1.13 0.77 1.45
gazebo_winter 55.95 131.91 0.55 0.81 0.24 0.86 0.46 1.13
box_met 198.54 99.37 107.92 94.62 76.15 82.34 7.25 134.99
p2at_met 103.11 78.68 56.16 40.13 1.47 4.65 1.55 188.41
planetary_map 364.79 247.83 432.42 381.33 374.04 441.33 228.20 423.60
pioneer_slam 10.53 34.27 1.03 0.75 0.35 5.23 n.a. 0.27
pioneer_slam3 37.50 29.06 0.61 0.54 0.17 3.77 n.a. 0.18
long_office_household 9.17 26.44 1.12 0.69 0.32 8.59 n.a. 0.16
urban05 71.28 122.05 107.04 100.60 22.85 2.99 100.00 180.18
Total 63.39 82.04 1.73 1.87 0.47 3.20 1.27 3.10

Figure 8: The median residual errors of the different approaches on sequences from the ETH datasets, in
percentage w.r.t. the initial error.



Figure 9: The median residual errors of the different approaches on sequences from the Planetary, TUM and
Kaist datasets and among the whole Benchmark (“Total”), in percentage w.r.t. the initial error.

Table 15: The maximum memory usage for each sequence, in MiB, of the various approaches.

sequence 3DFeatNet FCGF FMR 3DSmoothNet PRED. GeoTr. RoReg

plain 8484 1038 1404 5660 1398 1160 10626.0
stairs 8486 1148 1880 5658 1462 1208 11160.0
apartment 4354 1034 1318 5658 1166 1006 9494.0
hauptgebaude 8486 1268 2970 5658 2160 1884 10826.0
wood_autumn 8486 1288 3072 5660 2318 2126 10788.0
wood_summer 8486 1336 3470 5664 2662 2034 11060.0
gazebo_summer 8484 1246 2798 5660 1992 1590 11024.0
gazebo_winter 8484 1248 2696 5658 2190 1758 11166.0
box_met 8486 1380 3972 5660 2664 2000 10626.0
p2at_met 8500 1184 2576 5664 2230 1920 10626.0
planetary_map 8500 1300 4936 5664 11168 6970 10626.0
pioneer_slam 8500 996 920 9248 1076 914 11168.0
pioneer_slam3 8486 986 826 5664 1056 936 10862.0
long_office_household 8486 996 950 5664 1052 850 10736.0
urban05 8492 1096 1734 5658 10646 8806 10626.0
Total 8500 1380 4936 9248 11168 8806 11168.0



Table 16: Number of out-of-memory errors of PREDATOR and GeoTransformer, using models pretrained
on Kitti and 3DMatch. Other techniques never got OOM errors and are not shown.

sequence PREDATOR GeoTransformer

Kitti 3DMatch Kitti 3DMatch
plain 0 100 0 100
stairs 0 48 0 100
apartment 0 5 0 100
hauptgebaude 0 100 0 100
wood_autumn 0 100 0 100
wood_summer 0 100 0 100
gazebo_summer 0 100 0 100
gazebo_winter 0 100 0 100
box_met 0 100 0 100
p2at_met 0 98 0 100
planetary_map 74 102 0 100
pioneer_slam 0 0 0 11
pioneer_slam3 0 0 0 30
long_office_household 0 0 0 13
urban05 0 100 0 100
Total 74 1053 0 1256

Figure 10: The maximum memory usage, in MiB, of the different approaches

Table 17: Average execution time, in seconds, of the different approaches

Voxel Grid SDV Voxelization Feature Registration Total

3DFeatNet 0.19 n.a. 20.133 0.231 20.554
FCGF n.a. n.a. 0.357 7.393 7.750
FMR 0.19 n.a. n.a. 0.230 0.42
FPFH 0.19 n.a. 0.277 3.079 3.546
3DSmoothNet 0.19 2.028 1.560 3.187 6.965
Predator 0.17 n.a. 0.272 1.213 1.655
GeoTransformer 0.17 n.a. n.a. 0.465 0.635
RoReg 0.17 n.a. 6.000 3.786 9.956



Figure 11: Average execution time, in seconds, of the various approaches, divided into the different phases

Table 18: Results of the best approaches on sequences from the TUM datasets. Each point cloud was aligned
with the previous one to reconstruct the trajectory of the robot.

3DSmoothNet FPFH RoReg
sequence Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q

pioneer_slam 0.068 0.13 0.52 0.087 0.16 1.17 0.047 0.11 1.27
pioneer_slam3 0.047 0.073 0.17 0.059 0.12 0.77 0.032 0.057 0.53

PREDATOR FCGF
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q

pioneer_slam 0.054 0.12 1.11 0.075 0.33 1.14
pioneer_slam3 0.036 0.063 0.55 0.059 0.096 0.64



planetary section, the box_met, p2at_met, and planetary_map sequences, are very challenging due to the
high repetitiveness of the environment. The urban05 sequence is also very challenging in the global version
of the benchmark because the point clouds are very small (they contain only a few points) and sparse.

The second consideration is that most of the approaches we have considered were originally tested on much
simpler problems and sometimes on single objects rather than on complex scenes. Therefore, it is not
surprising that some of them do not perform well on real complex datasets.

Nevertheless, we still consider very valuable a fair comparison on challenging datasets. The Point Clouds
Registration Benchmark was originally developed to represent problems encountered in real-world robotics
applications. This is in contrast to the tendency we analyzed to test algorithms on simple datasets, often
comparing them only to very old traditional algorithms such as ICP. On the other hand, we are interested
in finding out whether neural-based registration algorithms are really useful in practice and whether they
have any advantages over effective traditional techniques, especially considering the additional computational
resources required.

Of the approaches we have tested, 3DSmoothNet, FCGF, PREDATOR, GeoTransformer, RoReg, and FPFH
(which is not based on a neural network) have achieved satisfactory results. This becomes particularly clear
when looking at table 14, which compares the residuals of the algorithms we tested. Most of these algorithms
are actually feature extractors. Therefore, we need another algorithm to estimate a rototranslation from
a set features. We tested each approach with RANSAC, FastGlobal and TEASER. However, TEASER
consistently achieved the best results, hence, in table 14 and in the rest of the discussion we consider only
results obtained using TEASER (if necessary). GeoTransformer, PREDATOR, FMR, and FCGF were tested
with different pre-trained models. While all results are listed in the previous tables, in table 14 we only show
the results of the model with the best performance. This is FCGF trained on 3DMatch, FMR trained on
modelnet40, and GeoTransformer and PREDATOR trained on KITTI.

The performance of the different algorithms on sequences from different datasets varies greatly; therefore
it is worth looking at each dataset individually. On sequences from the ETH datasets (plain, stairs, apart-
ment, hauptgebaude, wood_autumn, wood_summer, gazebo_summer, and gazebo_winter), 3DSmoothnet
achieved the best results, with the median of the residuals almost always below 1%, i.e. the alignment was
almost perfect. RoReg also performed very well, with the exception of the plain sequence, where we achieved
significantly poorer results. It should be noted that this sequence represents an environment that is very
different from the others and more similar to that of the planetary datasets, which could be the reason for
this difference. With the exception of 3DFeatNet and FMR, the other approaches obtained worse, but still
very good results. It should be noted that FCGF, FPFH , and 3DSmoothNet performed much worse on the
hauptgebaude sequence than on others of the ETH datasets. However, a solution with a residual error of
20% can still be considered usable as global alignment (which is usually refined later). On the other hand,
PREDATOR and especially GeoTransformer performed well on this sequence too. A characteristics which
distinguish the hauptgebaude sequence is the high degree level of repetitivity. Therefore, it could be that
GeoTransformer and PREDATOR perform properly under such conditions too. However, this is preliminar
hypothesis only and should be confirmed by further experiments in highly repetitive environments. The
relatively worse performance of some algorithms on the hauptgebaude sequence could also be caused by a
non-optimal choice of parameters. It should be noted that comparing approaches without fine-tuning the
parameters specifically for each sequence is an objective of the Point Clouds Registration Benchmark and
this work. Indeed, in a real-world application, it is often impossible to tune the parameters with exactly the
same data that will be used when the system is deployed. Therefore, we believe that fine-tuning leads to
experiments with unrealistically good results that do not correspond to the practical experience of the end
user.

On sequences from the planetary datasets, the performances are very different. While on the p2at_met
sequence 3DSmoothNet, PREDATOR and GeoTransformer achieved good results, only the latter approach
was able to obtain usable solutions on the box_met sequence, which is remarkable. It is quite surprising
that some approaches performed well on the p2at_met sequence and much worse on the box_met, as the



two sequences are very similar: they depict the same environment and were recorded under very similar
conditions. This is an indication of how susceptible most approaches might be to even small changes in the
data. On the other hand, the planetary_map sequence is so hard (probably to much ) in its global variant
that it is not surprising that none of the approaches worked properly on it.

The sequences from the TUM datasets (pioneer_slam, pioneer_slam3, and long_office_household) represent
an indoor office environment and are therefore a good indicator of the performance of the different approaches
in indoor robotic applications. We can see that the same observations we made for the ETH datasets hold. On
the one hand, this is to be expected, since indoor environments are also represented in some ETH sequences.
On the other hand, it should be noted that the point clouds of the TUM datasets were created with an
RGB-D camera, while those of the ETH were created with a laser scanner. We believe that the ability of
some approaches to generalise to other types of sensors, without re-training, is remarkable. Moreover, also
3DFeatNet and FMR, which produced mostly unusable results on other sequences, were able to produce
usable results, albeit worse than those of the other approaches.

As for the urban05 sequence from the Kaist dataset, this is certainly very challenging, especially because of
the sparsity of the point clouds. Only 3DSmoothNet and PREDATOR were able to correctly align the point
clouds, with the latter approach achieving quite good results, with a residual of about 3%. It should be
noted that PREDATOR was trained on Kitti, which is quite similar to the Kaist dataset. However, it is also
true that other approaches trained on Kitti, such as GeoTransformer, could not achieve the same results.

To summarise, we can conclude that 3DSmoothNet obtains the best results overall with a median residual
error of 0.47%. However, other approaches are able to achieve similar results, with a high variability between
different sequences. We believe that the performances of the FPFH features are remarkable as they are very
close to those of the other approaches, while they are not based on a neural network and therefore, they do
not require any GPU and are much less computationally intensive.

We expected that the degree of overlap between the source and target point clouds would influence the
registration accuracy. However, our analysis showed no correlation between the degree of overlap and the
quality of the results. This lack of correlation may be attributed to the presence of other influencing factors,
such as initial misalignment and scene geometry. In particular, the scene geometry has a significant influence
that may mask the effects of other parameters. Due to the lack of a clear correlation, we chose not to include
the correlation with the degree of overlap in the results. Nonetheless, our full results are publicly available,
including the overlap values according to the methodology described in (Fontana et al., 2021), so that
interested readers can independently reproduce the correlation statistics.

4.2 Memory usage

Regarding the GPU memory usage, there is lot of variability among different approaches. 3DSmoothNet,
which performs very well in terms of accuracy, has a relatively low memory usage, with a maximum of less
than 6GiB, except for the usage for the pioneer_slam sequence. Also noteworthy are the results of FCGF,
which requires very little GPU memory ( with a maximum of 1380 MiB), but can still achieve very good
results.

On the contrary, the memory consumption of RoReg, and especially of PREDATOR and GeoTransformer is
very high when they are trained on 3DMatch. As can be seen in table 16, the latter two got 100 OOM errors
on many sequences. Considering that there are 100 registration problems per sequence, we can conclude
that they are hardly usable in such a configuration. This is the reason for the “n.a.” results in tables 9
and 11. On the other hand, these two networks, when trained on KITTI, have a lower memory footprint
(except for the planetary_map sequence, which however consists of very large point clouds) and have few or
no OOM errors, while performing very well in terms of quality of the results. This leads us to believe that
the data used for training can strongly influence not only the accuracy of the technique but also its memory
consumption. This is probably due to the different subsampling used for the internal representation of the



point clouds.

4.3 Execution time

Of the various approaches, only GeoTransformer and FMR show a low average execution time (less than
0.5 seconds). In contrast, 3DSmoothNet, which achieved very good results and has a low memory usage,
has a very high execution time of about 6.8 seconds. As expected, there seems to be a trade-off between
GPU memory consumption and execution time, as approaches such as GeoTransformer and PREDATOR,
which have very high memory consumption, take much less time than others with low memory usage, such
as 3DSmoothNet or FCGF. 3DFeatNet seems to be an outlier, with an average execution time of more than
20 seconds. Therefore, given the quality of its results, we would not recommend it for general purpose point
cloud registration. The performance of FPFH is remarkable: although it is already a few years old and not
based on a neural network, it is still able to achieve almost state-of-the-art results with an execution time
that is still below that of the other best approaches. In addition, it does not require GPU memory and can
therefore be used on a much broader variety of machines.

As can be seen from fig. 11, the execution time is dominated by the “Registration” phase, with the sole
exceptions of 3DFeatNet and RoReg. For approaches that are not end-to-end, and therefore have separate
phases for feature extraction and transformation estimation, the “Registration” time is that required by
TEASER to estimate a rototranslation from the set of correspondences. Therefore, we can state that the
bottleneck, at least on our test machine, is the CPU rather than the GPU, since TEASER is executed on the
CPU. Moreover, the “Registration” times of GeoTransformer and FMR are much lower, which confirms our
hypothesis, as these are end-to-end approaches that run entirely on a GPU. On the contrary, the execution
time of RoReg is very high, although it is not the highest. It is dominated by the “Feature” phase, which is
to be expected given the way RoReg works. Indeed, it has to extract features from the source and target
point cloud after applying several different rotations, hence the high computational cost of this step.

4.4 SLAM-like registration

Considering the results in table 18, we can say that the selected approaches got very good comparable
median results when trying to reconstruct the trajectory of a robot by aligning consecutive point clouds.
This is expected, since consecutive point clouds have usually a larger overlap and smaller misalignment w.r.t.
the problems in the benchmark we used in the previous test. The only significative difference regard the
0.95th quantile. Here 3DSmoothNet significantly outperform all the other three approaches, with a much
smaller error. This means that, the worst alignments of 3DSmoothNet are better than those of the other
techniques. While this may seem a lesser advantage, it has to be noted that when recostructing a trajectory,
a single large error can cause serious problems, for example by making harder to detect loop-closures, that
are essential in SLAM applications. For these reasons, 3DSmoothNet appear to be the best choice when
considering merely the quality of the result. However, it has much larger execution times (see table 17),
hence its use for real time trajectory estimation appears unfeasible at the moment, although it is a great
choice for off-line mapping. RoReg, which performs best in terms of median error, has a similar issue: its
use does not currently seem feasible for this type of problem due to its large execution time.

4.5 Future directions

An initial consideration to note is that the majority of existing approaches have been trained on two datasets:
either 3DMatch or KITTI. However, neither of these datasets adequately represents natural environments.
While KITTI captures outdoor scenes, it focuses on road environments, which significantly differ from the
natural settings found, for example, in the Planetary datasets (box_met, p2at_met and planetary_map).
This disparity may explain the comparatively poorer performances on sequences from these sequences. Of
course, training neural networks on datasets that better reflect the testing environment holds the potential



for substantial performance enhancements.

Natural environments, in particular, are inadequately represented in current point cloud registration datasets.
While acquiring high-quality ground truth datasets in natural outdoor environments may pose challenges,
it is a necessary endeavor to advance research in this domain. For instance, the rise of robotic agriculture
is likely to necessitate more data to improve existing techniques. However, it is noteworthy that certain
approaches exhibit remarkable generalization capabilities across diverse conditions, such as registering point
clouds recorded with LiDARs, even when trained on RGB-D datasets.

Recent methods like PREDATOR and GeoTransformer have demonstrated good performance in terms of
residual error. Nevertheless, their considerable memory requirements pose challenges, making them less
practical for aligning large point clouds, such as those encountered in the Point Clouds Registration Bench-
mark. This problem becomes even more important when considering robotic applications, which usually
have hardware limitations in terms of size, weight and power consumption.

A critical point is the remarkable discrepancy between the performance of some approaches reported in
the original papers and the actual results of our testing activity, which we believe reflects practical, albeit
difficult, use cases well. This, together with the very large memory requirements of some approaches, such
as DCP, which we were unable to test, highlights the need for more realistic experiments when proposing
new techniques. Although some proposals have indeed been tested under very realistic conditions, this is
still not common. By “more realistic” we mean, for example, testing on complex data representing different
types of environments, so that the generalisation capabilities of an approach are properly emphasised. It also
means that a model trained on data generated with one type of sensor should be tested on data produced
with another one, which was already the case with only a few of the best proposals. Finally, specifying the
memory and computational requirements of the proposals can also help in evaluating the techniques and
assessing when they are truly applicable.

Another critical point is not evident from the results we have shown, but is nevertheless important: it is
the time needed to make some approaches work with experiments other than those of the original papers.
We were able to reproduce all the original experiments without any problems. However, there were relevant
problems when we had to adapt the approaches to solve problems from the Point Clouds Registration
Benchmark. Some were easy to adapt, but others required a lot of work, often on undocumented code. To
make a technique truly applicable in practise, it is therefore important to provide an easy-to-use interface.
An example could be a function or script to align any two point clouds, similar to what is done for traditional
approaches, like ICP or GICP in the Point Cloud Library (Rusu and Cousins, 2011). In contrast, with most
machine learning-based approaches, we had to write a custom data loader for our problems, which in some
cases meant a significant effort.

5 Conclusions

We compared well-known neural-based point cloud registration techniques on the Point Clouds Registration
Benchmark, to asses their practical applicability to robotic applications. The results show that there is a
lot of variability in their performances when applied to real-complex data, in contrast to the much simpler
experiments usually performed by the original authors. The results varies, of course, between different
approaches, but also when the same approach is applied to different data, even from similar environments.
3DSmoothNet appears to be the best solution available, considering its excellent results, which are very
consistent even between different kind of data. This is especially true if we consider its relatively low GPU
memory requirements. FCGF and RoReg are also capable of obtaining very good results, albeit with a larger
variability among different datasets. PREDATOR and GeoTransformer seems very promising, however they
requires a large GPU memory, at least when applied to large point clouds, such as those from the Point
Clouds Registration Benchmark. Special considerations must be done regarding FPFH features. Their
performance is very close to that of the best approaches. This is remarkable, especially considering the little



computational resources they require.

List of Abbreviations

ICP Iterative Closest Point

SVD Singular Value Decomposition

GICP Generalized ICP

NDT Normal Distributions Transform

PFH Point Feature Histograms

FPFH Fast Point Feature Histograms

FMR Feature Metric Registration

DCP Deep ICP

FCGF Fully Convolutional Geometric Features

RoReg Rotation-guided Retistration

OOM Out-Of-Memory

SLAM Simultaneous Localization And Mapping
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