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In this paper, we propose an alternating block variant of the linearized Bregman iterations for
a class of regularized nonnegative matrix factorization problems (NMF). The proposed method
exploits the block structure of NMF, utilizes the smooth adaptable property of the loss function
based on the Bregman distance, and at the same time follows the iterative regularization idea of
the linearized Bregman iterations method. Theoretically, we show that the proposed method is
a descent method by adjusting the involved parameters. Finally, we end with several illustrative
numerical experiments.
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1 Introduction

Nonnegative matrix factorization (NMF) is a dimensionality reduction technique widely used in
machine learning, text mining, and image analysis. The objective of NMF is to factorize a nonneg-
ative matrix A ∈ Rm×n into two nonnegative matrices X ∈ Rm×r

+ and Y ∈ Rn×r
+ such that their

product XY T approximates A, where r < min{m,n}. This problem is typically formulated as a
non-convex optimization problem:

min
X∈Rm×r

+ ,Y ∈Rn×r
+

{
Ψ(X,Y ) ≡ 1

2
∥A−XY T ∥2F +R1(X) +R2(Y )

}
, (1.1)

where R1 and R2 are regularization terms that impose certain constraints or biases on the factor
matrices X and Y , including sparsity and smoothness.

In the literature, there have developed many numerical methods to solve problem (1.1) with
R1 = R2 ≡ 0, such as multiplicative updates (MU) [5, 6], projected gradient [7], block coordinate
descent method [11] and hierarchical alternating least squares (HALS) [4]. All these methods
can be categorized under alternating minimization, as at each iteration X is updated while Y is

∗Department of Mathematics, National University of Defense Technology, Changsha, Hunan 410073, China. Email:
chenbeier18@nudt.edu.cn

†Department of Mathematics, National University of Defense Technology, Changsha, Hunan 410073, China. Email:
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fixed, otherwise updating Y and fixing X. It is worth mentioning that any convergent subsequence
generated by most of these approaches is guaranteed to converge to a critical point of NMF problem.
However, these methods cannot be applied to solve the NMF problem with regularization (1.1).

In order to take the regularized terms into account, the author of [2] proposed the proximal alter-
nating linearized minimization (PALM). Later on, an inertial variant, called iPALM was proposed
in [9]. These two methods were built on the basic assumption that the loss function 1

2∥A−XY T ∥2F
that satisfies the same gradient Lipschitz type continuity properties. In order to relax such assump-
tions, the authors of [10] proposed the Bregman proximal gradient method for NMF by following
the concept of relative smoothness. Furthermore, the block Bregman proximal gradient method
(BBPG) considers the blockwise variant of problem (1.1), which makes them easily amenable to
parallel computation [10].

As a recently developed regularization technique, the linearized Bregman iterations method
and its variants have been widely used in compressed sensing and image processing [8, 12, 13]. In
this paper, we try to combine the LBreI and BBPG to develop a new method for NMF (1.1). To
this end, we consider the following optimization problem which is more general than (1.1) and is
similarly to that is focused on the reference [2]:

inf
{
ψ(x, y) ≡ E(x, y) + f(x) + g(y) : x ∈ RM , y ∈ RN

}
, (P)

where f and g are convex extended real-valued functions, and E is a possibly non-convex function.
The remainder of the paper is organized as follows. Some preliminaries are given in Section 2.

We propose an alternating block variant of the linearized Bregman iterations method for solving
problem (P) in Section 3. The convergence analysis is presented in Section 4. Moreover, the
application to NMF with regularization is discussed in Section 5. Finally, we end with several
illustrating numerical experiments in Section 6.

2 Preliminaries

Throughout the paper, we assume that ⟨·, ·⟩ is the inner product and ∥ · ∥ is the induced norm.
Let f be a real convex function, the domain (gradient of f and subgradient of f) is denoted by
dom f . We begin with the definition of kernel generating distance, of which more details can be
found in [3].

Definition 2.1 (Kernel generating distance). Let C be a nonempty, convex and open subset of Rn.
A function h : C → R is called a kernel generating distance if it is continuously differentiable and
satisfies the following conditions:

(i) h is proper, lower semicontinuous and convex with dom h ⊂ C̄ and dom ∂h = C;

(ii) h is differentiable on int dom h.

The proximity measure Dh is defined by setting a kernel generating distance h : Rn → R. Given
u, v ∈ Rn, the Bregman distance between them can be expressed as

Dh(u, v) ≡ h(u)− [h(v) + ⟨∇h(v), u− v⟩].

This distance measure satisfies the property that Dh(u, v) ≥ 0 if and only if h is convex. Further-
more, Dh(u, v) = 0 only when u = v under strict convexity conditions for h. The literature [3]
provides various examples of kernels h capable of generating Bregman distances.
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This generalized Bregman distance of a proper lower semicontinuous function f : Rn → R
between u and v is defined as:

Dp
f (u, v) ≡ f(u)− [f(v) + ⟨p, u− v⟩] ,

where p is a subgradient of f(v), i.e., p ∈ ∂f(v).
For simplicity, we define the symmetric generalized Bregman distance as follows.

Definition 2.2 (Symmetric generalized Bregman distance [14]). Dsymm
f (u, v) is called the sym-

metric generalized Bregman distance of f between u and v, if

Dsymm
f (u, v) := Dq

f (u, v) +Dp
f (v, u) = ⟨p− q, u− v⟩,

for u, v ∈ dom R with p ∈ ∂f(u) and q ∈ ∂f(v).

Let kernel generating distance h be defined as Definition 2.1, for all w ∈ dom h and u, v ∈
int dom h, the wellknown three-points identity is expressed as

Dh(w, u)−Dh(w, v)−Dh(v, u) = ⟨∇h(u)− h(v), v − w⟩. (2.1)

In addition, the next definition introduce a measure for the lack of symmetry in Dh.

Definition 2.3 (Symmetry coefficient [1]). Given a kernel generating distance h : Rn → R, its
symmetry coefficient is defined by

η(h) ≡ inf

{
Dh(u, v)

Dh(v, u)
: u, v ∈ Rn, u ̸= v

}
∈ [0, 1]. (2.2)

A commonly used method for analyzing NMF problems assumes that the gradient of function
E is Lipschitz continuous. However, this paper introduces a simplified version of the L-smooth
adaptable functions and refers to a more general definition outlined in [3]. This approach enhances
the analysis of NMF problems and offers a general perspective into the optimization process.

Definition 2.4 (L-smooth adaptability). Let E, h : Rn → R be continuously differentiable func-
tions, and assume that h is convex. Then, we say that (E, h) is L-smooth adaptable if there exists
some L > 0 such that Lh− E is convex.

The following Lemma 2.1 is also a simplified version correspond to Definition 2.4, which extends
the L-smooth adaptability of the pair (E, h).

Lemma 2.1 (Descent lemma [3,10]). Let E, h : Rn → R be a continuously differentiable functions,
and assume that h is convex. Then, (E, h) is L-smooth adaptable for L > 0 if and only if

E(u) ≤ E(v) + ⟨∇E(v), u− v⟩+ LDh(u, v), ∀u, v ∈ Rn.
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3 The proposed method

3.1 Alternating linearized Bregman iterations method

In this section, we start by recalling the original Bregman iterations method and consider the
bivariate version of the Bregman iterations method under the Gauss-Seidel scheme. Then, we
propose the alternating linearized Bregman iterations method that updates the two variables x, y
alternately during each iteration.

When we only consider x as a variable and y = ȳ is fixed, the optimization problem (P) is
reduced to the following problem:

inf
{
E(x, ȳ) + f(x) : x ∈ RM

}
. (P1)

The Bregman iterations method for the problem (P1) is given by

xk+1 := argmin
x

{
E(x, ȳ) +D

pkx
f (x, xk)

}
, (3.1)

where pkx is a subgradient of the function f(xk), i.e., pkx ∈ ∂R(xk), and D
pkx
f (x, xk) = f(x)−f(xk)−

⟨pkx, x−xk⟩ is the Bregman distance of f between x and xk. In fact, the Bregman iterations method

replaces the term f(x) in (P1) with the generalized Bregman distance D
pkx
f (x, xk) to play the role of

regularization. When x = x̄ is fixed and consider y as a variable, we can obtain a similar approach
with respect to y. To apply the Bregman iterations method to the problem (P), we need to consider
the bivariate version of the Bregman iterations method, which is given by

xk+1 := argmin
x

{
E(x, yk) +D

pkx
f (x, xk)

}
,

yk+1 := argmin
y

{
E(xk+1, y) +D

pky
g (y, yk)

}
,

(3.2)

where pkx ∈ ∂f(xk) and pky ∈ ∂g(yk) are subgradients of the functions f(xk) and g(yk), respectively.
The approach (3.2) is via the Gauss-Seidel iteration scheme, which updates the two variables x, y
alternately during each iteration.

Suggested by the recent work of BPG and LBreI in [10,14], we can extend the Bregman method
(3.2) beyond Lipschitz gradient continuity assumptions by replace the objective function E with
the following approximation

E(x, yk) ≈ E(xk, yk) + ⟨∇xE(xk, yk), x− xk⟩+ 1

δkx
Dh(x,yk)(x, x

k),

E(xk+1, y) ≈ E(xk+1, yk) + ⟨∇yE(xk+1, yk), y − yk⟩+ 1

δky
Dh(xk+1,y)(y, y

k),
(3.3)

where h is a suitable kernel generating distance, and δkx, δ
k
y > 0 are the step sizes. ∇x and ∇y are

the subvectors of the the gradient of E(x, ȳ) and E(x̄, y), respectively.
So far, the iteration of the sequence {(xk, yk)}k∈N that is obtained from the linearized Bregman

iterations method for the problem (P) is given by
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Algorithm 1 Alternating Linearized Bregman Iteration Method

Require: δkx, δ
k
y , x

0, y0 is given and p0x = ∂f(x0), p0y = ∂g(y0).
Ensure: For k = 1, 2, . . ., and compute:

xk+1 ∈ argmin
x∈RM

{
⟨∇xE(xk, yk), x− xk⟩+ 1

δkx
Dh(·,yk)(x, x

k) +D
pkx
f (x, xk)

}
,

yk+1 ∈ argmin
y∈RN

{
⟨∇yE(xk+1, yk), y − yk⟩+ 1

δky
Dh(xk+1,·)(y, y

k) +D
pky
g (y, yk)

}
,

pk+1
x = pkx −

1

δkx

[
∇xh(x

k+1, yk)−∇xh(x
k, yk) + δkx∇xE(xk, yk)

]
,

pk+1
y = pky −

1

δky

[
∇yh(x

k+1, yk+1)−∇yh(x
k+1, yk) + δky∇yE(xk+1, yk)

]
.

Algorithm 1 extends the linearized Bregman iterations method in [14] to the bivariate version
and update one of the two variants x and y when the other one is fixed.

3.2 The blockwise variant

To tackle the regularized NMF problem at hand, this paper introduces a blockwise variant that
is denoted using the following notation. The i block of the vectors x ∈ Rm1 × Rm2 × · · · × Rmd

and y ∈ Rn1 × Rn2 × · · · × Rnd are represented as xi and yi, respectively. Moreover, x and y are
vertically concatenated by their corresponding blocks xi and yi for i = 1, 2, . . . , d, resulting in:

(x1;x2; . . . ;xd) = (xT1 , x
T
2 , . . . , x

T
d )

T = x,

(y1; y2; . . . ; yd) = (yT1 , y
T
2 , . . . , y

T
d )

T = y.

Additionally, the convex functions f and g are consists of d blocks, i.e. f(x) =
∑d

j=1 fj(xj) and

g(y) =
∑d

j=1 gj(yj). Let M =
∑d

j=1mj , N =
∑d

j=1 nj , the non-convex optimization problem (P)
is then transformed into blockwise variant as follows:

inf

ψ(x, y) ≡ E(x1, . . . , xd, y1, . . . , yd) +

d∑
j=1

fj(xj) +

d∑
j=1

gj(yj) : xj ∈ Rmj , yj ∈ Rnj

 , (P0)

where E : Rd × Rd → (−∞,+∞] is a continuously differentiable function, and for all j =
1, . . . , d, each fj : Rmj → [0,+∞] and gj : Rnj → [0,+∞] are both proper lower semicon-
tinuous and convex functions. We assume that inf{E(x, y) : x ∈ RM , y ∈ RN} > −∞ and
inf
{
ψ(x, y) : x ∈ RM , y ∈ RN

}
> −∞, which hold trivially for nonnegative regularized functions

fj , gj and objective function E for all j = 1, . . . , d.
For simplicity, let x̄ ∈ RM , ȳ ∈ RN represent the given point, and for each j = 1, 2, . . . , d, let

E(x̄,j,ȳ)(xj) refer to the functions assigned by replacing the j-th block of x̄ whereas, in E(x̄,ȳ,j)(yj),
the j-th block of ȳ is taken, i.e. E(x̄,j,ȳ)(xj) = E(x̄1, . . . , xj , . . . , x̄d, ȳ1, . . . , ȳd), the other one
similarly. This notation leads to the following optimization problem, which is a blockwise variant
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of (P0):

inf
{
E(x̄,j,ȳ)(xj) + fj(xj) : xj ∈ Rmj

}
,

inf
{
E(x̄,ȳ,j)(yj) + gj(yj) : yj ∈ Rnj

}
.

(B)

In this case, the above model is throughout the paper. Moreover, the functions h
(j)
x (xj), h

(j)
y (yj)

represent h(j)(xj , ȳj) and h
(j)(x̄j , yj), respectively. In our work, the following standing assumption

is proposed:

Assumption 3.1. For any (x̄, ȳ) ∈ RM × RN and j = 1, 2, . . . , d,

1) there are convex differentiable functions h
(j)
x : Rmj → R, h(j)y : Rnj → R such that (h

(j)
x , E(x̄,j,ȳ))

is L
(j)
x -smooth adaptable, and (h

(j)
y , E(x̄,ȳ,j)) is L

(j)
x -smooth adaptable;

2) the set of Lipschitz constant
⋃d

j=1{L
(j)
x , L

(j)
y } is a bounded set, the lower bound is L as well

as the upper bound is L;

3) the functions h
(j)
x and h

(j)
y are strongly convex with respect to xj and yj with parameter σj,1

and σj,2, respectively;

4) the functions h
(j)
x , h

(j)
y and E are locally gradient Lipschitz continuous on any bounded subset

of Rmj ,Rnj or RM × RN , respectively.

Our approach to solve the problem is via the Gauss-Seidel iteration scheme, which is also known
as alternating minimization. We begin with a given initial point (x0, y0) ∈ RM ×RN and generate
a sequence

{
(xk, yk)

}
k∈N using the following scheme: first, we set T ≥ d. For k = 0, 1, 2, · · · , we

choose jk ∈ {1, 2, . . . , d} and compute:

For j ̸= jk :

{
xk+1
j = xkj ,

yk+1
j = ykj .

For j = jk :


xk+1
j ∈ argmin

x
E(x, yk),

yk+1
j ∈ argmin

y
E(xk+1, y).

Remark 3.1. The Gauss-Seidel scheme performs an iteration step on the jk-th block of (B). The
rule for selecting the blocks is such that every d blocks are included consecutively in each T iterations
of the scheme. Hence, for k ≥ T , it holds that:

k⋃
l=k−T+1

{jl} = {1, 2, . . . , d}.

Remark 3.2. The paper considers a general approach known as the essentially cyclic regime,
where jk = (k mod d) + 1. However, in the overlapping version, we can update multiple blocks
simultaneously at each iteration. This means that for k = 0, 1, 2, . . . , we choose a non-empty set
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Jk ⊂ {1, 2, . . . , d} and perform the iteration on all blocks in Jk together [11]. It should be noted
that a modification of Assumption 3.1 will be necessary in order to handle the subproblems:

inf

E(x̄,J,ȳ)(xJ) +
∑
j∈J

fj(xj) : xJ ∈ RmJ

 ,

inf

E(x̄,ȳ,J)(yJ) +
∑
j∈J

gj(yj) : yJ ∈ RnJ

 ,

where mJ =
∑

j∈J mj and nJ =
∑

j∈J nj. The subvectors xJ , yJ are composed from the blocks in

J . Furthermore, E(x̄,J,ȳ)(xJ) is a function of the subvector xJ consisting of the blocks in J , and
similarly, E(x̄,ȳ,J)(yJ) is a function of the subvector yJ consisting of the blocks in J .

Thus, we are now ready to propose the alternating block linearized Bregman iterations method:

Algorithm 2 Alternating Block Linearized Bregman Iteration Method

Require: δkx, δ
k
y , (x

0, y0) are given and (p0xj
, p0yj ) ∈ (∂f(x0j ), ∂g(x

0
j )), ∀j = 1, . . . , d.

Ensure: For k = 0, 1, . . ., choose jk ∈ {1, . . . , d}, and compute:
if j ̸= jk then
xk+1
j = xkj
yk+1
j = ykj

else if j = jk then

xk+1
j ∈ argmin

x∈Rnj

{〈
∇E(x̄k,j,ȳk)(xkj ), x− xkj

〉
+

1

δkx
D

h
(j)
x
(x, xkj ) +D

pkx
fj
(x, xkj )

}
,

yk+1
j ∈ argmin

y∈Rmj

{〈
∇E(x̄k+1,ȳk,j)(ykj ), y − ykj

〉
+

1

δky
D

h
(j)
y
(y, ykj ) +D

pky
gj (y, y

k
j )

}
,

pk+1
xj

= pkxj
− 1

δkx

[
∇h(j)x (xk+1

j )−∇h(j)x (xkj ) + δkx∇E(x̄k,j,ȳk)(xkj )
]
,

pk+1
yj = pkyj −

1

δky

[
∇h(j)y (yk+1

j )−∇h(j)y (ykj ) + δky∇E(x̄k+1,ȳk,j)(ykj )
]
.

(4.1a)

(4.1b)

(4.1c)

(4.1d)

end if

Remark 3.3. At the k-th iteration of the Gauss-Seidel scheme, we update xj and yj in turn using a
linearized Bregman iterations framework. The minimization subproblems of the linearized Bregman
iterations have unique solutions (xk+1

j , yk+1
j ) under the assumption that the kernels h(j) are strongly

convex, which satisfies Assumption 3.1.

4 Convergence analysis

In this paper, we use an alternating update scheme in which we update the jk-th block of x when
the others of x and the blocks of y are fixed. This approach allows us to calculate the decline of the
two variables separately, enabling us to obtain the overall decrease. To prove the descent property
of the objective function with respect to the Bregman distance, we need the following lemma.
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Lemma 4.1 (Descent inequalities). Under the settings of (P0) and Assumption 3.1, we have

E(xk+1, yk)− E(xk, yk) ≤ L(jk)
x D

h
(jk)
x

(xk+1
jk

, xkjk)

− 1

δkx
D

h
(jk)
x

(xkjk , x
k+1
jk

)− 1

δkx
D

h
(jk)
x

(xk+1
jk

, xkjk)−Dfjk
(xkjk , x

k+1
jk

)−Dfjk
(xk+1

jk
, xkjk).

(4.1)

Proof. To prove (4.1), we first rephrased (4.1a) as the following equality:

pk+1
xj

− pkxj
+∇E(xk,jk,y

k)(xkjk) +
1

δkx

[
∇h(jk)x (xk+1

jk
)−∇h(jk)x (xkjk)

]
= 0. (4.2)

To obtain the desired result, the inner product is taken between the left-hand side of this expression
and the term xkjk − xk+1

jk
. Using the well-known generalized three-points identity (2.1), we have:〈

pk+1
xj

− pkxj
, xkjk − xk+1

jk

〉
= −Dfjk

(xkjk , x
k+1
jk

)−Dfjk
(xk+1

jk
, xkjk). (4.3)

In the same fashion, we can write:

1

δkx

〈
∇h(jk)x (xk+1

jk
)−∇h(jk)x (xkjk), x

k
jk

− xk+1
jk

〉
= − 1

δkx
D

h
(jk)
x

(xkjk , x
k+1
jk

)− 1

δkx
D

h
(jk)
x

(xk+1
jk

, xkjk).

(4.4)

Applying the inequality E(u) ≤ E(v) + ⟨∇E(v), u − v⟩ + LDh(u, v) from Lemma 2.1 and setting
u = xk+1

jk
, v = xkjk , we obtain:

⟨∇E(xk,jk,y
k)(xkjk), x

k
jk

− xk+1
jk

⟩

≤ E(xk,jk,y
k)(xkjk)− E(xk,jk,y

k)(xk+1
jk

) + L(jk)
x D

h
(jk)
x

(xk+1
jk

, xkjk).
(4.5)

Combining (4.3)-(4.5) and applying to (4.2), given the fact that E(xk,jk,y
k)(xkjk) = E(xk, yk),∀k ≥ 1,

we can obtain the desired descent inequality (4.1).

Applying Lemma 4.1 in a similar manner to fixing x and updating y, we obtain the following
lemma, which guarantees sufficient descent property and summability of Bregman distance.

Lemma 4.2 (Sufficient descent and summability). Let {xk, yk} be the sequence generated by the
algorithm with the stepsizes δkx and δky that satisfy

0 < δkx <
1 + η(h

(jk)
x )− ωk

x

L
(jk)
x

, ∃ωk
x ∈ (0, 1 + η(h(jk)x )),

0 < δky <
1 + η(h

(jk)
y )− ωk

y

L
(jk)
y

, ∃ωk
y ∈ (0, 1 + η(h(jk)y )).

Denote

ρkx :=
L
(jk)
x ωk

x

1 + η(h
(jk)
x )− ωk

x

, ρky :=
L
(jk)
y ωk

y

1 + η(h
(jk)
y )− ωk

y

.
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The following inequality guarantees a sufficient decrease property in terms of the Bregman distance:

E(xk+1, yk+1)− E(xk, yk) ≤ −ρkxDh
(jk)
x

(xk+1
jk

, xkjk)−Dsymm
fjk

(xk+1
jk

, xkjk)

−ρkyDh
(jk)
y

(yk+1
jk

, ykjk)−Dsymm
gjk

(yk+1
jk

, ykjk).

In particular, we have

lim
k→∞

D
h
(jk)
x

(xk+1
jk

, xkjk) = lim
k→∞

D
h
(jk)
y

(yk+1
jk

, ykjk)

= lim
k→∞

Dsymm
fjk

(xk+1
jk

, xkjk) = lim
k→∞

Dsymm
gjk

(yk+1
jk

, ykjk) = 0.

Proof. We begin by using (4.1) to derive an expression for E(xk+1, yk+1)− E(xk, yk),

E(xk+1, yk)− E(xk, yk)

≤ −Dsymm
fjk

(xk+1
jk

, xkjk) +

(
L(jk)
x − 1

δkx

)
D

h
(jk)
x

(xk+1
jk

, xkjk)−
1

δkx
D

h
(jk)
x

(xkjk , x
k+1
jk

)

≤ −Dsymm
fjk

(xk+1
jk

, xkjk) +
L
(jk)
x

(
η(h

(jk)
x )− ωk

x

)
1 + η(h

(jk)
x )− ωk

x

D
h
(jk)
x

(xk+1
jk

, xkjk)

− L
(jk)
x

1 + η(h
(jk)
x )− ωk

x

D
h
(jk)
x

(xkjk , x
k+1
jk

)

≤ −Dsymm
fjk

(xk+1
jk

, xkjk)− ρkxDh
(jk)
x

(xk+1
jk

, xkjk),

where the second inequality follows form the definition of η(h
(jk)
x ) as (2.2).

Similarly to derive the decrease inequalities updating yk:

E(xk+1, yk+1)− E(xk+1, yk)

≤ −Dsymm
gjk

(yk+1
jk

, ykjk) +

(
L(jk)
y − 1

δky

)
D

h
(jk)
y

(yk+1
jk

, ykjk)−
1

δky
D

h
(jk)
y

(ykjk , y
k+1
jk

)

≤ −Dsymm
gjk

(yk+1
jk

, ykjk) +
L
(jk)
y

(
η(h

(jk)
y )− ωk

y

)
1 + η(h

(jk)
y )− ωk

y

D
h
(jk)
y

(yk+1
jk

, ykjk)

− L
(jk)
x

1 + η(h
(jk)
y )− ωk

y

D
h
(jk)
y

(ykjk , y
k+1
jk

)

≤ −Dsymm
gjk

(yk+1
jk

, ykjk)− ρkyDh
(jk)
y

(yk+1
jk

, ykjk),

Combining the above two inequalities yields the following

E(xk+1, yk+1)− E(xk, yk) ≤ −ρkxDh
(jk)
x

(xk+1
jk

, xkjk)−Dsymm
fjk

(xk+1
jk

, xkjk)

−ρkyDh
(jk)
y

(yk+1
jk

, ykjk)−Dsymm
gjk

(yk+1
jk

, ykjk).
(4.6)
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Summing these inequalities over k = 0, . . . , N , we obtain

N∑
k=0

(
ρkxDh

(jk)
x

(xk+1
jk

, xkjk) +Dsymm
fjk

(xk+1
jk

, xkjk) + ρkyDh
(jk)
y

(yk+1
jk

, ykjk) +Dsymm
gjk

(yk+1
jk

, ykjk)
)

≤E(x0, y0)− E(xN+1, yN+1)

≤E(x0, y0)− inf
(x,y)∈dom h

E(x, y).

Thus, we have
∞∑
k=0

D
h
(jk)
x

(xk+1
jk

, xkjk) <∞,
∞∑
k=0

Dsymm
fjk

(xk+1
jk

, xkjk) <∞,

∞∑
k=0

D
h
(jk)
y

(yk+1
jk

, ykjk) <∞,
∞∑
k=0

Dsymm
gjk

(yk+1
jk

, ykjk) <∞.

Therefore, we conclude that

lim
k→∞

D
h
(jk)
x

(xk+1
jk

, xkjk) = lim
k→∞

D
h
(jk)
y

(yk+1
jk

, ykjk)

= lim
k→∞

Dsymm
fjk

(xk+1
jk

, xkjk) = lim
k→∞

Dsymm
gjk

(yk+1
jk

, ykjk) = 0.

which completes the proof.

The theorem below provides such a convergence property, which is a consequence of the sufficient
decrease property summarized in the previous lemma.

Theorem 4.1 (Convergence). Assume that Assumptions 3.1 holds, and let {zk}k∈N := {(xk, yk)}k∈N
be a sequence generated by the ABLBreI method, with ω = mink≥1{ωk

x, ω
k
y}. Then, the following

results hold:

1) The sequence
{
E(zk)

}
k∈N is non-increasing and in particular

ρ

2
∥zk+1 − zk∥2 ≤ E(zk)− E(zk+1), ∀k ≥ 0,

where

ρ = min
j=1,2,··· ,d

{
Lωk

xσj,1

1 + η(h
(jk)
x )− ωk

x

,
Lωk

yσj,2

1 + η(h
(jk)
y )− ωk

y

}
.

2) We have
∞∑
k=1

∥xk+1 − xk∥2 + ∥yk+1 − yk∥2 =
∞∑
k=1

∥zk+1 − zk∥2 <∞,

and hence limk→∞ ∥zk+1 − zk∥ = 0.

Proof. (i) According to the conclusion in Lemma 4.1,

E(xk, yk)− E(xk+1, yk+1)

≥ ρkxDh
(jk)
x

(xk+1
jk

, xkjk) +Dsymm
fjk

(xk+1
jk

, xkjk) + ρkyDh
(jk)
y

(yk+1
jk

, ykjk) +Dsymm
gjk

(yk+1
jk

, ykjk)

≥ ρkxDh
(jk)
x

(xk+1
jk

, xkjk) + ρkyDh
(jk)
y

(yk+1
jk

, ykjk)

≥ ρkxσjk,1
2

∥xk+1
jk

− xkjk∥
2 +

ρkyσjk,2

2
∥yk+1

jk
− ykjk∥

2.
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It follows that the sequence {E(zk)}k∈N is non-increasing and in particular

E(zk)− E(zk+1) ≥ ρ

2
∥zk+1 − zk∥2, ∀k ≥ 0, (4.7)

where

ρ = min
j=1,2,··· ,d

{
Lωk

xσj,1

1 + η(h
(jk)
x )− ωk

x

,
Lωk

yσj,2

1 + η(h
(jk)
y )− ωk

y

}
= min

k≥1

{
ρkxσjk,1, ρ

k
yσjk,2

}
.

(ii) Let N be a positive integer. Summing the above equation from k = 0 to N − 1 and since E
is assumed to be bounded from below, it holds:

N−1∑
k=1

∥∥∥xk+1 − xk
∥∥∥2 + ∥∥∥yk+1 − yk

∥∥∥2 = N−1∑
k=1

∥∥∥zk+1 − zk
∥∥∥2

≤ 2

ρ

(
E(z0)− E(zN )

)
≤ 2

ρ

(
E(z0)− inf E(z)

)
.

Taking the limit as N → ∞, we obtain the desired assertion.

5 ABLBreI for RNMF

Therefore, we return to the optimization problem that needs to be solved, which is non-negative
matrix factorization with regularization. We need to select the kernel that generates the distance
that satisfies Assumption 3.1. Consequently, we propose a blockwise version for j = 1, 2, . . . , r:

h(j)(xj , yj) =
1

4

(
∥xj∥2 + ∥yj∥2

)2
+

1

2

(
∥xj∥2 + ∥yj∥2

)
. (5.1)

The kernel generating distance was used in [10] and verified to satisfy Assumption 3.1. After
that, we recall two well-known operators that will be used to compute the explicit formula for the
ABLBreI method.

Let Sτ be the symbol of soft-thresholding(with parameter τ):; thus, for any z ∈ Rs, it holds
that

Sτ (z) = argmin
w∈Rd

{
τ∥w∥1 +

1

2
∥w − z∥2

}
= max{|z| − τ, 0} sgn(z)

Let [·]+ be the projection onto Rs
+, which is used to force the factorization matrices to be

non-negative; thus, for any z ∈ Rs, it holds that

[z]+ = argmin
w∈Rd

+

{
∥w − z∥2

}
= max{z, 0}.

And we choose ℓ1 regularization to induce the sparsity, i.e.,

ψ(x, y) =
1

2
∥A−

r∑
i=1

xiy
T
i ∥2F +

r∑
i=1

µ1∥xi∥1 +
r∑

i=1

µ2∥yi∥1.

The following proposition is the core to solve the optimization problem, which was used in [3].
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Proposition 5.1 (Bregman proximal formula for the ℓ1-norm regularization). The explicit formula
of

x+ = argmin
u∈Rd

{
λθ∥u∥1 + ⟨V(x), u⟩+ 1

4
∥u∥4 + α

2
∥u∥2

}
(T )

is given by x+ = −t∗Sλθ(V(x)), where x is the current step and x+ is the updated result, t∗ is the
unique positive real root of

t3∥Sλθ(V(x))∥2 + αt− 1 = 0.

Let the step size parameters δkx and δky both be equal to ρ. Thus, the closed-form solution of
ABLBreI for NMF is in the form as Algorithm 3.

6 Numerical experiments

In our numerical experiments1, we utilize standard methods under the cyclic block selection regime
in the form of jk = (k mod d) + 1 to maintain the relevance and simplicity of the presentation. In
order to test the performance of each method, we conduct experiments on both synthetic and real
datasets. The synthetic datasets are generated using the Julia command A = sprand(Float64, 200,
10, 0.5)*sprand(Float64, 10, 200, 0.5), which produces a 200 × 200 matrix. For our real dataset,
we chose the Olivetti Research Laboratory2 (ORL) dataset. We consider constrained models with
columnwise ℓ1-regularization to induce sparsity of the blocks of the factorization matrices reflecting
the form

min
X≥0,Y≥0

{
ψ ≡ 1

2
∥A− xyT ∥2F + µ1

r∑
i=1

∥xi∥1 + µ2

r∑
i=1

∥yi∥1

}
,

in which xi and yi are the column vectors of x and y, respectively, and µ1 and µ2 are the coeffi-
cient parameters of ℓ1-regularization. Figure 1 visualizes the facial feature extraction through the
recovery of weight matrices with the ABLBreI method.

(a) t = 30 (b) t = 180 (c) t = 600 (d) t = 3000

Figure 1: The face extraction features of NMF visualized through the recovery of weight matrices, where t
denotes the iteration time in seconds.

We conduct experiments using the Block Bregman Proximal Gradient method as comparison,
the alternating linearized Bregman iterations method (ALBreI) with d = 1 and the ABLBreI

1Code is available at https://github.com/bellhello/ABLBreI-RNMF
2AT&T Laboratories Cambridge.
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Algorithm 3 Alternating Block Linearized Bregman Iteration for the NMF with ℓ1-regularization

Require: ρ ∈ (0, 1), (x0, y0) ∈ Lev(E, 1/2), (p0xj
, p0yj ) = (∂∥x0j∥1, ∂∥y0j ∥1), ∀j = 1, · · · , r.

Ensure: For k = 1, 2, . . . and jk ∈ {1, 2 . . . , r}, and compute:
if jk ̸= j then

xk+1
j = xkj , yk+1

j = ykj ,

else if jk = j then

Vk
xj

=

(
r∑

i=1

xki (y
k
i )

T −A

)
ykj − ρ−1(∥xkj ∥2 + ∥ykj ∥2 + 1)xkj − pkxj

,

Vk
yj =

(
r∑

i=1

xk+1
i (yki )

T −A

)T

xk+1
j − ρ−1(∥xk+1

j ∥2 + ∥ykj ∥2 + 1)ykj − pkyj ,

xk+1
j =

[
−t∗xSµ1ρ(ρVk

xj
)
]
+
, yk+1

j =
[
−t∗ySµ2ρ(ρVk

yj )
]
+
,

where t∗x and t∗y are the unique positive real root of

t3x∥Sµ1ρ(ρVk
xj
)∥2 + (1 + ∥ykj ∥2)tx − 1 = 0,

t3y∥Sµ2ρ(ρVk
yj )∥

2 + (1 + ∥xk+1
j ∥2)ty − 1 = 0,

respectively.

pk+1
xj

= pkxj
− 1

ρ

[
(∥xk+1

j ∥2 + ∥ykj ∥2 + 1)xk+1
j − (∥xkj ∥2 + ∥ykj ∥2 + 1)xkj

]
+

(
r∑

i=1

xki (y
k
i )

T −A

)
yki ,

pk+1
yj = pkyj −

1

ρ

[
(∥xk+1

j ∥2 + ∥yk+1
j ∥2 + 1)yk+1

j − (∥xk+1
j ∥2 + ∥ykj ∥2 + 1)ykj

]
+

(
r∑

i=1

xk+1
i (yki )

T −A

)T

xk+1
j .

end if
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method that divides the factorization matrices into r blocks evenly, i.e. d = r. Furthermore, we
conduct experiments using two different sparsity levels—0.2 and 0.05 for the BBPG method. These
sparsity levels represent the percentage of non-zero elements in the column vector as 20% and 5%,
respectively. We implement all the methods described in this paper using Julia 1.8.3, and the
numerical experiments are run on a laptop equipped with an Intel i7-11800F CPU @2.30GHz and
32 GB RAM.

We generate the initial matrices X0 and Y 0 by randomly assigning values to each entry from
the interval [0, 1]. We ensure that the initial matrices respected the sparsity levels by creating two
random mask matrices M1 ∈ Rm×r and M2 ∈ Rn×r, so that

X := X0 ⊙M1, Y := Y 0 ⊙M2.

Each entry of the mark matrices are distributed following a Bernoulli distribution with parameter
γ ∈ [0, 1], i.e.

Mi,j ∼ B(γ),
where the parameter γ is the expected percentage of non-zero elements.

We then apply a rescaling procedure to the initial matrices to ensure that (1) ∥X0
i ∥ = ∥Y 0

i ∥
for all i = 1, 2, . . . , r, and (2) argmint ∥A − tX0(Y 0)T ∥ = 1. We run 20 iterations of each method
examined, initializing each with a different point, and reported the average results. For a fair
comparison, we use the same initial points for all the methods.

6.1 Synthesis matrix

For the NMF of synthesis matrix, we choose the factorization rank as r = 10 and use the regu-
larization parameter µ = µ1 = µ2 ∈ {1.00, 1.01}. We present the average Frobenius norm of the
residual matrix A−XY T for the NMF model with the sparsity of 80% in Figure 2 and of 95% in
Figure 3.

Figure 2: The Frobenius norm of the residual
matrix for the regularized NMF model for the
synthesis matrix with sparsity 80%.

Synthesis-Sparsity (80%), µ = 1.00

Algorithms
non-zero ratio

X Y
BBPG 0.190 0.190
ALBreI 0.206 0.198
ABLBreI 0.219 0.195

Table 1: The ratio of the non-zero elements of
the factorization matrices respect to Figure 2.

As we know, the ALBreI method is a special case of the ABLBreI method when the block size
is d = 1, which is also the reason for removing the ”block” from its name. However, the ALBreI
method is still a kind of method that updates the variables in ”blockwise”; in fact, there are only
two blocks, x and y. From the figures above, we can see that the ABLBreI method is more efficient
than the ALBreI method, which reflects the accelerating effect of having more blocks.
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Figure 3: The Frobenius norm of the residual
matrix for the regularized NMF model for the
synthesis matrix with sparsity 95%.

Synthesis-Sparsity (95%), µ = 1.01

Algorithms
non-zero ratio

X Y
BBPG 0.0500 0.0500
ALBreI 0.0535 0.0460
ABLBreI 0.0542 0.0575

Table 2: The ratio of the non-zero elements of
the factorization matrices with respect to Figure
3.

6.2 ORL dataset

The ORL dataset consists of 10 face images in different angles for each of the 40 heads. Each face
image has a size of 92× 112 pixels, resulting in a data matrix of size 10304× 400. The size of the
data matrix is also the primary reason for the out-of-memory error for the non-blockwise methods.
We stress that the factorization rank is an important parameter in NMF research, however, for
simplicity, we use r = 25 in our experimental setting.

Figure 4: The Frobenius norm of the residual
matrix for the regularized NMF model for ORL
dataset.

ORL-Sparsity (80%), µ = 1.00

Algorithms
non-zero ratio
X Y

BBPG 0.0500 0.0500
ABLBreI 0.0535 0.0460

Table 3: The ratio of the non-zero elements of
the factorization matrices with respect to Figure
4.

7 Concluding remarks

Based on the purpose of applying LBreI to solve the NMF with regularization, this paper discusses
the strategy of alternating iteration in the case of block variable, and proposes the alternating block
linear Bregman iterations algorithm beyond the convexity and Lipschitz gradient continuity to the
objective function under the assumption of the convexity of the regularization term. In this paper,
we also analyze the descending property and the convergence of the ABLBreI algorithm. Finally,
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we give simple demonstrations by numerical experiment. Accelerated variants of the ABLBreI
algorithm will be the next step of research.
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