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Abstract

Whole genome sequencing data allow survey of variation from across the genome, reducing the constraint of
balancing genome sub-sampling with recombination rates and linkage between sampled markers and target
loci. As sequencing costs decrease, low coverage whole genome sequencing of pooled or indexed-individual



samples is commonly utilized to identify loci associated with phenotypes or environmental axes in non-model
organisms. There are, however, relatively few publicly available bioinformatic pipelines designed explicitly
to analyze these types of data, and fewer still that process the raw sequencing data, provide useful metrics
of quality control, and then execute analyses. Here, we present an updated version of a bioinformatics
pipeline called PoolParty2 that can effectively handle either pooled or indexed DNA samples and includes
new features to improve computational efficiency. Using simulated data, we demonstrate the ability of our
pipeline to recover segregating variants, estimate their allele frequencies accurately, and identify genomic
regions harboring loci under selection. Based on the simulated data set, we benchmark the efficacy of our
pipeline with another bioinformatic suite, angsd, and illustrate the compatibility and complementarity of
these suites by using angsd to generate genotype likelihoods as input for identifying linkage outlier regions
using alignment files and variants provided by PoolParty2. Finally, we apply our updated pipeline to an
empirical dataset of low coverage whole genomic data from uncurated population samples of Columbia River
steelhead trout (Oncorhynchus mykiss ), results from which demonstrate the genomic impacts of decades of
artificial selection in a prominent hatchery stock.

Introduction

A primary goal of molecular ecology is to understand the genetic basis of diversity such as targets of divergent
selection or loci underlying heritable life history variations or ecotypes. Critical to this endeavor is the ability
to survey the genome to discover genetic variants associated with phenotypic differences or environmental
axes (Giinther & Coop, 2013; Hoban et al., 2016; Paril, Balding, & Fournier-Level, 2022). Massively parallel
or ‘next-generation’ sequencing has dramatically decreased the cost of surveying genetic variation across
statistically meaningful numbers of individuals and has made these kinds of investigations accessible for
researchers working with limited budgets on non-model organisms. However, despite the rapid decrease in
per-base sequencing costs, sequencing the complete genome of each surveyed individual at high coverage is
often not practical, in part because as the cost of sequencing has decreased but demands for statistically
robust sample sizes have become more ardent (Schlstterer, Tobler, Kofler, & Nolte, 2014). As a result,
geneticists are still faced with the task of determining the appropriate compromise between number of reads
devoted to surveying each individual, which in many cases determines the extent of the genome that can be
observed, and the number of individuals surveyed (Lou, Jacobs, Wilder, & Therkildsen, 2021).

This compromise has been addressed in a number of ways depending on the goals of the individual project.
Many researchers have opted to survey only a fraction of the genome, creating ‘reduced representation’
libraries wherein sequencing coverage is spread across fewer, reproducible subsets of loci (e.g. Baird et al.,
2008). With careful tuning of library preparation and sequencing methods, the coverage at each locus may
be sufficient to confidently infer genotypes across nearly all individuals at hundreds to tens of thousands of
variable loci (Andrews, Good, Miller, Luikart, & Hohenlohe, 2016; Puritz et al., 2014). For analyses where
individual genotypes are important but high genomic density of loci is not critical, such as determining
relatedness or migration among recently diverged populations, these reduced representation techniques can
produce data cost effectively for hundreds of individuals (e.g. Willis, Hollenbeck, Puritz, & Portnoy, 2022).
However, while these techniques provide data on many more loci than what was historically accessible, only a
fraction of the genome is ultimately surveyed, meaning that for species for which linkage blocks are typically
less than 100Kb, many linkage blocks may not be surveyed. As a result, except in cases of regions of high
linkage disequilibrium such as inversions or strong selective sweeps, investigations that only survey a few
thousand linkage groups may fail to identify loci strongly associated with selection or heritable phenotypic
variation (Lowry et al., 2017; Tiffin & Ross-Ibarra, 2014).

On the other hand, for many association and genome scan methods the input is allele frequencies rather than
individual genotypes. And notably, because of sampling variance, sampling more individuals at low coverage
actually provides more accurate estimates of phenotype or population allele frequencies than sequencing fewer
individuals at high coverage (Futschik & Schlétterer, 2010; Giinther & Coop, 2013; Schlétterer et al., 2014;
Zhu, Bergland, Gonzélez, & Petrov, 2012). Many analyses, including those that compare allele frequencies
between phenotypic variants or populations situated along an environmental gradient and depend on high



density sampling across linkage groups to discover the regions of highest divergence, may thus be performed
more effectively by low coverage whole genome sequencing (IcWGS) (Lamichhaney et al., 2012; Lou et al.,
2021; Schlstterer et al., 2014; Therkildsen & Palumbi, 2017). Moreover, there have been a proliferation of
analyses that are able to account for uncertainty in the genotype of each individual (likelihoods), even with
data sequenced with <1x coverage per individual (Lou et al., 2021). This low coverage sequencing approach
provides compromise among the portion of the genome surveyed, accurate allele frequency estimates, and in
many cases analyses that require individual genotype data (Lou et al., 2021; Therkildsen & Palumbi, 2017).
However, while IcWGS data may be highly appropriate for these types of investigations and the toolkit for
analyzing allele frequency and genotype probability data is expanding, there remain few pipelines specifically
designed to take unmapped 1cWGS reads and convey the data through quality control and bioinformatic
analyses.

To address that need, an integrated, modular bioinformatic pipeline, PoolParty, was developed that facilitates
the use of lcWGS data to search for genomic regions showing strong divergence between samples with
discrete phenotypic differences or other group-wise characteristics (Micheletti & Narum, 2018). This pipeline
has been applied to detect genome-wide genetic association across multiple species (e.g. Aguirre-Ramirez,
Velasco-Cuervo, & Toro-Perea, 2021; Horn, Kamphaus, Murdoch, & Narum, 2020; Lyu et al., 2021; Ren
et al., 2021). Although most published applications have utilized data from libraries of pooled DNA, the
pipeline can also utilize data from individuals sequenced in multiplex using indexed or barcoded libraries,
which allows a normalization procedure that corrects for uneven contribution to group allele frequencies
across individuals. This normalization is a pseudo-genotying method wherein each individual, regardless of
total reads, is allowed to contribute only one or two alleles per locus to the count from which allele frequencies
are calculated, depending on that individual’s depth of coverage and the ratio of major and minor alleles
(>10:1 is considered a homozygote; Figure 1). PoolParty shares this goal of managing uneven contribution
among individuals when estimating allele frequency with another bioinformatic suite designed for use with
lcWGS data, angsd, which also generates individual genotype likelihood or posterior probabilities from
lcWGS data (Korneliussen, Albrechtsen, & Nielsen, 2014). However, PoolParty takes sequence read files as
input, performs sequence cleaning and mapping to a reference genome, produces numerous assurance reports
regarding sequence and mapping quality, and facilitates several analyses to identify regions of significant
genomic divergence between samples, while angsd requires mapped read alignments produced by other tools
as input. Moreover, as demonstrated below, the alignment files created by PoolParty are compatible input
to angsd, making these complementary bioinformatic tools for lcWGS data analysis.

To demonstrate various utilities and upgrades of the PoolParty2 pipeline and compatibility with angsd,
we apply it to two IcWGS datasets, one simulated and one empirical, that reflect the type of questions
to which PoolParty2 may be routinely applied. We utilize data simulated to reflect different demographic
contexts and degrees of sequence coverage to show the relative strengths, accuracy, and complementarity
of PoolParty2 and angsd to identify segregating loci, estimate their allele frequencies, and identify outlier
loci and the boundaries regions affected by selection. Then, using barcoded lcWGS data from natural and
hatchery populations of steelhead trout (anadromous Oncorhynchus mykiss ), we demonstrate the potential
of integrated application of these bioinformatic suites to identify regions under selection in landscape-level
population samples.

Methods
The bioinformatic pipeline : PoolParty?2

PoolParty2 is an updated suite of scripts written in the BASH and R computer languages that create and
manipulate text files, including sequence read files, and call freely distributed programs to efficiently operate
on the data as needed. After installation of dependencies in a Linux computing environment, for which we
provide explicit instructions on our Github page (https://github.com/stuartwillis/poolparty) and most of
which are available using the Conda package and environment management system (Anaconda Software
Distribution), users need only provide sequence read files and haploid genome assembly, a text file listing
sequence read files with their group or population affiliation, and tailored configuration files for each of



the three modules as appropriate. We distribute two tutorials that with the scripts that help ensure that
dependencies are accessible and illustrate the main features of the pipeline. We additionally provide example
code to assist users in conveying output from the PoolParty2 modules into angsd and associated utilities.

The three main modules of the pipeline focus on distinct aspects of the bioinformatics process. The PPalign
module calls dependency packages (i.e., BWA mem) for quality trimming, mapping and filtering, and SNP
calling functions to create read alignments to the genome assembly, identify genetic variants and their
frequencies, and produce input files for the other modules. The PPstats module utilizes output from the
first module and reports a number of useful statistics about the sample groups, such as genomic extent at
candidate depths or coverage variation among chromosomes, and allows the user to confirm that sufficient and
similar coverage has been achieved across samples. The PPanalyze module utilizes and subsets allele summary
data from the first module and performs user-specified analyses, such as principal components, sliding window
Fst, and Fisher’s Exact Tests, to resolve population structure and identify regions of significant genetic
divergence between groups. Additional modules are provided that run further statistical tests that utilize
replicate sample pairs (Cochran, 1954; Mantel & Haenszel, 1959), which take into account background
variance and linkage (local score; Fariello et al., 2017), or account for population structure (Lewontin and
Krakauer test with kinship, or FLK; Bonhomme et al., 2010), as well as one for plotting results from these
analyses.

Computational requirements for running the pipeline will depend on the size of the dataset and user-specified
configuration, and may range from a handful of threads and tens of Gb of RAM to dozens of processors and
>1Tb of RAM. Runs for each module usually last a few hours but could take several days for large datasets
with limited processing and RAM resources. In the tutorials we describe strategies for piecemeal runs of
the different modules as data are generated and assembled to coordinate and combine data subsets, confirm
quality early in the process, and reduce the overall bioinformatic processing time.

Application 1:
leWGS data simulated from distinct demographic backgrounds and coverage

We employed simulated data from Lou et al. (2021) to demonstrate the ability of these bioinformatic suites to
utilize IcWGS data to accurately estimate allele frequencies and identify outlier regions at various coverages
and sample sizes. Details of simulated data are included in Lou et al. (2021), but briefly, nucleotide sequence
data including mutation and recombination on a single 30Mb chromosome were simulated for two populations
exchanging genes under two demographic scenarios: a lower effective population size and lower rate of gene
exchange that produced a higher background Fgr (hereafter, the ‘high background Fgr’ scenario) and a
higher gene exchange and effective population size that produced a lower background Fgr(‘low background
Fsr’ scenario). In both scenarios, several sites under selection were introduced and allowed to evolve under
divergent selection in each population, ultimately resulting in seven outlier regions (Supplemental Figure 1).
Sequence data from the simulated chromosomes, generated to reflect Illumina-style paired-end reads including
sequencing errors, reflected 8x coverage for each of several hundred individuals from each population to enable
down-sampling at various coverage levels. See Lou et al. (2021) for additional details about simulated data.

While extensive scenarios were tested in Lou et al. (2021)with these simulated data, we selected four scenarios
to benchmark PoolParty2 against angsd including: a) high background Fgr & low sequence coverage; b) high
background Fgr & higher sequence coverage; ¢) low background & low sequence coverage; d) low background
Fst and higher sequence coverage. From the simulated sequence data, we randomly selected a number of
individuals from each population to reflect sample sizes that are common for empirical datasets in the
literature and the dataset included in this study (70 and 63 from each population) and down-sampled the
simulated sequence data (8x) to reflect the median individual coverage in our empirical data (70.33x) as
well as a common sequencing target for IcWGS studies (1x). As Lou et al. (2021) examined the effects of
depth and sample size on allele frequency estimation accuracy across a greater range of values, it was not
our intent to duplicate their efforts except to compare the abilities of the two bioinformatic suites at these
coverage depths. However, to additionally challenge these suites with the range of variability in coverage



among individuals commonly reflected in empirical data, we fit several simple mathematical distributions to
the sums of individual coverage in our empirical data for variant positions following an initial set of global
filters (global depth of 10 and minor allele frequency, MAF, of 0.005). A logistic distribution exhibited the
best fit based on information theoretic criteria (results not shown), and using parameters for this distribution,
we down-sampled the 8x simulated data. For the 1x coverage dataset, the empirical scale parameter for this
distribution was used, but the location parameter was set to 1, to produce higher coverage with similar
variation. Individuals utilized at different coverages of the same scenario were not identical. This resulted in
four simulated datasets (low and high background Fgr at 0.33x and 1x coverage).

For each of the four datasets, sequence data were processed with the PPalign module of PoolParty2, including
quality trimming (sliding window PHRED [?] 20, retained length [?] 50bp), read mapping (mapQ [?] 20),
variant scoring and filtering by global parameters (snpQ [?] 20, global depth of 10 reads, MAF of 0.001), and
estimation of raw and normalized allele frequencies. Unless otherwise indicated, normalized allele frequencies
were utilized in all analyses. SNP variants and their normalized frequencies identified by PPalign were used as
input to PPanalyze, which applied additional filters for sites observed in fewer than 10 reads per population.
PPanalyze also calculated Fgrfor individual sites and sliding windows of 100Kbp windows in 5Kbp sets, as
well as applying Fisher’s Exact tests (FET) for differences in allele frequency between the two populations.
Significance (p ) values for the latter test were used as input for the Local Score test (Fariello et al., 2017),
which ‘smooths’ the background variation in significance to identify contiguous outlier regions depending
on a user-specified smoothing parameter (£). In addition, this test determines the significance of putative
outlier regions through accounting for linkage (autocorrelation in p -values) in a chromosome-specific manner.
However, because each run samples different SNPs to calculate autocorrelation and determine significance,
individual runs may fail to identify outlier regions with borderline significance. Lower rates of smoothing
(smaller &) generally retain more power, but are less precise in determining the boundaries of outlier regions,
and moreover, because the landscape of background significance changes with various & values, and thus the
thresholds for significance in this test, power and smoothing do not have a directly inverse linear relationship.
For these reasons, multiple runs with application of different values of £ are useful. We therefore ran the local
score test three times for increasing values of & representing the 70", 80", 90t", 95" and 99*" quantiles of
significance values from the Exact tests of each dataset, and tallied how often each simulated outlier region
was recovered as well as the width estimated for each region.

Using the filtered BAM files produced by PPalign as input, we applied angsd to all four simulated datasets
in two manners. First, we ran angsd undirected by any variant identification from PoolParty2, relying on
angsd’s filters to identify and screen variant sites. We applied filters to several runs of each dataset (similar
to PPalign: mapQ [?] 20, snpQ [?] 20, global depth [?] 20, MAF [?] 0.001) but with varying significance
thresholds for variant discovery: none, 0.01, and 0.001. We ran this configuration to compare angsd’s ability
to detect true variants and discover outlier regions to PoolParty2. Subsequently, specifying for angsd to
consider only variants it discovered with the most stringent significance threshold (p [?] 0.001), we ran
angsd on data from each simulated population separately in order to generate site frequency spectra and
calculate Fgr using angsd’s realSFS utility. We only retained sites observed in more than 10 reads and 3
individuals in each population, and then directed ANGSD to run association tests on these sites (-doAssoc
1, 2, and 5) to identify outliers, specifying population membership of each individual. Second, we directed
angsd to consider only sites discovered by PPalign and subsequently retained by filtering with PPanalyze
(“PoolParty2 to angsd” ), and we utilized allele frequencies estimated from these runs to compare the ability of
PoolParty2 and angsd to recover the known allele frequencies accurately. Subsequently, genotype likelihoods
inferred by angsd from these runs were used as input for estimation of linkage using ngsLD (Fox, Wright,
Fumagalli, & Vieira, 2019), and we constrained linkage estimation to sites [?] 100Kbp from one another.
Using these linkage estimates, we calculated mean LD in 100Kbp windows in 5Kbp steps in R, and identified
outlier regions as contiguous series of [?]10 windows exceeding 2x the interquartile range (2xIQR) for mean
windowed LD.

Application 2: Barcoded individuals in population samples of steelhead



Hatcheries have an important but controversial role in supplementing dwindling fish stocks in the Columbia
River basin (Busby, Wainwright, & Bryant, 1999), including, in a few cases, selection for particular traits
in hatchery stocks that differ from the stocks into which they are outplanted or stray (disperse to non-
natal areas). One of the most abundant and widely outplanted hatchery stocks of steelhead trout in the
Columbia Basin comes from Skamania Hatchery (Washougal, WA). The Skamania stock has a long history
of deliberate selection for earlier spawning and larger fish (Ayerst, 1976), which has resulted in the evolution
of fish that migrate notably earlier than conspecifics and almost exclusively after two or more years ocean
duration (Hess et al., 2021). Without choosing individuals with known phenotypes, but rather undirectedly
sampling individuals from the Skamania hatchery stock as well as individuals from two nearby natural origin
stocks (Lewis River and Eagle Creek-Willamette River) in the same steelhead lineage (Coastal), we tested
if genomic regions previously associated with these traits or others would appear strongly differentiated in
the Skamania stock.

Library preparation followed the individual barcoding protocol from Horn et al. (2020) and sequencing was
done separately for each population on the Illumina NextSeq 550 with 150-bp paired-end reads. The number
of individuals per pool ranged from 60 to 78. Data were processed with PoolParty2, including discarding of
reads if trimmed below 50bp from sliding windows with a minimum mean PHRED quality of 20, and filtering
SNPs if they were below a PHRED quality of 20, three or fewer bases from an insertion-deletion position,
observed in fewer than 10 reads in each sample pool or more than 1,500 globally, if the number of individuals
surveyed per population was fewer than three of if the global minor allele frequency was less than 0.005.
The allele frequency data were normalized in PPalign to mediate non-uniform read contribution among
individuals. Using the PPstats module, we assessed data coverage distributions, proportion of the genome
covered at specified depths, and evenness of coverage across chromosomes. Normalized allele frequencies were
filtered and analyzed with PPanalyze including calculation of Fgr, sliding window Fgr (100Kbp windows
in 5Kbp steps), and Fisher’s Exact test (FET). Significance values from the Exact tests were used in local
score analyses, using three replicate runs with & representing the 80", 90", 95" and 99*" quantiles of
significance values (the 70*" quantile did not produce a mean local score distribution below zero). Filtered
read alignment files (BAMs) created by PPalign were used as input for angsd, which was directed to consider
the variants filtered by PPanalyze, and from which we utilized the genotype likelihoods provided by angsd
as input to estimate linkage with ngsLD for three chromosomes with the most significant and consistent
outlier regions in the Local Score results, considering only sites [?] 100Kbp from one another. As above,
we calculated mean LD in 100Kbp windows in 5Kbp steps in R, but identified outlier regions as contiguous
series of [?]20 windows exceeding 2x the interquartile range (2xIQR) for mean windowed LD. When multiple
contiguous outlier window series were present in the range identified by the lowest Local Score quantile, we
report all those series.

Results
Application 1: lcWGS data simulated from distinct demographic backgrounds and sequencing coverage

Down-sampling, trimming, and mapping of simulated data results in 100% of the simulated chromosome
being covered at [?]10 reads per population in the 0.33x coverage datasets and at [?]40 reads for the 1x
coverage datasets. The two demographic scenarios simulated by Lou et al. (2021) resulted in notably
different numbers of segregating variants: 158,746 variants with MAF [?] 0.001 (of 245,412 total variants)
in the high background Fgr scenario and 789,423 variants with MAF [?] 0.001 (1,209,625 total) in the low
background Fgr scenario. PoolParty2 and angsd differed considerably in the dynamics of variant discovery,
particularly identification of ‘real’, simulated variants. Both PoolParty2 and angsd recovered a larger number
of sites in the datasets with greater coverage (all of which must have MAF [?] 0.001), but while the proportion
of sites that were ‘real’ was similar across coverages for PoolParty2 ([?] 99.5%), this value changed with
coverage for angsd (Table 1). In addition, only at the highest significance thresholds did angsd recover sites
with similar ‘real’ proportions to PoolParty2, but then in lower numbers.

Across coverage depths, allele frequencies estimated by PPalign were always more accurate than those
estimated by angsd, although only modestly (Figure 2, Supplemental Figure 2). Allele frequency estimates



generally improved with depth for both PoolParty2 and ANGSD, though more notably for angsd when depth
was estimated by angsd rather than PoolParty2, and despite the large decrease in sites passing increasing
depth thresholds. Indeed, angsd and PoolParty2 disagreed considerably about depth (correlation in depth
estimates decreased) as the threshold for depth increased, implying that angsd’s read filter is more stringent
than that applied by PoolParty2 even with apparently similar parameter values. Nonetheless, correlation
values for estimated to true allele frequencies ranged from approximately 80% to 90% for the lower coverage
datasets and 90% to 95% for the higher coverage datasets, with PoolParty2 slightly higher than angsd in
each case. It should also be noted that some diminishment in accuracy was expected due to sampling
variance (which individuals and reads were sampled for each dataset), which determines the truly estimable
allele frequencies regardless of the efficacy of each analysis, implying that each analysis is slightly closer to
accurate than the reported values imply. This is reflected in the observation that correlations between allele
frequencies estimated by PoolParty2 and angsd were always higher with each other than with ‘real’ allele
frequencies in each case (87-98%; data not shown).

Both analytical suites were able to provide results which allowed visual identification of most if not all of
the simulated outlier regions, particularly in the sliding window Fgr, Local Score, and linkage outlier results
(Figure 3). Results provide by PoolParty2 and angsd for Fgr, sliding window Fgr, and FET (PoolParty2) or
frequency test (angsd -doAssoc 1) were roughly equivalent (Supplemental Figures 3-6). The score and hybrid
latent-score tests from angsd (-doAssoc 2 and 5) failed to produce any significant results. Both PoolParty?2
and angsd had more difficulty in providing results that unambiguously identified outlier regions for the high
background Fgr scenario at lower coverage, although even at higher coverage, outliers were less obvious
than in either of the low background Fgr scenario datasets. The analyses that were designed to provide
less ambiguous identification of outlier regions, Local Score and linkage outliers identified above twice the
IQR, also exhibited efficacy moderated by demography and coverage (Table 2). In the case of Local Score,
while peaks corresponding to the outlier regions were clearly visible in plots of smoothed FET significance,
it was more difficult to determine significance thresholds that effectively identified the outlier regions with
high background Fsr, though this test did not appear to be constrained significantly by coverage for the
low background Fgrscenario. Moreover, in the high background Fst scenario, there was no obvious inverse
relationship between smoothing value (£) and power, as some replicates with higher & values identified more
outlier regions at p [?] 0.05, though an inverse relationship was apparent in the low background Fgr scenario.
Moreover, the precision of identified regions narrowed with increasing & values, as expected. In contrast,
our identification of outliers using linkage was more constrained by coverage, with lower efficacy in lower
coverage datasets regardless of background Fgr. Notably, the width of the region affected by hitchhiking
was smaller with lower coverage in both scenarios, with similarly smaller outlier regions estimated by the
Local Score analyses across & values at lower coverage in the low background Fgr scenario. Importantly,
none of the analyses that considered broad range divergence or significance (windowed FST, Local Score,
windowed linkage) identified any false positive outlier regions.

Application 2: Barcoded individuals in population samples of steelhead

After trimming, mapping, and quality filtering, PPalign provided 287 to 405 million mapped reads per
sample, which allowed between 67.2 and 70.8% sampling of the genome at the minimum number of reads
per sample (10), as revealed by PPstats (Supplemental Figure 7). The distribution of genomic extent across
chromosomes was similar to other IcWGS analyses of the O. mykiss genome (e.g. Micheletti, Hess, Zendst,
& Narum, 2018), indicating this pattern is a function of the library preparation technique used for all these
samples or idiosyncrasy of this genome. Sequencing of indexed individuals allowed us to estimate that the
mean coverage per individual ranged from 0 to 2.3 (median 0.23), to confirm that it was similar across
populations (median 0.23, 0.26, 0.23 and standard deviation 0.39, 0.28, and 0.28 for Willamette River, Lewis
River, and Skamania Hatchery, respectively), and to reduce bias in allele frequency estimates introduced
by sampling variance across samples (normalize). After population-specific filters, PPanalyze examined
22,934,298 variants (22,832,805 [99.5%] in the chromosome scaffolds) with a suite of analyses. Density plots
revealed that variants were sampled from across the genome, with a handful of areas of notable density.
A principal components analysis made with loci with a maximum difference in allele frequencies below 0.9



(thus excluding the most divergent outlier loci), while unremarkable, confirmed that the primary axis, which
explained “86% of the variance in the data, didnot segregate the Skamania hatchery sample from the natural
origin samples, implying that outlier regions related to the main contrast (hatchery vs. natural) would not
be confounded by background population structure. Raw PPanalyze output revealed many small regions of
strong genomic divergence, while 51 separate regions were identified as significant at p [?] 0.05 across £ values
and replicates in Local Score analyses (Figure 4, Table 3, Supplemental Table 1). The two most significant
(highest local score) regions were the region of chr. 28 containing the genes GREBIL andROCK1 and the
region of chr. 25 containing the gene SIX6 , which have been previously found associated with migration
timing and age at maturity in steelhead and other salmonids, respectively (e.g. Willis et al., 2020). There
were also many additional regions whose potential association with migration phenology, age at maturity,
or domestication (adaptation to hatchery production) could be explored further. For example, a region of
chromosome 20 that was consistently recovered in the Local Score analyses contained two protein coding
genes: ATP-citrate lysase (synthase), or ACLY, and, dnaJ homolog subfamily C member 7, or DNAJC7.
ACLY is a ubiquitous cytosolic enzyme positioned at the intersection of nutrients catabolism and cholesterol
and fatty acid biosynthesis, and DNAJC7 is a member of the heat shock protein 40 family and acts as
co-chaperone regulating the molecular chaperones HSP70 and HSP90 in folding of steroid receptors, such as
the glucocorticoid receptor and the progesterone receptor. Notably, identification of linkage outliers for these
three chromosomes identified the same regions, but in the case of chromosomes 25 and 28, also identified
other regions that Local Score did not, presumably because, while they exhibit strong linkage across all
samples, these regions were not consistently divergent between the hatchery and natural origin samples.

Discussion
Bioinformatic suites for low coverage whole genome sequencing data

PoolParty?2 is a bioinformatic pipeline that was designed for the utilization of pooled or individually barcoded
low coverage whole genome sequencing (lcWGS) data with a high-quality reference genome to perform
genome-wide genetic association analysis with binary phenotypic traits or environmental variables. Since
its original presentation, it has seen numerous updates, though most of these will be invisible to the user
since their effect is to provide greater efficiency or stability. For example, the scripts that implement the
Local Score analysis of Fariello et al. (2017) have been improved to make them more robust to variations in
SNP and allele frequency count and distribution and provide more accurate reports with respect to outlier
region margins. The major workhorse of the pipeline, the PPalign module, has received the most updates
since the pipeline’s first presentation. Notably, this module is now able to call variants in parallel (across
multiple computational threads) by dividing chromosomes or scaffolds into groups based on a user-specified
number of threads, which substantially reduces processing time for large datasets. Another notable update
includes the user’s ability to limit the number of individuals to normalize simultaneously, which reduces
RAM memory requirements in memory-limited or shared computing environments, with the proviso that
this also causes the duration of processing time for normalization to increase linearly.

These improvements to the PPalign module of PoolParty2 are important since, while there are myriad anal-
yses available for the discovery of large effect loci, few bioinformatic suites are designed to convey lcWGS
data from sequencing output, via quality assurance analyses, through to analytical results. angsd, another
useful bioinformatic suite designed for barcoded but not pooled IcWGS data, requires read alignments as
input, and provides additional functionalities that PoolParty2 does not, making these bioinformatic suites
strong complements. In particular, angsd can estimate individual genotype likelihoods or posterior proba-
bilities. For analyses where individual phenotype data are important, such as random forest analyses (e.g.
Hess, Zendt, Matala, & Narum, 2016), genotype likelihoods would be necessary. Moreover, as we demon-
strate here, these genotype likelihoods allow the estimation of linkage disequilibrium in specified windows,
and which can be used to identify outlier regions under putative selection, though, as our empirical results
portray, most effectively in combination with analyses that consider divergence among focal sets of samples.
The analyses available through the PPanalyze module of PoolParty2 have most often been applied for the
discovery of one or a few genomic regions with large, independent or simple-interaction effects on traits (e.g.



direct epistasis), though, as results from our empirical data also portray, these analyses, with appropriate
corroboration, may identify many loci with smaller effects on polygenic traits. Loci contributing to polygenic
traits with continuous variation and low penetrance, however, will be challenging to discover with analyses
that rely mainly on allele frequency, and their discovery will likely depend on identifying combinatorial as-
sociation of non-contiguous genotypes, for which genotype likelihoods may be better suited. It should be
noted, however, that genotype likelihoods may only be sufficiently informative for some analyses if coverage is
high enough for each individual, and the decision of how to multiplex individuals or how deeply to sequence,
made early in the data preparation phase, must be done with respect to the types of analyses that will be
needed (Lou et al., 2021; Paril et al., 2022).

Using simulated data, we demonstrated that angsd and PoolParty2 both provide remarkably precise estimates
of allele frequency considering the degree of individual coverage constraint and variation with which we
challenged them, with PoolParty2 exhibiting a moderate edge in identifying true sites with fewer artifacts
and accurately estimating their allele frequencies. Both bioinformatic suites also produce very low rates of
false positive outliers, at least when data are examined on a site-aggregate (windowed or serial) basis. A
number of the per-site divergence analyses are roughly equivalent between bioinformatic suites, including
estimates of Fgr, sliding window Fgr, and basic tests of allele frequency proportions, though we note that
to estimate site frequency spectra in order to calculate Fgr with angsd, each population must be analyzed
separately, and if the user desires to utilize the empirical major/minor alleles rather than reference/alternate
or ancestral /derived, a prior run with all data must be made. Beyond these, however, the Local Score analyses
(Fariello et al., 2017) and estimate of linkage outliers from ngsLD (Fox et al., 2019) provide powerful and
complementary means to identify true outlier regions. Moreover, these analyses can be run in parallel by
supplying filtered BAM files and a list of variant sites to angsd to generate genotype likelihoods for linkage
estimation with ngsL.LD while simultaneously running PPanalyze and Local Score analyses. We provide the
code to demonstrate how we executed this for our simulated and empirical data (Supplemental File 1).

However, results from the analysis of simulated data also indicate that, while both angsd and PoolParty2 are
effective at identifying segregating variants, estimating allele frequencies, and identifying outlier loci using
IcWGS data, the particular evolutionary context and genomic environment of putatively adaptive loci may
constrain the efficacy of any bioinformatic suite at a given depth of coverage. For example, we observed that
while both analytical suites provided results that correctly portrayed the presence and location of outlier loci
in each of the simulated datasets, peaks in the higher background divergence scenarios were more difficult
to discern visually and an analysis designed to objectively discriminate outlier loci from background rates of
variation, Local Score, identified fewer significant regions. While outlier identification using linkage was more
effective in high background divergence scenarios, and coordination of this approach with the other analyses
increases flexibility of the combined toolkit, this analysis was less effective with lower coverage regardless of
evolutionary context. Although we did not investigate it directly here because of the nature of the simulated
data, one strategy to increase power in challenging scenarios is through the use of paired sample replicates,
i.e., samples of the same phenotype or across the same environmental axes from multiple populations (e.g.
Lotterhos & Whitlock, 2015). Analyses that emphasize repeated differences across these replicates, such as
the Cochran—Mantel-Haenszel test available in PoolParty2, increase the power to identify regions associated
with the focal contrasts while minimizing the influence of background variation (Cochran, 1954; Mantel &
Haenszel, 1959). Our recommendation based on these observations is for researchers to consider existing
information about the demographic and genetic context of the traits and populations under study, and to
carefully arrange experimental design to maximize power for any given scenario (Lou et al., 2021).

One underappreciated phenomenon in lceWGS are technical artifacts commonly known as batch effects (Leek
et al., 2010; Lou & Therkildsen, 2022). These occur when idiosyncrasies of the library and sequencing process
introduce artifacts for samples processed together that are later misinterpreted as true biological differences
between groups under analysis, and may have a number of contributing causes in IcWGS data (Lou &
Therkildsen, 2022). While batch effects are certainly not exclusive to lcWGS, barcoded and especially pooled
lcWGS data that are prepared group-wise may be subject to them. Importantly, both PoolParty2 and angsd
have a number of utilities included that help eliminate some batch effects, including read trimming, mapping



and SNP quality filtering, minor allele frequency thresholds, and read and individual observation minima.
Moreover, with any bioinformatic suite it is wise that users conduct tests to determine if results are sensitive
to various trimming and filtering parameters. The alignment filtering utilities provided with angsd appear to
be more stringent, even with the same parameters, than what is currently applied in PoolParty2, as evidenced
by diminished correlation in allele frequencies for sites with higher depth as estimated by PoolParty2 but not
for angsd. Additional variant filters are accessible in angsd, including those that examine strand balance, and
though not built-in, these same filters can be applied to the variants discovered by PoolParty2 through VCF
filtering tools such as beftools or veflib (Danecek et al., 2021; Garrison, Kronenberg, Dawson, Pedersen, &
Prins, 2021), as described in our tutorials. Aside from these filters, one important means of controlling batch
effects is to distribute barcoded samples from different analytical groups (e.g., populations) among sequencing
runs, and ideally library preparation groups, since this reduces the chance that technical artifacts will be
identified as group-wise differences (O’Leary, Puritz, Willis, Hollenbeck, & Portnoy, 2018). In addition,
another strategy to minimize the influence of batch effects and other false positives is through the use of
paired sample replicates as described above: analyses that utilize paired replicates reduce the chance that
artifacts owing to any technical pair will be identified as consistent, significant differences (Cochran, 1954;
Mantel & Haenszel, 1959).

Discovery of large effect loci in non-model organisms

We successfully apply our integrated pipeline to a common data arrangment of low coverage whole genome
sequencing (IcWGS) data from steelhead trout (Oncorhynchus mykiss ) to identify loci strongly divergent
among populations with distinct histories and putatively of strong effect on traits under selection in these
groups. This species exhibits an impressive array of life history diversity even among salmonids, including
notable and important variation in migration phenology (run timing), age at maturity (age at first reproduc-
tion), propensity for residency or anadromy, precocial sexual maturation, and iteroparity (repeat spawning)
(Busby et al., 1999; Carlson & Seamons, 2008; Quinn, Seamons, Vollestad, & Duffy, 2011). Many of these
traits are highly variable both among and within phylogeographic lineages and local populations (Busby
et al., 1999), are part of the portfolio of life history diversity that assist populations in persisting through
natural and anthropogenic environmental challenges (Quinn, McGinnity, & Reed, 2016), and are among
the outward physical traits used by managers to estimate the contribution of distinct stocks to mixed-stock
fisheries (Hess et al., 2021).

The diversity of life history ensembles among regional and local stocks of steelhead reflects a multifaceted
history of selection, and upon these effects anthropogenic forces have applied new challenges. One of the
most direct human impacts on steelhead are use of hatcheries to mitigate for the loss of fish from dams,
overfishing, habitat degradation, and other human actions. While hatcheries have begun to shift towards
inclusion of natural origin (NOR) returns in broodstock recruitment to avoid ‘domestication’ selection, these
are still the minority, and indeed some operations have taken the opposite approach, actively choosing
hatchery returns with characteristics desirable for hatchery managers or fishers, with many consequences
to genomic variation. While the typical application of our pipeline for discovering loci under selection
relies upon groups with known phenotypic differences, discrete phenotypes with heritable bases may be
overall uncommon in non-model organisms, at least relative to opportunities for examining populations
arrayed across replicate environmental axes (e.g. Lotterhos & Whitlock, 2015). To reflect this, we chose
to examine genomic divergence in a hatchery stock with a notable history of hatchery selection without
a priori designation other than group membership, as would be the case for most landscape-level genome
scans. However, in this case the Skamania Hatchery stock is well known for its phenotypic ensemble, its
history of hatchery origin recruitment and artificial selection, and the extent to which this stock has been
outplanted or strayed into numerous Columbia Basin tributaries. Not surprisingly, we observed strong
divergence in two regions known to be associated with early migration timing and age at maturity (ocean
duration) on chromosomes 28 and 25, respectively. However, we also saw significant divergences in regions
that contained several dozen additional genes, including a prominent region on chromosome 20 containing
two genes important in metabolism and cellular signaling. This region on chromosome 20 is also known to
harbor a structural inversion in this species (Pearse et al., 2019), which may have been involved in artificial
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selection of the hatchery stock. Importantly, these regions were emphasized as outliers both by the analyses
we applied that considered only global linkage patterns as well as the analyses that considered contrast-
specific divergence while controlling for linkage. However, the linkage-only analysis identified additional
regions that did not appear to exhibit strong divergence across our contrast of interest (hatchery vs. natural
origin), demonstrating the importance of corroborating outliers identified from any single analysis. While we
decline to hypothesize how these additional genes may be involved in domestication, these results demonstrate
the utility of applying our pipeline to landscape-level samples and the efficacy and complementarity of the
PoolParty and angsd pipelines for analyzing lcWGS data.
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Tables

Table 1. Results of SNP calling and filtering by PoolParty2 and angsd with different modules and filtering
thresholds in two different demographic scenarios (high and low background Fgr) and coverage levels (0.33x

and 1x). The true number of simulated sites for the high background Fgr scenarios with minor allele frequency
>=0.001 was 158,746 SNPs and for low background Fgr was 789,423 SNPs.

Table 2. Outlier regions identified from simulated data using windowed mean linkage and regions identified
with Local Score analysis of significance from Fisher’s Exact tests. For each outlier region identified, the
width in Kbp is reported. For windowed linkage analysis, the mean and maximum windowed mean of linkage
is listed, while for Local Score analyses across quantiles of significance as smoothing parameter values, &, the
number of replicates out of three in which a region was significant are listed.

Table 3. Outlier regions identified in select chromosomes from empirical steelhead trout data using windowed
mean linkage and regions identified with Local Score analysis of significance from Fisher’s Exact tests. For
each outlier region identified, the beginning and end of the regions (in Mbp), width (in Kbp), and, for regions
identified with windowed linkage analysis, the mean and maximum windowed mean of linkage, are reported.
Local score results are reported across quantiles of significance as smoothing parameter values, .

Supplemental Table 1. Outlier regions identified in across all chromosomes from empirical steelhead trout
data using Local Score analysis of significance from Fisher’s Exact tests. For each outlier region identified,
the beginning and end, width, local score of the peak, and number of replicates out of 3 in which the region
was significant, are reported. Regions are reported across quantiles of significance as smoothing parameter
values, &.

Figures

Figure 1. Graphical representation of the normalization process of allele frequency estimates for variance in
read depth possible with the incorporation on barcoded individual samples.

Figure 2. Comparing estimated allele frequencies with true allele frequencies across depth cutoffs for data
simulated with high background Fgr and low coverage (0.33x). Left axis: This red and blue lines show cor-
relation for PoolParty2 estimated frequencies for each population for normalized (solid) and non-normalized
(dashed) data. Orange and green lines show correlation with angsd estimated frequencies. Black line shows
correlation in depths estimated by angsd and PoolParty2. Right axis: thick purple line shows number
of sites passing depth thresholds. Left and right panels shows depths reported by PoolParty2 and angsd,
respectively.

Figure 3. Manhattan plots of divergence estimated for variant sites identified by PoolParty2 in simulated
data in scenarios with high (A,B) or low (C,D) background Fgr and 0.33x (A,C) or 1x coverage (B,D).
For each dataset, the divergence (Fgr) estimated in 100Kbp sliding windows (left column), Local Score
estimated with & reflecting the 80*® quantile of Fisher’s Exact Test significance values (middle column), and
mean linkage in 100Kbp windows (right column) are shown. Red dots indicate series of 10+ windows of
mean linkage above 2x the interquartile range. Blue dots in each panel reflect the positions (but not values)
of loci simulated under selection.

Figure 4. Manhattan plots of divergence and linkage among hatchery and natural origin population samples
of steelhead. A) Individual site Fgr corrected for sample size (red line indicates Fgr of 0.5) B) Mean Fgrin
sliding windows of 100Kb across the genome. C) -Logl0 significance (p ) values from individual site Fisher’s
Exact tests D-G) Local score analysis of significance values from Fisher’s Exact tests for the 80", 90" 95th
and 99" quantile of significance values as & (red line indicates FDR. of 0.05); H-J) Mean linkage in 100Kbp
windows for chromosomes 20, 25, and 28 (red dots indicate series of 20+ windows of mean linkage above 2x
the interquartile range).
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Supplemental Figure 1. True Fgr for loci simulated under demographic scenarios producing A) high back-
ground Fgr(low Ng, low migration) or B) low background Fgr (high Ng, high migration). Black dots
indicated the Fgr of positions simulated under selection.

Supplemental Figure 2. Comparing estimated allele frequencies with true allele frequencies across depth
cutoffs for data simulated with high background Fgr and low coverage (0.33x). Left axis: This red and blue
lines show correlation for PoolParty2 estimated frequencies for each population for normalized (solid) and
non-normalized (dashed) data. Orange and green lines show correlation with angsd estimated frequencies.
Black line shows correlation in depths estimated by angsd and PoolParty2. Right axis: thick blue line shows
number of sites passing depth thresholds. Left and right panels shows depths reported by PoolParty2 and
angsd, respectively. A) high background Fsr, 0.33x coverage; B) high background Fgr, 1x coverage; C) low
background Fgr, 0.33x coverage; D) low background Fgr, 1x coverage

Supplemental Figure 3. Manhattan plot of results from analysis of 0.33x coverage data simulated with
high background Fgr. A) Fgr estimated by PoolParty; B) 100Kbp sliding windows of Fgr estimated
by PoolParty2; C) -LoglO significance (p) values from Fisher’s Exact test of allele frequencies between
populations calculated by PoolParty2; D) Fgr estimated by angsd; E) 100Kbp sliding windows of Fgr
estimated by angsd; F) Likelihood ratio of frequency differences between population calculated by angsd; G)
Mean linkeage in 100Kbp windows estimated for sites identified by PoolParty2, genotype likelihood estimated
by angsd, and linkage calculated with ngsLD, with series of 10+ windows with mean linkage above 2x the
interquartile range in red; H-L) Local score values for £ values reflecting the 70", 80", 90t 95t and 99th
quantile of significance values from Fisher’s Exact test. Blue dots in each panel reflect the positions (but
not values) of loci simulated under selection.

Supplemental Figure 4. Manhattan plot of results from analysis of 1x coverage data simulated with high
background Fgr. A) Fgr estimated by PoolParty2; B) 100Kbp sliding windows of Fgr estimated by Pool-
Party2; C) -Logl0 significance (p) values from Fisher’s Exact test of allele frequencies between populations
calculated by PoolParty2; D) Fgr estimated by angsd; E) 100Kbp sliding windows of Fgr estimated by angsd,;
F) Likelihood ratio of frequency differences between population calculated by angsd; G) Mean linkeage in
100Kbp windows estimated for sites identified by PoolParty2, genotype likelihood estimated by angsd, and
linkage calculated with ngsLD, with series of 10+ windows with mean linkage above 2x the interquartile
range in red; H-L) Local score values for £ values reflecting the 70", 80*", 90", 950 and 99*" quantile of
significance values from Fisher’s Exact test. Blue dots in each panel reflect the positions (but not values) of
loci simulated under selection.

Supplemental Figure 5. Manhattan plot of results from analysis of 0.33x coverage data simulated with
low background Fgr. A) Fgr estimated by PoolParty2; B) 100Kbp sliding windows of Fgr estimated
by PoolParty2; C) -LoglO significance (p) values from Fisher’s Exact test of allele frequencies between
populations calculated by PoolParty2; D) Fgr estimated by angsd; E) 100Kbp sliding windows of Fgr
estimated by angsd; F) Likelihood ratio of frequency differences between population calculated by angsd; G)
Mean linkeage in 100Kbp windows estimated for sites identified by PoolParty2, genotype likelihood estimated
by angsd, and linkage calculated with ngsLD, with series of 10+ windows with mean linkage above 2x the
interquartile range in red; H-L) Local score values for £ values reflecting the 70", 80", 90t 95t and 99th
quantile of significance values from Fisher’s Exact test. Blue dots in each panel reflect the positions (but
not values) of loci simulated under selection.

Supplemental Figure 6. Manhattan plot of results from analysis of 1x coverage data simulated with low back-
ground Fgr. A) Fgr estimated by PoolParty; B) 100Kbp sliding windows of Fgr estimated by PoolParty2;
C) -Logl0 significance (p) values from Fisher’s Exact test of allele frequencies between populations calcu-
lated by PoolParty2; D) Fgsr estimated by angsd; E) 100Kbp sliding windows of Fgr estimated by angsd,;
F) Likelihood ratio of frequency differences between population calculated by angsd; G) Mean linkeage in
100Kbp windows estimated for sites identified by PoolParty2, genotype likelihood estimated by angsd, and
linkage calculated with ngsLD, with series of 10+ windows with mean linkage above 2x the interquartile
range in red; H-L) Local score values for £ values reflecting the 70", 80*", 90", 950 and 99*" quantile of
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significance values from Fisher’s Exact test. Blue dots in each panel reflect the positions (but not values) of
loci simulated under selection.

Supplemental Figure 7. Quality control analyses for steelhead from Skamania hatchery or two natural
origin populations, Willametter River (Eagle Creek) or Lewis River. A) Proportion of the genome covered
at various minimum coverage limits. B) Mean coverage across sites for each population sample (summed
across individuals) C) Principal components analysis of allele frequencies for variants with a maximum allele
frequency difference [?] 0.9. D) Mean proportion across population samples of each chromosome. E) Number
of SNPs per 10 Kb across the genome (SNP density).

high - 0.33x high - 1x low - 0.33x low - 1x
total sites % real total sites % real total sites % real total sites % real
Poolparty PPalign’ . 70,067  99.5% 91,509 99.8% 345223 99.8% 452,827 99.8%
PPanalyze 68,292 99.5% 86,036 99.8% 334,664 99.8% 422,029 99.8%
p <0.0 527,762 17.2% 920,208 12.0% 864,530 51.4% 1,323,894 41.1%
o p <0.01 94,104  69.6% 209,617 43.5% 344,606 92.6% 411,213 98.1%
ANGSD p <0001 57,007 98.7% 127,423 67.5% 275355 99.8% 373,603 99.6%

10 reads + 3inds/pop’ 56,060 98.7% 127,415 67.5% 271,175 99.8% 373,473 99.6%
Poolparty  20global reads® 67,233 99.5% 86,011 99.8% 328,654 99.8% 421,737 99.8%
toANGSD 10 eads + 3inds/pop® 66,168 99.5% 85987 99.8% 323,806 99.8% 421,568 99.8%

min. 20 global reads, MAF 0.001

sites specified by PPalign; min. 3 ind+10 reads/pop

min. 20 global reads, MAF 0.001, min. 6 global individuals
filtering of sites specified by ANGSD p<0.001

no additional p-value or MAF filter

®manoco
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Linkage Disequilibrium Local Score § Quantiles

Background outlier .
Fo coverage ") Windows 70% 80%  90% 95% 99%
width LD mean (max) width (observation across replicates)
high 0.33x 2.5 | 245 0.103(0.116) - - - 93 (1) -
5 275 0.097(0.112) - - - - -
7.5 - - - - - - -
15 195 0.088(0.093) - - - - -
17.5 203 0.090(0.097) - - - - -
22.5 | 194 0.089(0.092) - 648 (3) 249(2) 74(1) -
25 169 0.089(0.092) - - - - -
high 1x 2.5 | 420 0.078(0.108) - - - 134(1) 52(1)
5 490 0.073(0.101) - - - - -
7.5 224 0.063(0.065) - - - - -
15 | 434 0.067(0.074) - - - - -
17.5 | 408 0.069(0.082) - - - - -
22,5 | 314 0.071(0.083) - - - - -
25 305 0.070(0.077) - - - - -
low 0.33x 2.5 | 220 0.073(0.076) 547(3) 196(3) 81(3) 22(1) -
5 - - - 61(3) - 5(1) -
7.5 | 180 0.071(0.073) 558(3) 165(3) 69(3) 32(3) 13(3)
10 - - 472(3) 134(3) - - -
17.5 | 160 0.071(0.071) 450(3) 118(3) 48(2) 29(1) -
22.5 - - 380(3) 99(3) 46(3) 25(1) -
25 - - 360(3) 99(3) 54(1) 27(1) -
low 1x 2.5 | 275 0.051(0.058) 1,025(3) 323(3) 134(3) 66(3) 10(3)
5 200 0.048 (0.049) 779 (3) - 39(2) - -
7.5 | 195 0.050(0.051) 752(3) 243(3) 101(3) 55(3) 31(3)
10 | 225 0.049(0.051) 579(3) 175(3) 63(2) - -
17.5 | 215 0.048(0.050) 960 (3) 219(3) 71(3) - -
22.5 | 250 0.049(0.052) 745(3) 158(3) 73(3) 35(3) 20(3)
25 | 200 0.049(0.051) 771(3) 193(3) 80(3) - -
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start (Mbp) end (Mbp) width (Kbp) LD mean (max)

LS Quantile (§) 80% 16.07 22.98 6,907 -

° 90% 17.34 19.50 2,166 -

N 95% 18.83 19.05 211.8 -

g 99% 18.91 18.92 6.3 -
LD Outliers 17.70 18.70 1,100 0.087 (0.327)
18.72 19.33 701.9  0.155 (0.261)

LS Quantile (§) 80% 2231 31.58 9,272 -

n 90% 22.87 23.66 797.1 -

S 95% 22.89 23.21 317.7 -

g 99% 22.92 22.98 51.2 -
LD Outliers 2231 22.44 2249 0.086 (0.095)
22.80 23.05 3549 0.091(0.116)

LS Quantile (§) 80% 1.69 42.93 41,243 -

3 90% 11.90 15.50 3,608 -

g 95% 12.02 13.17 1,158 -

<] 99% 12.03 12.46 432.6 -
LD Outliers 11.94 12.12 284.8  0.137 (0.206)

18



Depth (PoolParty)

Depth (ANGSD)
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