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Abstract

Active suspension plays a pivotal role in modern vehicles. In this paper, an adaptive PID controller of active suspension

systems based on RBF neural network (RBF-NN) is developed. A quarter-car suspension system with two degrees of freedom

is demonstrated. The values of proportional, integral, and derivate components are obtained by using Ziegler-Nichols(Z-N)

tuning method and RBF-NN methods. The suspension system is perturbed using the sine function. Simulated in the Simulink

environment is the quarter-car model. Passive suspension systems, adaptive PID controller utilizing the Z-N tuning approach,

and adaptive PID based on the RBF-NN method for active suspension systems are compared. The active suspension with

PID control based on the RBF-NN outperformed the active suspension with PID control utilizing the Z-N tuning approach

and passive suspension, according to simulation data. The comparison demonstrates the proposed control method’s superior

features
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Active suspension plays a pivotal role in modern vehicles. In this paper, 

an adaptive PID controller of active suspension systems based on RBF 

neural network (RBF-NN) is developed. A quarter-car suspension system 

with two degrees of freedom is demonstrated. The values of proportional, 

integral, and derivate components are obtained by using Ziegler-

Nichols(Z-N) tuning method and RBF-NN methods. The suspension 

system is perturbed using the sine function. Simulated in the Simulink 

environment is the quarter-car model. Passive suspension systems, 
adaptive PID controller utilizing the Z-N tuning approach, and adaptive 

PID based on the RBF-NN method for active suspension systems are 

compared. The active suspension with PID control based on the RBF-NN 

outperformed the active suspension with PID control utilizing the Z-N 

tuning approach and passive suspension, according to simulation data. 

The comparison demonstrates the proposed control method's superior 

features. 

 

Introduction: Vehicle suspension systems play a significant role in 

improving the performance of passenger ride comfort and road holding 

[1]. There are four actuators placed between the vehicle body and wheel-

axle in active suspension systems Compared with the passive and semi-

active suspension systems [2], and actuators can directly generate the 

active force to lessen vibration by absorbing or releasing load. As a result, 

active suspension systems can significantly increase the ride comfort and 

road holding [3]. 

To cope with the difficult problem in improving the performance of 

vehicle. Many control approaches have been introduced and applied to 

the vehicle control [4]. Currently, PID control has been widely used in 

vehicle systems [5], as the PID control method is simple and efficient, 

high reliable and easy to implement [6]. However, the proportional, 

integral and derivative parts are too hard to be adjusted to get the optimal 

result. The most primitive method is the experimental method, but this 

method is time-consuming and typically challenging to identify the ideal 

PID control parameters [7]. Subsequently, a large traditional PID control 

parameter optimization methods emerged, the most common methods are 

Ziegler-Nichols (Z-N) method [8]. Ziegler-Nichols (Z-N) has the 

advantage of simplicity and easy implementation, but sometimes produce 

large overshoot and oscillation, which makes the control effect not ideal. 

To overcome the limitation of conventional PID control, many 

improvements to PID control have been applied in PID control [9]. 

Among all the approaches to improve the PID control, Back Propagation 

neural network (BP-NN) is an improvement and optimization control for 

conventional PID control [10]. BP-NN has the ability in approximate any 

nonlinear function, and its structure and learning algorithm are simple 

and clear. For example, J Liu et.al proposed a PID controller based on the 

BP-NN algorithm to improve the energy-regenerative efficiency 

calculation for active suspension [11]. Yet, the BP-NN method has many 

parameters to be optimized, and the convergence speed is slow. Moreover, 

there are multiple extreme points in the objective function, and it is easy 

to fall into a local minimum value [12]. RBF-NN has strong self-learning 

feature for that it has a nonlinear input to output mapping while having a 

linear hidden layer to output space mapping, which considerably speeds 

up learning speed and prevents the local minimum problem [13]. As a 

result, adding RBF-NN to the basis of BP network adjustment parameters 

can also speed up the adjustment of PID parameters, and enhance its anti-

interference and robustness. MG Zhang et al. applied the RBF-NN to 

identify the parameters of PID controller online and the weights of the 

adaptive PID controller are adjusted in time [14]. However, the research 

about adaptive PID control based on RBF-NN for active suspension 

systems is fewer. Hence, in this paper, the adaptive PID control based on 

RBF-NN method is applied to active suspension. 

The structure of this paper is as follows: In section 2, the quarter car 

active suspension is conducted. In section 3, the PID controller using Z-

N method and the PID controller based on RBF-NN method are discussed. 

Section 4 shows the simulation results. Conclusions are proposed in 

section 5. 

 

System Model: The quarter car active suspension system model is simple 

and can capture the chief component parts, so the two DOF quarter car 

model is applied in this paper and is shown as Figure 1. 

The parameters in Figure 1 are described as follows.  

𝑚𝑠 and 𝑚𝑢 are the equivalent mass of the vehicle body and the wheel 

assemble including axle and tire. 𝑘𝑠 and  𝑘𝑡 are the stiffness of spring and 

tire. 𝑢 is the active effective control force.𝑐𝑠is the damper coefficient. 𝑥𝑔, 

𝑥𝑢, 𝑥𝑠 represent the displacement of ground surface, un-sprung mass and 

sprung mass. 

 
Fig. 1 Quarter active suspension model. 

The dynamic function of quarter car suspension system is shown as. 

{
𝑚𝑠𝑥̈𝑠 = 𝑢 + 𝑘𝑠(𝑥𝑢 − 𝑥𝑠) + 𝑐𝑠(𝑥̇𝑢 − 𝑥̇𝑠)

𝑚𝑠𝑥̈𝑢 = 𝑘𝑡(𝑥𝑔 − 𝑥𝑢) − 𝑢 − 𝑘𝑠(𝑥𝑢 − 𝑥𝑠) − 𝑐𝑠(𝑥̇𝑢 − 𝑥̇𝑠)
                            (1) 

To facilitate the control synthesis, the state variables are defined as the 

following. Define the state matrix and output matrix. 

𝑋 = [𝑥𝑠 − 𝑥𝑢 𝑥̇𝑠 𝑥𝑔 − 𝑥𝑢 𝑥̇𝑠]𝑇 
𝑌 = [𝑥̈𝑠 𝑥𝑠 − 𝑥𝑢

𝑥𝑔 − 𝑥𝑢 𝑢]𝑇 

Thus, the state space representation of the dynamics is given by the 

following. 

𝑋̇ = 𝐴𝑋 + 𝐵𝑈 + 𝐹𝑊 
𝑌 = 𝐶𝑋 + 𝐷𝑈      
                                                                  
Controller Design: Two different methods used to obtain the parameters 

value in PID control are presented. These are the Ziegler-Nichols (Z-N) 

closed tuning method and RBF neural network for the PID control to 

reduce the vibration of the quarter car model. In addition, an adaptive PID 

with Z-N method is considered to compare with PID control based on 

RBF-NN for active suspension. The next of this section, two subsections 

present the PID controller with Z-N method and the adaptive PID 

controller based on RBF-NN are presented. 

PID controller consists of proportional𝑃(𝑒(𝑡)), integral 𝑃(𝑒(𝑡)) and 

derivative 𝐷(𝑒(𝑡))parts [15]. Assuming each amplitude is completely 

decoupled and controlled independently from other amplitudes, the 

control input  𝑈(𝑡) is given by. 

𝑈(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝑘𝑑
𝑑𝑒(𝑡)

𝑑𝑡
                                                    (2) 

Where 𝑒(𝑡) is the control error, and can be expressed as 

𝑒(𝑘) = 𝑥𝑑(𝑡) − 𝑥𝑎(𝑡)                                                                                    (3) 

Where 𝑥𝑑(𝑡) is the desired response and 𝑥𝑎(𝑡) is the actual response.  

The control algorithm is shown as. 

𝑢(𝑡) = 𝑢(𝑡 − 1) + ∆𝑢(𝑡)                                                                                (4) 

Moreover, in this paper, Ziegler-Nichols closed tuning method has 

been used with a simple method that uses the ultimate gain value. Gain 

parameters of the PID controller are detailed in Table 1[16]. 

Table 1: Z-N method.   

 𝐾𝑝 𝑇𝑖 𝑇𝑑 

PID 1.2 𝜏 𝑇⁄  2.2𝜏 0.5𝜏 

 

RBF-NN is a neural network structure that simulates local adjustments 

in the human brain and covers receptive fields. Therefore, RBF neural 

network is a local approximation network, and has been proved that it can 

approximate any continuous function with arbitrary precision. The 

structure of the RBF neural network is shown in the Figure 3, which is a 

three-layer feedforward neural network. The input layer node and the 

output layer node are composed of linear neurons, the hidden layer node 

generally selects the Gaussian kernel function, which can produce a local 

response to the input vector, and the output node performs linear 

weighting on the output of the hidden layer node. Therefore, the input 

space can be mapped to the output space, and the aim of function 

approximation can be classified for the entire network. Since the mapping 

from input to output is nonlinear, and the mapping from hidden layer 

mailto:zhaowpa@126.com
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space to output space is linear, the learning rate is quickened greatly, and 

the local minimum problem is avoided. 

𝑋 = [𝑥1 𝑥2 ⋯ 𝑥𝑛]𝑇, is the input vector of RBF-NN. 

𝐻 = [ℎ1 ℎ2 ⋯ ℎ𝑗 ⋯ ℎ𝑚]𝑇, is the radial basis vector and ℎ𝑗 is the 

Gauss basis function. The ℎ𝑗 is given as. 

ℎ𝑗 = exp (−
‖𝑋 − 𝐶𝑗‖

2𝑏𝑗
2 ) 

Where 𝐶𝑗 = [𝑐𝑗1 𝑐𝑗2 ⋯ 𝑐𝑗𝑖 ⋯ 𝑐𝑗𝑛]𝑇 , is the central vector of  𝑗𝑡ℎ 

node. 𝑏𝑗 is the basis width value of  𝑗𝑡ℎ node, and 𝑏𝑗 > 0. 

The basis width vector of RBF can be expressed as: 

𝐵 = [𝑏1 𝑏2 ⋯ 𝑏𝑚]𝑇 

The weight vector of RBF NN is shown as  

𝑊 = [𝑤1 𝑤2 ⋯ 𝑤𝑗 ⋯ 𝑤𝑚]𝑇 

As a result, the output of RBF NN is shown as 

𝑦𝑚(𝑡) = 𝑤1ℎ1 + 𝑤2ℎ2 + ⋯ + 𝑤𝑚ℎ𝑚 

The rectification objective of RBF-NN is presented as 

𝐸(𝑡) =
1

2
𝑒(𝑡)2 

 
Fig. 2 Structure of RBF-NN 

The gradient descent method is used to obtain parameters of controller. 

The structure of adaptive PID controller with RBF NN is shown in the 

Figure 4. The controller consists of three parts. 

 
Fig. 3 Structure of adaptive PID control based on RBF-NN 

(1) Traditional PID controller direct closed-loop control of the 

controlled object, in which the three parameters 𝑘𝑝, 𝑘𝑖 , 𝑘𝑑  are rectified 

online.  

(2) RBF identification network observes the Jacobian information of 

the controlled object in time and provides the information to the network; 

(3) The Jacobian information provided by the RBF network is used to 

adjust its own weight coefficients, and then the three parameters of the 

PID control is output, which in turn enables the PID controller to be 

adjusted to achieve the optimal index. 

From the above, the steps of the PID parameter self-tuning algorithm 

based on RBF-NN method is shown as follows. 

(1) First, determine the number of input nodes and the number of 

hidden layer nodes 𝑛  of the RBF neural network by the extensive 

simulations. Select the learning rate, inertia coefficients, initial values of 

central vector, basis with parameter, and the weight coefficients of the 

hidden layer nodes. 

(2) Then, determine the structure of RBF neural network, namely, the 

number of input layer nodes, implicit layer nodes,  

(3) y(𝑡) and 𝑟(𝑡)  are obtained by sampling. 𝑒(𝑡)  is obtained by 

calculating, 𝑒(𝑡) = 𝑟(𝑡) − y(𝑡). 

(4) Calculate the input and output of the neural network. The output of 

third layer of the neural network is the three adjustable parameters of the 

PID controller. And the 𝑢(𝑡) is obtained by calculating. The Jacobian 

information is obtained and the next output y(𝑡 + 1) of the control object 

is got. 

(5) Adjust the weight coefficients, the hidden node central vector and 

the basis width parameters of the RBF neural network. Return to step 3 

and continue. 

After that, the parameters of controller with different methods can be 

got and are shown in Table 2. 

Table 2: Parameters of controllers.   

 

 𝐾𝑝 𝑇𝑖 𝑇𝑑 

Z-N 10.2 4.88 1.11 

RBF-NN 10.01 4.35 0.99 

 

Results and Discussion：After the design of the controller for the quarter 

car active suspension model described in this research, the adaptive PID 

control utilizing Z-N technique and RBF-NN method are all taken into 

consideration in simulation to compare the performance of the two ways. 

This will help the hybrid control method become more generalizable. The 

quarter vehicle model is utilized in this research to verify the suggested 

control mechanism, and the parameters used in this research are shown 

in Table 3. 

Table 3: Parameters of suspension.   

parameters 𝑚𝑠 𝑚𝑢 𝑘𝑠 𝑘𝑡 𝑐𝑠 

value 350𝑘𝑔 50kg 180N/m 190kN/m 1kNs/m 

To assess the primary components of the active suspension system 

using the suggested control strategy. As an evaluation metric, the active 

control force of the actuator, suspension deflection, tire deflection, and 

body acceleration of the vehicle are used. 

Figure 4 illustrate the simulation results of sprung mass acceleration, 

suspension deflection, tire deflection, and active control force under 

different condition. Figure 5 illustrate the RMS of the evaluation 

indicators utilized in this work and the degree of improvement. 

 
a sprung mass acceleration                              b suspension deflection 

 
c tire deflection                                                                 d active force 

Fig. 4 Simulation results 

It can be seen from Figure 4 that the curve of sprung mass acceleration, 

deflection of the vehicle suspension, tire deflection, and control force 

under active suspension PID control based on RBF NN is smoother than 

the curve for passive suspension and PID control based on Z-N method, 

indicating that the performance of ride comfort of the active suspension 

PID control based on RBF NN is better than the other two cases. 

Figure 5 present the RMS values for vertical deflection and 

acceleration of sprung mass, tire deflection, active control force and 

degree of the improvement of passive suspension, adaptive PID control 

based on Z-N method and adaptive PID control with RBF-NN method.  

The RMS value of sprung mass acceleration is observed to be reduced 

by 89%, the RMS value of suspension deflection is reduced by 89%, and 

the RMS value of tire deflection is reduced by 88% when adaptive PID 

control with Z-N method is used. As a result, the ride comfort and road 

holding are clearly improved. Meanwhile, the performance of active 

suspension under adaptive PID control based on RBF NN method is 

better than the PID control with Z-N method, since the RMS value of 

sprung mass acceleration is decreased by 94%, the RMS value of 

suspension deflection is decreased by 95%, the RMS value of tire 

deflection is decreased by 94.7% compared with the passive suspension. 

And the active control force is decreased by 52% compared with active 

suspension under adaptive PID control based on Z-N method.  
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Therefore, the proposed controller in this paper can reduce deflection 

and acceleration under sine input and step input to great extent, further 

demonstrating the viability go the proposed control method 

 
a sprung mass acceleration                              b suspension deflection 

 
c tire deflection                                                     d active force 

Fig. 5 RMS value 

 

Conclusion: This paper mainly discusses the RBF-NN-based adaptive 

PID controller for active suspension. Quarter car suspension model is 

considered at first. And then the adaptive PID controller with RBF neural 

network is conducted. After that, simulation is conducted within 

Simulink environment. Finally, performance of proposed controller in 

this paper is compared with the passive suspension, adaptive PID control 

using Z-N method.  

From the simulation results, that adaptive PID controller with RBF- 

NN method high absolute the road profile tracking performance can be 

achieved for random road roughness. It confirms the effectiveness and 

robustness of the proposed control system. The effectiveness of the 

proposed controller algorithm is illustrated by its ability to reproduce 

much vibration. 
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