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Abstract

This paper considers the problem of state observation for nonlinear dynamics. While model-based observer synthesis is difficult

due to the need of solving partial differential equations, this work proposes an efficient model-free, data-driven approach based

on online learning. Specifically, by considering the observer dynamics as a Chen-Fliess series, the estimation of its coefficients

has a least squares formulation. Since the series converges only locally, the coefficients are recursively updated, resulting in an

online optimization scheme driven by instantaneous gradients. When the state trajectories are available, the online least squares

guarantees an ultimate upper bound of average observation error proportional to the average variation of states. In the realistic

situations where the states cannot be measured, the immersed linear dynamics based on the Kazantzis-Kravaris/Luenberger

structure is assigned, followed by online kernel principal component analysis for dimensionality reduction. The proposed

approach is demonstrated by a limit cycle dynamics and a chaotic system.
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This paper considers the problemof state observation for
nonlinear dynamics. While model-based observer syn-
thesis is difficult due to the need of solving partial differ-
ential equations, this work proposes an efficient model-
free, data-driven approach based on online learning. Specif-
ically, by considering the observer dynamics as a Chen-
Fliess series, the estimation of its coefficients has a least
squares formulation. Since the series converges only lo-
cally, the coefficients are recursively updated, resulting in
an online optimization scheme driven by instantaneous
gradients. When the state trajectories are available, the
online least squares guarantees an ultimate upper bound
of average observation error proportional to the average
variation of states. In the realistic situations where the
states cannot be measured, the immersed linear dynam-
ics based on theKazantzis-Kravaris/Luenberger structure
is assigned, followed by online kernel principal compo-
nent analysis for dimensionality reduction. The proposed
approach is demonstrated by a limit cycle dynamics and
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a chaotic system.
K E YWORD S
State observer, nonlinear systems, online optimization,
dimensionality reduction

1 | INTRODUCTION

Nonlinearity is a common characteristic of the dynamics of chemical processes, associated
with complex phenomena such as bifurcations, limit cycles, and chaos.1,2,3 In nonlinear
process control methods such as nonlinear model predictive control (MPC)4 and differential
geometry-based input–output linearization,5 state-space representations of the process dy-
namics are typically used. In the recent years, the development of data-drivenmodeling and
control strategies, such as those based on neural networkmodels,6 reinforcement learning,7
Koopman operators,8,9 Gaussian processes,10,11 sparse system identification,12,13 and dis-
sipative dynamic behaviors,14,15 has become an important direction for process control.
Most of these strategies focus on analyzing the dynamics on the state space and/or design-
ing a state-feedback controller. In a realistic process control setting, however, one should
have data access to only manipulated input and measurable output variables, instead of all
the states. It is therefore necessary to infer the state values from the measured variables
through a state observer.16

The classical form of state observer, known as Luenberger observer,17 refers to a linear
dynamics where the state estimates are driven by the signal of innovations, namely the
differences between measured outputs and their predicted values. For linear systems, a
probabilistic approach can be used to derive the optimal Luenberger observer, namely the
well-known (Stratonovich-)Kalman(-Bucy) filter, which can be extended to nonlinear sys-
tems but only locally.18 To obtain a global Luenberger-type observer for nonlinear systems,
the seminar work of Kazantzis and Kravaris19 first proposed to find a static mapping on
the state space, under which the transformed states compose a linear dynamics driven by
the measured outputs; thus, this static mapping can be inverted to obtain desirable state
estimates. The existence of such a Kazantzis-Kravaris/Luenberger (KKL) observer, while orig-
inally proved under restrictive assumptions, was re-established under milder conditions by
Andrieu and Praly20 and extended from autonomous to controlled systems by Bernard and
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Andrieu.21 The linear dynamics of the transformed states, as long as being controllable and
having a sufficient order, can be assigned almost arbitrarily, since the prohibited choices of
poles form only a set of zero Lebesgue measure.22

The main challenge of synthesizing KKL observers lies in the associated numerical so-
lution. In order to find a mapping (immersion) to transform the states so as to conform
to a linear dynamics, partial differential equations (PDEs) that involve the process model
need to be solved. To avoid PDE solution, Ramos et al.23 proposed to train a neural net-
work that represents the inverse transformation from immersed states to the actual states.
Buisson-Fenet et al.24 further considered the tuning of poles in the embedded linear dy-
namics along with the neural network training. A more sophisticated approach by Niazi et
al.25 adopted the idea of physics-informed neural networks (PINNs) and used two neural
networks – one for the immersion and one for its inverse; the loss metric for their train-
ing includes a state reconstruction error and a prediction error of the embedding. In a
different vein, Miao and Gatsis26 regarded the training problem as a dynamic optimization
problem to minimize accumulated squared state observation error, whose optimality con-
dition (i.e., Pontryagin’s minimum principle) leads to neural ordinary differential equations
(neural ODEs). Themain limitation of the above-mentionedworks is the neural architecture,
whose training inevitably causes nonconvex optimization problems that can be expensive
to compute or trapped in local optima.

In this work, a new method for nonlinear state observation is proposed. This method is
based on Chen-Fliess series27,28 as an input–output representation of the observer dynam-
ics. In the Chen-Fliess series, the observer outputs (i.e., state estimates) are expressed as
linear combinations of unknown coefficients (arising from Lie derivatives) multiplied by the
corresponding nonlinear bases (recursive integrals on the trajectories of observer inputs,
namely the process outputs). This results in a least squares formulation for state observa-
tion, with the following complications.
1. Since the convergence of Chen-Fliess series is guaranteed only within a finite time win-

dow (starting from the instant at which the expansion is performed), the coefficients
need to be updated recursively online. Therefore, a gradient dynamics can be assigned
to specify the flow of Chen-Fliess coefficients in continuous time, which leads to an
online optimization scheme. This paper proves that under appropriate assumptions, the
online optimization guarantees a finite average state observation error that is propor-
tional to the average rate of variation in the true states.
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2. If the state measurements are unavailable (which is the realistic case), a direct least-
squares formulation to minimize state observation errors may not be possible. In this
situation, the transformed states are first obtained according to their KKL linear dynam-
ics driven by the process outputs. Since the transformed states are of a higher dimension
than the actual state space, a dimensionality reduction scheme – kernel principle com-
ponent analysis (KPCA)29 – is adopted to obtain the principal coordinates, which are
essentially diffeomorphisms of, and thus considered as equivalents to, the underlying
state variables. The KPCA is performed via an online algorithm, with coefficients of all
principal components updated recursively.

The proposed approach of online optimization of Chen-Fliess series, with its simple math-
ematical structure, involves only computationally efficient routines with a polynomial com-
plexity in the output dimensions where the degree is related to the series truncation. The
auxiliary KPCA approach for dimensionality reduction is also based on a lightweighted re-
cursive update of inverse kernel matrix and a gradient flow for coefficient updates. The
online KPCA has a guaranteed finite and tunable complexity that depends on the state
space. Such efficiency in computation and sampling, along with the provable bound on
the state observation error, makes the proposed approach promising to be integrated with
nonlinear control, especially data-driven control frameworks.

The remainder of this paper is organized as follows. In Section 2, the preliminaries of
KKL observers, Chen-Fliess series, and online KPCA are introduced. The proposed online
optimization approach is provided and the performance guarantee is established in Section
3. The case studies on two representative nonlinear dynamics – an oscillator and a Lorentz
chaotic system, both of which can be considered as reaction kinetics – are demonstrated
in Section 4. Conclusions are made in Section 5.

2 | KKL OBSERVER AND CHEN-FLIESS SERIES

Consider a nonlinear, autonomous dynamical system
¤x (t ) = F (x (t )), y (t ) = H (x (t )) (1)

where x (t ) ∈ X ⊆ Òn and y (t ) ∈ Òm are the vector of states and outputs, respectively.
F and H are assumed to be smooth vector fields on X, but their expressions may not be
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known. Let us assume for simplicity that m = 1.
2.1 | KKL Observer and Its Existence

For the nonlinear system (1), a KKL observer refers to an auxiliary dynamical system in the
following form:

¤z = Az + By , x̂ = T †(z ). (2)
Here the observer states z ∈ Ònz is driven by the process outputs through a linear dynamics,
(A,B). It is required that (i) (A,B) should be controllable (i.e., the controllability matrix
[B ,AB , . . . ,Anz−1B] has rank nz ), (ii) A should be Hurwitz (with all eigenvalues residing on
the open left half complex plane), and in addition, (iii) T † is a continuous mapping from
Ònz → Òn . To obtain a KKL observer, it suffices to find an immersionT : X̄ → Ònz , namely a
differential mapping that is injective over the closure of X, that satisfies the following PDE
system:

∂T

∂x
(x )F (x ) = AT (x ) + BH (x ), [x ∈ X. (3)

Then, by letting T † to be the left-inverse of the mapping T , namely the one such that
T †(T (x )) = x , [x ∈ X (in other words,T † ◦T = id), the KKL observer is found.

Now we introduce the conditions for the existence of such an immersion to solve the
above PDE system. To this end, the conclusion of Brivadis et al.22 is provided. Use the
following notations.
• The solution to the ODEs ¤x (t ) = F (x (t )) with initial conditions x (0) = x0 at time t is

denoted as X (x0, t ).
• Given an open set O ∈ Òn , denote ς−O (x0) < 0 as the infimum of such t that X (x0, t )

exists and is confined in O.
• Write O + ϵ := {x + x̃ |x ∈ O, |x̃ | < ϵ}.
Definition 1 The system (1) is said to be (O, ϵ)-backward distinguishable if for any xa and xb
in X, unless xa = xb, there must be a time 0 > t > max(ς−O+ϵ (xa), ς−O+ϵ (xb)) such that the
backward solution at this time results in different outputs, i.e., H (X (xa, t )) , H (X (xb, t )).

The following theorem states that the two matrices A and B for the immersed linear dy-
namics can be almost arbitrarily chosen, as long as the spectrum of A is bounded on the
left side of a left-translated imaginary axis (−ρ + iÒ).
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Fact 1 Suppose that for some open bounded set O ⊆ X̄ and ϵ > 0, the system (1) is (O, ϵ)-
backward distinguishable. Then there exists a constant ρ > 0 such that almost for all (A,B) ∈
Ò(2n+1)×(2n+1) ×Ò2n+1 with A+ ρI Hurwitz, there is an immersionT : O → Ò2n+1 that solves the
PDE system (3).

In the above theorem, the wording “almost” refers to the exclusion of a zero Lebesgue
measure set. Although the numerical solution to find this mapping T can be difficult, it
is established that nz = 2n + 1 is a sufficient order of the state observer. A slightly more
restrictive construction20 is to assign n + 1 (complex) poles {λi }n+1i=1 and let A be a diagonal
matrix comprising of blocks [Re(λi ),−Im(λi ); Im(λi ),Re(λi )] and B be a repetition of [1, 0]⊤
for n +1 times. This leads to an observer dynamics of order nz = 2n +2. Nevertheless, if A is
allowed to be complex, it suffices to let A be a diagonal matrix of order n + 1. According to
Andrieu and Praly,20 when nz = n + 1 and A ∈ Ã(n+1)×(n+1) , still, the excluded choices form
only a zero-measure set. Thus, one should usually be able to choose n + 1 real poles, and
let A = diag(λ1, . . . , λn+1) and B = [1, 1, . . . , 1]⊤. In this paper, we will use nz = n + 1 instead
of 2n + 1.

The determination of inverse immersion mappingT †, however, is indeed challenging. A
simplifying routine was recently proposed by Brivadis et al.22 based on reducing the vector-
valued immersionT : O → Ònz to a parameterized but scalar-valuedT0 : Λ×O → Ò, where
Λ ⊆ (−∞, 0) can be interpreted as a range of admissible poles. Specifically, if for any λ ∈ Λ,
the PDE:

∂T0
∂x
(λ, x )F (x ) = λT0(λ, x ) + H (x ) (4)

admits an analytic and bounded solution, then the vector-valued T mapping can be ob-
tained by repetitively differentiatingT0(λ, x ) over λ. Yet solving this parametric PDE is still
difficult and is further complicated by the differentiation. The neural network-based ap-
proaches proposed in existing works,23,24,25 although built on the sound basis that neural
networks act as universal approximators, theoretically are not exempt from the nonconvex-
ity of training problems and local solutions. In query for a more desirable problem structure,
we focus our attention on Chen-Fliess series, which provides a linear parameterization of the
nonlinear observer dynamics.
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2.2 | Chen-Fliess Series and Its Convergence

Suppose that the nonlinear dynamics of the state observer is affine in y (which is satisfied
by the KKL observers):

¤z = g0(z ) +
m∑
i=1

gi (z )y , x̂ = h (z ). (5)
For each component of the state estimate x̂j = h j (z ), j = 1, . . . , n , define the following Lie
derivatives:

Lgi h j (z ) =
∂h j

∂z
gi (z ), i = 0, 1, . . . ,m (6)

and recursively one can define high-order Lie derivatives:
Lgik · · · Lgi2Lgi1h j (z ) =

∂

∂z

(
. . .

∂

∂z

(
∂h j

∂z
gi1

)
gi2 . . .

)
gik (z ),

i1, . . . , ik = 0, 1, . . . ,m, j = 1, . . . , n .

(7)

Let us call a tuple of the form (i1i2 . . . ik ) as a multi-index of length k and denote the set of
multi-indices of length k , namely {0, 1, . . . ,m}k as Ékm . The above recursive Lie derivative
is thus simply written as Lµh j (z ), with µ = (i1i2 . . . ik ) ∈ Ékm . The set of multi-indices with
lengths not exceeding K is denoted as É≤Km = ∪Kk=0É

k
m . In particular, the multi-index of zero

length is written as ∅, corresponding to a Lie derivative of the function itself: L∅h j (z ) =
h j (z ). Also define the integrals

Ei (t0, t1) =
∫ t1

t0

yi (τ)dτ, i = 0, 1, . . . ,m, t0, t1 ∈ Ò, t0 ≤ t1. (8)
where the convention y0(t ) ≡ 1 is adopted. Recursively, for multi-indices, one can define

Ei1i2...ik (t0, t1) =
∫ t1

t0

Ei1i2...ik −1 (t0, τ)yik (τ)dτ, k ≥ 2. (9)
For k = 0, it is natural to let E∅(t0, t1) = 1.

Fact 2 Suppose that g0, g1, . . . , gm and h j are analytic vector fields, then for any z there exist
M1 ≥ 0 and M2 ≥ 0 such that for all µ ∈ Ékm , |Lµh (z ) | ≤ M1M

k
2 k !. If we assume further that

each input signal for the state observer yj (·) is bounded within [−M0,M0] for some M0 ≥ 0,
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then there exists a horizon ∆̄ = 1/(m + 1)M0M2 such that for any t ∈ Ò and ∆ ∈ [0, ∆̄),

x̂j (t + ∆) =
∞∑
k=0

∑
µ∈Ékm

Lµh j (z (t ))Eµ (t , t + ∆). (10)

The above theorem (cf. Isidori27) shows that the value of x̂j within a time window ∆ can be
expressed as a infinite linear combination of the Lie derivatives (including the original h j )
at the beginning of this window multiplied by the recursive integrals of the input signals.
This infinite series is called the Chen-Fliess series. In fact, if we truncate the Fliess series to
neglect the terms corresponding to multi-indices longer than K digits, then the truncation
error is bounded by���x̂j (t + ∆) − ∑

µ∈É≤Km

Lµh j (z (t ))Eµ (t , t + ∆)
��� ≤ ∞∑

k=K+1
M1 [(m + 1)M2∆]k = M1

[(m + 1)M2∆]K+1
1 − (m + 1)M2∆

.

(11)
Hence, if the value of xj (t + δ) at all 0 ≤ δ ≤ ∆ is assumed to be known, then by

obtaining the recursive integral values Eµ (t , t + δ), the Lie derivatives at t , i.e., Lµh j (z (t ))
can be approximated by a least squares procedure, which is capable of predicting the future
values of x̂j for at least ∆̄−∆ time aheadwith a bounded error. Of course, such extrapolation
of the Chen-Fliess series will result in exponentially growing errors as the time proceeds.
Therefore, the coefficients of the Chen-Fliess series, namely the Lie derivative values, must
be updated continuously in accordance with the evolution of states z (t ). Such an online
optimization scheme will be discussed in the next section. To this end, let us first denote
the column vectors formed by vertically stacking the Lie derivatives and integrals as

θj (t ) =
[
Lµh j (z (t ))

]
µ∈É≤Km

, φ (t , δ) =
[
Eµ (t , t + δ)

]
µ∈É≤Km

, (12)
respectively. Then we can write, for all δ ∈ [0,∆],���x̂j (t + δ) − θj (t )⊤φ (t , δ)��� ≤ r (K , δ) := M1

[(m + 1)M2δ]K+1
1 − (m + 1)M2δ

. (13)
For a KKL observer, based on its governing PDE (3) and the fact that A + ρI is Hurwitz,

it is guaranteed that ∥T (x (t )) −T (x̂ (t ))∥ decays at a rate of e−ρt . Since T is an immersion
and thus T † is a continuous mapping, if X̄ is bounded, then given enough amount of time,
∥x (t ) − x̂ (t )∥ becomes sufficiently small, e.g., below εr (K , δ) for some ε > 0. We can thus



Tang 9

have ���xj (t + δ) − θj (t )⊤φ (t , δ)��� ≤ r (K , δ), (14)
where r (K , δ) is actually multiplied by (1+ ε) without changing notation for simplicity. This
allows us to use online (supervised) learning to track the trajectory of state measurements.
However, in realistic settings, the states can not be assumed to be measurable. To this end,
we need to construct such state trajectories through some unsupervised learning approach
and then track these constructed trajectories, which makes the overall state observation
problem a semi-supervised one.

2.3 | Online Kernel Principle Component Analysis (KPCA)

Note that the states’ information is actually encoded in the transformed variables z (t ) ∈
Ònz , and the computation of z (t ) is feasible by simulating the linear dynamics ¤z = Az + By
which is a priori known. Thus, this work proposes to use a nonlinear dimensionality reduc-
tion approach – KPCA – to reduce the trajectory of z (t ) onto a n-dimensional manifold.

In KPCA,30 a kernel function κ (z , z ′) is defined to capture the similarity between the
(finite or infinite) features of any two points z and z ′, i.e., κ (z , z ′) = ϕ (z )⊤ϕ (z ′) (but the
feature map ϕ does not need to be defined explicitly). A common choice is the Gaussian
kernel:

κ (z , z ′) = exp
(
− 1

2σ2
∥z − z ′∥2

)
. (15)

Suppose that one has collected an offline sample of N points z (1), z (2), . . . , z (N ) , then by cal-
culating the symmetric kernelmatrixG ∈ ÒN×N , whose (j1, j2)-th entry isG j1j2 = κ

(
z (j1), z (j2)

) ,
and determining its n eigenvectors {αi }ni=1 associated with the n largest eigenvalues {ϱi }ni=1(ϱ1 ≥ ϱ2 ≥ · · · ≥ ϱn ≥ 0), one can consider the following mappings:

πi : Ònz → Ò, πi (z ) =
N∑
j=1

αi j κ (z , z j ) =: α⊤i κ (z ), i = 1, . . . , n (16)

as the n principal components of any z . Here κ (z ) stands for the vector of kernel evalu-
ations with all sample points. The eigenvectors α1, . . . , αn are mutually orthogonal. The
principle components P (z ) = [π1(z ), . . . , πn (z )] in fact have specified n local coordinates
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F IGURE 1 Dimensionality reduction for constructing unmeasurable states.
for any z ∈ Ònz . To see this, it suffices that the Jacobian dπ/dz is nonsingular. Since

dP

dz
(z ) = α⊤ dκ

dz
(z ) (17)

where α is the matrix [α1, . . . , αn] horizontally stacking the eigenvectors, and

dκ

dz
(z ) = − 1

σ2


κ (z , z (1)) (z − z (1))⊤

...

κ (z , z (N )) (z − z (N ))⊤

 , (18)

the Jacobian can be rank-deficient only when [z − z (1), . . . , z − z (N )] has a rank less than
n , which is possible only when {z (j )}N

j=1 spans a subspace with dimension less than n . As
such, x ↦→ z = T (x ) ↦→ π = P (z ) generally forms a differentiable bijection, i.e., P ◦T is a
diffeomorphism. By dimensionality reduction, we have constructed π as the “equivalents”
of the unmeasurable states x . An illustration of this idea is given in Fig. 1.

However, in a dynamical system, the z data is available in an online data stream. Suppose
that the data is passed from the linear dynamics simulator to a KPCAmachine at discretized
sampling times k = 0, 1, 2, . . . , with sampling interval τ∗ so that t = kτ∗. We need to add
newly sampled points z (t ) into the dataset as time proceeds. On the other hand, we should
control the complexity of KPCA, N , to avoid endless accumulation of sample points. There-
fore, the approach of Honeine29 is adopted here. At each sampling time k , the following
steps are executed.
• First, check whether the kernel values evaluated based on the existing data points can

well approximate the new kernel value. That is, calculate
β = G−1κ (z (t )), ε2 = κ (z (t ), z (t )) − κ (z (t ))⊤β . (19)
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• If ε2 is larger than a threshold value ν, then
– the dataset is augmented with the current z (t );
– every eigenvector αi is appended with a zero element to passively reflect the addition
of a new point;

– the inverse kernel matrix G−1 gets one more row and one more column, and adds a
rank-1 matrix:

G−1 ←
[
G−1 0

0 0

]
+ 1

ε2

[
−β
1

] [
−β⊤ 1

] ; (20)
– the β is substituted by [0, . . . , 0, 1]⊤.

• Update the coefficients using a gradient flow dynamics:
α = α + λ (t )

[
βπ⊤ − αU (π)

]
, (21)

where π = α⊤κ (z (t )) and U (π) is the matrix ππ⊤ with lower triangle ground to zero.
For a detailed justification of each step, the reader is referred to Hyvärinen and Oja31 or
Kim, Franz, and Schölkopf.32 The step size λ (t ), as suggested in Honeine,29 should be time-
varying in the form of

λ (t ) = λ0
1 + t/τλ

. (22)
It was proved29 that the online KPCA algorithm introduced above is capable of curbing

the growth of the order N by guaranteeing the spacing between the points.
Fact 3 For any two points, z and z ′, added during online KPCA, ∥z −z ′∥2 ≥ d 2min := −2σ2 ln(1−
ν/2).

If X̄ is compact and the sampling is performed only after a certain time, then the range
from which z can be sampled is also bounded, say, within a set Z. Suppose that Z has
a diameter dz . It then follows that the number of points added to the online KPCA, N , is
bounded roughly by

N ≤ ⌈dz/dmin⌉nz . (23)
Remark 1 In fact, if the system (1) has an attractor A and its basin of attraction contains the
entire X̄, then there exists a certain time instantT0, after which the states are restricted within
a small distance from the attractor, and thus the z (t ) is confined near a corresponding forward
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invariant set Az . If we do not start dimensionality reduction until after T0, then the order of
KPCA, N , is more tightly bounded according toAz ⊆ Z. To quantify the coverage ofAz by balls
of diameter dmin, the concept of Hausdorff measure33 can be used.

Remark 2 Kernel methods in machine learning have been used extensively in the literature for
systems identification, such as for Wiener-Hammerstein processes34 and Volterra series35 (also
see Pillonetto36 for a survey). Among these works, the kernel canonical variate analysis (KCCA)
approach for nonlinear state-space system identification proposed by Verdult et al.37 involves
the reconstruction of states from input and output measurements, and is related to the KPCA
approach in this work. The difference is that since we do not consider the existence of inputs in
the observed system, the computable signals z (t ) can be directly reduced to states.

3 | ONLINE OPTIMIZATION AND ITS PERFORMANCE

3.1 | Online Least-Squares for Chen-Fliess Series

With the discussions on the convergence property of Chen-Fliess series in the above sec-
tion, now let us consider the problem of learning such a series online. That is, for any time
t ∈ Ò and state index j = 1, . . . , n , given the trajectory y (·) and thus the resulting recursive
integrals Eµ (t , ·) on [t , t + ∆], we are interested in the online estimation of coefficient vector
θj (t ). Let us first consider the hypothetical situation where the true states’ trajectories are
available. If the truncation length of multi-indices, K , is sufficiently large, we can approxi-
mately regard this problem as a least squares problem of minimizing the integrated squared
errors during the time interval. That is,

min
θj

J (θj , t ) := 1

2

∫ ∆

0

(
θ⊤j φ (t , δ) − xj (t + δ)

)2
dδ . (24)

The optimal solution exists uniquely if this quadratic form of θj is strictly positive definite.
Therefore, we make the following natural assumption, and in this subsection we discuss
the properties of online learning under it.
Assumption 1 The trajectory of y is such that for any t ∈ Ò and ∆ > 0, there exists a corre-
sponding α∆ > 0, such that the following matrix inequality is satisfied:

Φ(t ) :=
∫ ∆

0
φ (t , δ)φ⊤(t , δ)dδ ⪰ α∆I . (25)
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By A ⪰ B for two real symmetric matrices A and B of the same shape, it is meant that A − B is
a positive semidefinite matrix. I refers to the unit matrix of proper order.

This assumption shall be referred to as that of persistent excitation, and under this assump-
tion, the outputs y are said to be persistently excited. Hence, the optimal solution at time
t + ∆ can be found as

θ∗j (t ) = Φ−1(t )ψj (t ), where ψj (t ) =
∫ ∆

0
xj (t + δ)φ (t , δ)dδ, j = 1, . . . , n . (26)

However, it is not realistic to obtain the optimal solution θ∗j (t ) in continuous time, since
the linear algebraic computation involved in a matrix inversion may not be conducted in
real time and Φ(t ) may have a large condition number. Thus, let us consider using online
optimization,38 i.e., letting the solution of θj evolve according to some governing dynamics.
Clearly, if we directly differentiate θ∗j (t ) over t , the resulting derivative involves ¤ψj (t ), whichin turn requires the knowledge of ¤xj (t + δ) for δ ∈ [0,∆]. Since directly differentiating a
measurement signal is improper, it is impossible to perfectly realize the true dynamics of
θ∗j (t ). Instead, it appears reasonable to drive the evolution of θj (t ) by the gradient of the
objective function J (θj , t ) with respect to θj , with ignorance of how the target trajectory
xj varies. Thus, we let

¤θj (t ) = −η+J (θj (t ), t ) = −η
(
Φ(t )θj (t ) −ψj (t )

) (27)
This approach is known as online gradient descent.39 The rate η > 0, which is set to be
time-invariant, is a tunable hyper-parameter.
3.2 | Performance under the Persistent Excitation Assumption

A typical performance metric for assessing an online optimization algorithm is dynamic re-
gret, which is defined as the total error between the online objective and the truly optimal
value or the integrated squared distances between the online solution and the true opti-
mum (if the optimum was reached at all times). Similar to the conclusion of Mokhtari et
al.40 in a discrete-time setting, a bound on the dynamic regret, can be established. This will
imply a provable bound on the average squared error of state observation. To this end, the
following propositions are presented.
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Proposition 1 Under Assumption 1, for any t ≥ 0, it is guaranteed that∫ t

0
∥θj (τ) − θ∗j (τ)∥

2dτ ≤ C1 + C 2
2

∫ t

0
∥ ¤θ∗j (τ)∥

2dτ (28)
for some constants C1,C2 > 0. In particular, C1 = 2∥θj (0) − θ∗j (0)∥

2/ηα∆ and C2 = 2/ηα∆ can
be chosen.

Proof Consider the difference between θj (t ) and θ∗j (t ). We have
d

d t

1

2
∥θj (t ) − θ∗j (t )∥

2 =
(
θj (t ) − θ∗j (t )

)⊤ (
−η+J (θj (t ), t ) − ¤θ∗j (t )

)
. (29)

Due to the persistent excitation assumption, J is α∆-strongly convex in its θ argument,
which implies that (

θj (t ) − θ∗j (t )
)⊤

+J (θj (t ), t ) ≥
α∆
2
∥θj (t ) − θ∗j (t )∥

2. (30)
Hence,

d

d t

1

2
∥θj (t ) − θ∗j (t )∥

2 ≤ −ηα∆
2
∥θj (t ) − θ∗j (t )∥

2 +
(
θj (t ) − θ∗j (t )

)⊤ ¤θ∗j (t )
≤ −ηα∆

4
∥θj (t ) − θ∗j (t )∥

2 + 1

ηα∆
∥ ¤θ∗j (t )∥

2.
(31)

Rearranging the above inequality and integrating on interval [0, t ], we obtain∫ t

0
∥θj (τ) − θ∗j (τ)∥

2dτ ≤ 2

ηα∆

(
∥θj (0) − θ∗j (0)∥

2 − ∥θj (t ) − θ∗j (t )∥
2
)
+ 4

η2α2
∆

∫ t

0
∥ ¤θ∗j (τ)∥

2dτ .

(32)
The subtracted term in the parenthesis must be nonnegative. The proposition is proved.

We note that the error is found to be proportional to the rate of variation of the true
solution to the least squares problem, ¤θ∗j (t ). Since this true solution is not actually obtained,it is desirable to interpret its variation based on that of the states. For this, we first bound
the rate of change of ¤θj by that of the observer states z , and then bound the variation rate
of observer states by that of the process states x .
Proposition 2 Suppose that X̄ is compact (implying that all components of y (t ) are bounded
in [−M0,M0] for some M0 > 0), ∆ < ∆̄/2 = 1/2(m + 1)M0M2 (where M2 is the growth rate of
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Lie derivatives with multi-index length). Then there exist constants C3,C4 ≥ 0 such that

∥ ¤θ∗j (t )∥ ≤ C3∥ ¤z (t )∥ + C4. (33)

Proof For our later proof, let us investigate the derivative of recursive integrals Eµ (t , t + δ)
for µ = (i1i2 . . . ik ) and δ ∈ [0,∆]. By definition,
d

d t
Eµ (t , t+δ) = yik (t+δ)Ei1...ik −1 (t , t+δ)−yik (t )Ei1...ik −1 (t , t )+

∫ t+δ

t
yik (τ)

∂Ei1...ik −1 (s, τ)
∂s

���
s=t
dτ .

(34)
The second term is clearly zero. When |yik | ≤ M0, |Ei1...ik −1 (t , t + δ) | ≤ (M0δ)k−1/(k − 1)!,
and thus ��� d

d t
Eµ (t , t + δ)

��� ≤ M0
(M0δ)k−1
(k − 1)! +M0δ max

τ∈[t ,t+δ]

���∂Ei1...ik −1 (s, τ)
∂s

���
s=t

���. (35)
For expressions in the form of ∂Eµ (s, t )/∂s , by definition,

∂Ei1...ik −1ik (s, t )
∂s

= −yik (s)Ei1...ik −1 (s, t ) +
∫ t

s
yik (τ)

∂Ei1...ik −1 (s, τ)
∂s

dτ . (36)
Thus,

max
τ∈[t ,t+δ]

���∂Ei1...ik −1ik (s, τ)
∂s

���
s=t

��� ≤ M0
(M0δ)k−1
(k − 1)! +M0

∫ τ

t
max
τ∈[t ,τ]

���∂Ei1...ik −1 (s, τ)
∂s

���
s=t
dτ . (37)

Denote the left-hand side above as Ēk (δ). Then
Ēk (δ) ≤ M0

(M0δ)k−1
(k − 1)! +M0

∫ δ

0
Ēk−1(δ′)dδ′. (38)

It is not hard to verify that Ēk (δ) = GkM k
0 δ

k−1 for some Gk dependent only on k . Then Gk
should satisfy Gk ≤ 1/(k − 1)! + Gk−1/(k − 1). By induction, Gk ≤ k /(k − 1)! for all k ≥ 1.
Hence,

max
τ∈[t ,t+δ]

���∂Ei1...ik −1ik (s, τ)
∂s

���
s=t

��� ≤ k

(k − 1)!M k
0 δ

k−1. (39)
Substituting the above bound into (35), we have��� d

d t
Eµ (t , t + δ)

��� ≤ k + 1
(k − 1)!M0(M0δ)k−1. (40)
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Now we consider the variation of θ∗j (t ). Since θ∗j (t ) = Φ−1(t )ψj (t ), with the definition of
Φ(t ) and ψj (t ), we have

θ∗j (t ) =
[
Lµh j (z (t ))

]
µ∈É≤Km

+
∫ ∆

0
φ (t , δ)


∑
µ∈É>Km

Lµh j (z (t ))Eµ (t , t + δ)
 dδ, (41)

in which É>Km := ∪k>K Ékm . Differentiating over t , we should have

¤θ∗j (t ) =
[
∂Lµh j

∂z
(z (t )) ¤z (t )

]
µ∈É≤Km

+ Φ−1(t )
∫ ∆

0

¤φ (t , δ)

∑
µ∈É>Km

Lµh j (z (t ))Eµ (t , t + δ)
 dδ

+ Φ−1(t )
∫ ∆

0
φ (t , δ)

∑
µ∈É>Km

[
∂Lµh j

∂z
(z (t )) ¤z (t )Eµ (t , t + δ) + Lµh j (z (t ))

dEµ (t , t + δ)
d t

]
dδ

=:ω1 + ω2 + ω3. (42)
Among the three terms, the first term ω1, due to the compactness of X̄, is bounded in norm
by Ω1∥ ¤z (t )∥ for some constant Ω1 > 0. For the second term ω2, since the brackets in
the integrand, as the truncation reminder of the Chen-Fliess series, is bounded in absolute
value by r (K ,∆), is bounded by

∥ω2∥ ≤
r (K ,∆)
α∆

∫ ∆

0
∥ ¤φ (t , δ)∥dδ . (43)

This bound can be further relaxed by the norm of each component of ¤φ (t , δ), namely
(d/d t )Eµ (t , t + δ):

∥ω2∥ ≤
r (K ,∆)
α∆

∑
µ∈É≤Km

∫ ∆

0
| d
d t
Eµ (t , t + δ) |dδ ≤

r (K ,∆)
α∆

K∑
k=0

(m + 1)k
∫ ∆

0

k + 1
k ! M k δk−1dδ

≤ r (K ,∆)
α∆

K∑
k=0

k + 1
k ! (M0∆(m + 1))k

(44)
Given that ∆ < ∆̄ = 1/(m + 1)M0M2 and M2 ≥ 1,

∥ω2∥ ≤
r (K ,∆)
α∆

∞∑
k=0

k + 1
k ! = 2e

r (K ,∆)
α∆

= const. (45)
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For ω3, the bounding of the term in brackets is similar to the procedure for ω2, leading to a
linear term in ∥ ¤z (t )∥ and a constant term. The derivation is redundant and omitted here. It
then follows from the notation of Φ−1(t ) and Cauchy-Schwarz inequality that ∥ω3∥ can be
obtained by multiplying α−1/2∆ . Here we require that ∆ < ∆̄/2. This factor 2 originates from
recursively bounding the gradient of the Lie derivatives ∂Lµh j /∂z , where the Leibniz rule
results in two terms. Combining the three parts: ω1, ω2, and ω3, we reach at the conclusion
of the proposition.
Proposition 3 If the state equation in the observer dynamics is a linear one (as in KKL observers):
¤z = Az + By , with (A,B) controllable and A + ρI Hurwitz for a scalar ρ > 0, then there exists a
constant C5 > 0 such that for any t > 0,∫ t

0
∥ ¤z (τ)∥2dτ ≤

∫ t

0
C5∥ ¤y (τ)∥2dτ . (46)

The proof of this proposition follows from linear systems theory. The constant in the state-
ment is simply the H∞-norm of the dynamical system mapping from y to z . Following
this proposition, since the plant output y is given by a smooth mapping of the states,
y = H (x ), when X̄ is compact, ∥ ¤y ∥ is bound by C6∥ ¤x ∥ with some C6 > 0. Finally, we
note that the bound derived is for the integrated squared error of θj instead of for xj . How-
ever, the state observation error is simply the error in the first element of θj , which implies
∥x̂j − x̂j ∥ ≤ ∥θj − θ∗j ∥. Therefore, summarizing the above discussions, we reach at the fol-
lowing main theorem.
Theorem 1 Suppose that X̄ is compact, contained in a open set O ⊆ Òn such that the system
(1) is (O, ϵ)-backward distinguishable for some ϵ > 0. Also suppose that the output trajectory
satisfies the persistent excitation condition (Assumption 1) using the Chen-Fliess basis functions
with multi-indices truncated to length K and a sufficiently small time window length ∆ < ∆̄/2 =

1/2(m + 1)M0M2. Then there exists positive constants C , C ′, such that for any t ≥ 0,∫ t

0
∥x̂ (τ) − x (τ)∥2dτ ≤ C

∫ t

0
∥ ¤x (τ)∥2dτ + C ′. (47)

3.3 | Performance under the Boundedness Assumption

The premise for the afore-proved performance guarantee of the online learning of Chen-
Fliess series is the persistent excitation assumption on the output signal y (Theorem 1).
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However, the assumption is difficult to verify or bewell satisfied (i.e., if thematrixΦ(t ) is not
well-conditioned, then the α∆ can be too small to yield a tight bound). Hence, it is desirable
to establish the performance guarantee without the persistent excitation condition.

The following conclusions are derived in a similar manner to the Theorem 1 of Zhang,
Lu, and Zhou.41 Let us denote by θ◦j (t ) the corresponding true values of the Lie derivatives,
[Lµh j (z (t ))]µ∈É≤Km . Hence, at any time t , accoring to the convergence property of the Chen-
Fliess series, |x̂j (t + δ) − θ◦j (t )φ (t , δ) | ≤ r (K , δ). Thus, J (θ◦j (t ), t ) ≤ 1

2

∫ ∆

0
r (K , δ)2dδ =:

r̄ (K ,∆). It is thus only needed to examine the gap between J (θj (t ), t ) and J (θ◦j (t ), t ).
Proposition 4 Suppose that X̄ is bounded, which implies that θ◦j (t ) is bounded. Further assume
that the trajectory of the estimate θj (t ) is bounded. Then by letting D > 0 be an upper bound
on ∥θj (t )∥, ∥θ◦j (t )∥, and ∥θj (0) − θ

◦
j (0)∥, we have for any t > 0,∫ t

0

[
J (θj (τ), τ) − J (θ◦j (τ), τ)

]
dτ ≤ 7D 2

4η
+ D
η

∫ t

0
∥ ¤θ◦j (τ)∥dτ, (48)

Proof Since ¤θj (t ) = −η+J (θj (t ), t ), due to the convexity of J in the first argument,
J (θj (t ), t ) − J (θ◦j (t ), t ) ≤ +J (θj (t ), t )⊤(θj (t ) − θ◦j (t )) = −

1

η
¤θj (t )⊤(θj (t ) − θ◦j (t ))

= − 1

2η

d

d t
∥θj (t )∥2 +

1

η

d

d t
(θj (t )⊤θ◦j (t )) −

1

η
θj (t )⊤ ¤θ◦j (t ).

(49)

Integrating on [0, t ], we have∫ t

0

[
J (θj (τ), τ) − J (θ◦j (τ), τ)

]
dτ ≤ 1

2η

(
∥θj (0)∥2 − ∥θj (t )∥2

)
+ 1

η

(
θj (t )⊤θ◦j (t ) − θj (0)

⊤θ◦j (0)
)
− 1

η

∫ t

0
θj (τ) ¤θ◦j (τ)dτ .

(50)
Since ∥θj (t )∥, ∥θ◦j (t )∥ ≤ D , ∥θj (0)∥2 ≤ D 2, θj (t )⊤θ◦j (t ) ≤ D 2. Also, θj (0)⊤θ◦j (0) ≤ ∥θj (0) −
θ◦j (0)∥/4 = D 2/4. Hence,∫ t

0

[
J (θj (τ), τ) − J (θ◦j (τ), τ)

]
dτ ≤ 7D 2

4η
− 1

η

∫ t

0
θj (τ) ¤θ◦j (τ)dτ . (51)

The theorem is thus proved by further relaxing the last term above.
Due to the strong convexity of J in the first component of the θj argument (namely
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xj (τ)), the integrand on the left-hand side upper bounds the difference between xj (τ) and
x̂ ◦j (τ) (multiplied by a constant). Hence, following the above proposition, given a sufficiently
long time t , the average observation error 1

t ∥xj (τ) − x̂j (τ)∥dτ is affinely bounded by the
total variation of the Lie derivatives: 1

t

∫ t
0
∥ ¤θj (τ)∥dτ . Due to the boundedness of X̄, this is

further linearly bounded by the average variation of the states. Thus, we have the following
theorem
Theorem 2 Suppose that X̄ is compact, contained in a open set O ⊆ Òn such that the system
(1) is (O, ϵ)-backward distinguishable for some ϵ > 0. Using the Chen-Fliess basis functions
with multi-indices truncated to length K and a sufficiently small time window length ∆ < ∆̄/2 =

1/2(m + 1)M0M2, there exist constants C ,C ′ > 0 such that for sufficiently large t ≥ 0,∫ t

0
∥x̂ (τ) − x (τ)∥dτ ≤ C

∫ t

0
∥ ¤x (τ)∥dτ + C ′. (52)

Remark 3 The conclusions of the two theorems are similar, with the difference in formality that
Theorem 1 bounds the average squared observation error by the average squared variation of
states:

1

t

∫ t

0
∥x̂ (τ) − x (τ)∥2dτ ∼ O

(
1

t

∫ t

0
∥ ¤x (τ)∥2dτ

)
(53)

while Theorem 2 bounds the average observation error by the average variation of states:

1

t

∫ t

0
∥x̂ (τ) − x (τ)∥dτ ∼ O

(
1

t

∫ t

0
∥ ¤x (τ)∥dτ

)
. (54)

Remark 4 The form of the state observer:

¤θj (t ) = −η
(
Φ(t )θj (t ) −ψj (t )

)
. (55)

is a dynamical system involving the regressor Φ(t ) and the vector ψj (t ), both defined as an
integral within a time window [t , t +∆]. The integrals can be approximated numerically through
collocation:

Φ(t ) ≈ ∆
P∑
p=1

wpφ (t , δp )φ (t , δp )⊤, ψj (t ) ≈ ∆
P∑
p=1

wpφ (t , δp )xj (t + δp ), (56)

for some δp ∈ [0,∆], p = 1, . . . , P and ∑P
p=1wp = 1. For the computation of the basis φ (t , δp ),
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whose components are defined as recursive integrals Eµ (t , t + δp ) for µ ∈ É≤Km , a second layer of
collocation need to be used.

3.4 | Performance of Dimensionality Reduction

Finally when the states are not measured and KPCA is needed to reduce the dimension-
ality from z to principal components π1, . . . , πn , the performance of this KPCA must be
warranted. This is enabled by (i) bounding the error of online KPCA with respect to the of-
fline KPCA, and (ii) bounding the error of offline KPCA with respect to the true subspaces
underlying the data. For the first point, we have the following fact from Honeine.29
Fact 4 Using online KPCA, when m points have been included in the dataset, for each principal
component (as a function of z ) πi (·), i = 1, . . . , n :

∥πi (·) − π∗i (·)∥
2
H ≤ ν/ϱi . (57)

In the above inequality, ν is the hyperparameter used in the online KPCA algorithm controlling
the entry of new data. λi is the i -th largest eigenvalue of the kernel matrix G divided by m.
Here πi =

∑N
j=1 αi j κ (·, z (j )) is based on the normalization

∑N
j=1 α

2
i j = 1/N ϱi . π∗i is the principal

component that would have been obtained if these N points are treated with offline KPCA. The
norm is that of the reproducing kernel Hilbert space H , i.e., the linear space spanned by the
Gaussian kernel functions {κ (·, z (j )) |j = 1, . . . ,N } endowed with the inner product

⟨κ
(
·, z (j1)

)
, κ

(
·, z (j2)

)
⟩H := κ (z (j1), z (j2)) , j1, j2 = 1, . . . ,N . (58)

Denote P as the mapping from any data point z to its principal components under on-
line KPCA, and P ∗ the corresponding mapping if offline KPCA has been used. The above
conclusion implies that ∥P − P ∗∥ ≤ ν∑n

i=1 ϱ
−1
i . For simplification, we may assume that the

eigenvalues can be bounded by two geometric sequences.
Assumption 2 The n largest eigenvalues ϱ1, . . . , ϱn of the kernel matrix G satisfy the inequali-
ties:

qi −γ ≤ ϱi ≤ qi −γ, i = 1, . . . , n (59)
for some 0 < q ≤ q and γ > 1.

Under this assumption, we further obtain ∥P −P ∗∥ ≤ νnγ+1/q (γ +1). Then, let S be the sub-
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space specified by the online KPCA and S∗ be its offline counterpart. Define the distance
between subspaces:

d (S,S∗) := Åz ∥(projS − projS∗)ϕ (z )∥2 (60)
whereϕ (z ) is the feature vector of z that correspond to the kernel (i.e., κ (z , z ′) = ϕ (z )⊤ϕ (z ′)),
and the expectation Åz over z is evaluated under the true distribution of the sample. Under
this definition, we have

d (S,S∗) ≤ νnγ+1/q (γ + 1) =: ξ1(γ)ν. (61)
For the characterization of the distance between the offline KCPA and the actual mani-

fold, the complexity theory of subspace learning gives the following conclusion.42
Fact 5 Under Assumption 1, there is a constant ξ2 = ξ2(γ) > 0 such that if the sample points
are independently drawn from the underlying distribution, then with probability at least 1 − ϑ ,

d (S∗,S◦) ≤ ξ2(γ)
( ln(N /ϑ)

N

) (γ−1)/2γ
. (62)

Combining (61) and (62), we have
d (S,S◦) ≤ ξ1(γ)ν + ξ2(γ)

( ln(N /ϑ)
N

) (γ−1)/2γ
. (63)

Thus, when ν is small and N is large, the manifold recovered by online KPCA is close to the
true manifold where the samples z (·) reside.
Remark 5 The number of sample pointsN , under the online KPCA, in fact depends on the kernel
bandwidth σ and the threshold on new data entry ν. As we discussed in Subsection 2.3, N is
inversely proportional to the minimum distance between the sample points, which is given by
−2σ2 ln(1−ν/2). Thus, smallerσ and ν result in generalization error. On the other hand, asσ and
ν become small, (i) it takesmore time for online KPCA to obtain sufficient data points for accurate
projections, (ii) the principal components πi , i = 1, . . . , n as functions of z have steeper gradients
and thus more sensitive to potentially existing uncertainties, and (iii) the principal components
have larger variations and thus are harder for the online least squares to track. Therefore, these
two hyperparameters (especially σ ) should be well tuned.
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4 | CASE STUDIES

4.1 | Oscillator Dynamics and Online Chen-Fliess Series Estimation

To demonstrate the proposed approach, let us consider a planar dynamical system with
limit cycle behavior:

¤x1 = 1 + x 21x2 − 4x1, ¤x2 = 3x1 − x 21x2 (64)
This is the “Brusselator” model by Glansdorff and Prigogine that describes the kinetics of
an auto-catalytic reaction system.43 Suppose that a single output y = x1 + x2 is measured.
The initial condition is set as x (0) = [1, 1]⊤. For all the ODE simulations, a sampling interval
of 0.02 is chosen, and simple Euler forward difference is used. For the state observation
under the online least-squares estimation, we use a window ∆ that is 10 times the sampling
interval. The Chen-Fliess series is truncated after multi-indices of length 3. All the recursive
integrals involved are approximated by the trapezoid formula. The state trajectories, along
with the online state estimates, are shown in Fig. 2. It is seen from here that the estimates
x̂1, x̂2 track the actual states x1, x2 with reasonable accuracy. The discrepancies are more
significant at the times when the states undergo rapid changes (e.g., at the sharp peaks of
x1 and sharp valleys of x2). This is in accordance with the online optimization theory that
the performance is relate to the variation of states.

Here, the observer update rate, or the online learning rate, η, is determined through
tuning, so that the online optimization is adaptive enough while not so radical as to result
in instability (which occurs when η ≥ 10 approximately). To empirically determine η, the
effect on the resulting average observation error ∥e ∥ := √∫ tmax

0
∥x̂ − x ∥2d t/tmax is plotted

(see Fig. 3). Here tmax stands for the simulation duration. We choose η = 1 for this system,
when the average state observation error has become small and further reduction is slow,
and fix this value in the following discussion in the absence of actual state measurements.
4.2 | Oscillator Dynamics and Dimensionality Reduction

Next, let us examine the case when the states are not measured and KPCA is adopted. To
immerse the states into Ò3, we assign the KKL linear dynamics with poles 0.5, 1.0, and 2.0.
For online KPCA, we let the update rate be λ (t ) = λ0/(1 + t/τλ) = 1/(1 + t ) based on the
intuition that the update should match the inherent dynamics of the process. By varying
ν between 0.01 and 0.1, the generated results are found to be similar. Therefore, we fix
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F IGURE 2 Online least squares for the Chen-Fliess series for state observation in theoscillator system (η = 1).

10−1 100

η

0.6

0.8

1.0

1.2

1.4

‖e
‖

F IGURE 3 Dependence of average observation error on the observer rate for theoscillator system.
ν = 0.05 and tune the kernel bandwidth σ as the key hyperparameter in online KPCA. Four
different choices of σ are considered – 0.1, 0.3, 0.5, and 1. The data points obtained during
the execution of online KPCA are shown in Fig. 4.

Due to the oscillatory dynamics, most of the data points in the 3-dimensional z -space
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F IGURE 4 Datasets gathered during online KPCA under different kernel bandwidthsfor the oscillator system (λ0 = 1, ν = 0.05).
collected during online KPCA lie around a corresponding periodic orbit. We initialize the
online KPCA not at t = 0 but at t = 10, when the dynamics has settled on the limit cycle.
At the initialization of the online KPCA, we randomly choose n = 2 points on the trajectory
during t = 5 and t = 10 as the initial data points, and assign the principal vectors as α = In .
This is intended to avoid initializing α with singular directions that would hinder the update
(e.g., if only one data point is used, then α2 = [0, 0] and the second principal component
will remain 0 without any update; if two very close data points are used, then the two
principal components are difficult to be orthogonalized). This random initialization explains
the outliers points on the plots in 4. Based on these plots, σ = 0.5 is selected.

Under the online KPCA, the transformed states z (t ) ∈ Ò3 are reduced to a 2-dimensional
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trajectory of principal components π (t ). To see that the π (t ) can be viewed as equivalents
of the underlying states through a diffeomorphism, the phase portraits of x (t ), z (t ), and
π (t ) are shown in Fig. 5. It can be seen that the trajectories of π (t ) is topologically simi-
lar to that of x (t ), with the main difference in the scaling of the two coordinates. On the
other hand, the bottom left part of the limit cycle, approximately the curve segment from
(0.5, 3.5) to (3.5, 1.4), are mapped to the plot of principal components with a distortion into
a protruding part. That is to say, although x → π is still diffeomorphic, the corresponding
mapping appears be much steeper in this region. This corresponds to the stage when x1
rapidly increases and x2 rapidly decreases, which occurs for a time duration of only about
0.2 within every period of 7.2 time units. With these, we claim that the principal compo-
nents can well reconstruct the unmeasured states in the majority of times when the states
vary smoothly.

Finally, an online least-squares approach is used to track the principal components with
a recursively updated Chen-Fliess series. The resulting trajectories are shown in Fig. 6,
indicating a good performance.
4.3 | Chaotic Dynamics

As a more complex example, we further examine a chaotic Lorenz dynamics, which can also
be viewed as the kinetics of a reactive system:44

¤x1 = 10(x2 − x1), ¤x2 = x1(28 − 10x3) − x2, ¤x3 = 10x1x2 − (8/3)x3. (65)
The measured output is y = x2. The initial condition is set as x (0) = [1, 1, 1]⊤. The sampling
time for simulation is 0.01. For the case when states are measurable, we still first consider
the effect of observer update rate on the average observation error ∥e ∥. By varying η from
0.01 to 10, it is found that ∥e ∥ declines as η increases (see Fig. 7). Empirically we set η = 5.
Under this tuning, the tracking of states by the online least squares is illustrated in Fig. 8.

In the absence of state measurements, the selection of the kernel bandwidth σ has a
significant impact on the resulting online KPCA. When choosing σ = 0.3, there exists a
long time duration in which the principal components appear to be very close to zero, as
newly encountered data in the chaotic dynamics have almost zero kernel function values
evaluated at the existing data when the bandwidth is too small. On the other hand, when
σ = 0.75, the a posteriori principal components π∗i (evaluated based on the offline KPCA)
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F IGURE 5 Phase portraits for the oscillator system (ν = 0.05, σ = 0.5, λ0 = 1).
have large discrepancies with their online counterparts, as the data update is too conser-
vative online. The plotting for the results under these two values are omitted for brevity.
A middle ground is chosen to be σ = 0.5. The plot of a posteriori principal components,
online principal components, and online least-squares tracked ones are shown in Fig. 9. At
this bandwidth, the ultimately obtained dataset by offline KPCA is shown in Fig. 10.

5 | CONCLUSIONS

In this paper, a data-driven approach has been proposed for state observation in nonlinear
systems. While generally the KKL observer is difficult to compute, this work utilizes the
affine structure underlying the KKL dynamics and considers the state observation prob-
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F IGURE 6 Principal components tracked by the Chen-Fliess series under onlineleast-squares for the oscillator system (ν = 0.05, σ = 0.5, λ0 = 1).
lem as a least-squares one for the Chen-Fliess series expansion, thus rendering the prob-
lem amenable to an online convex optimization algorithm based on a simple gradient flow.
The performance guarantee of this online state observer, under either a persistent excita-
tion condition or a boundedness assumption, can be derived, indicating that the average
(squared) observation error is bounded by the average (squared) variation of the states.

When the states are not measurable to make the problem a supervised learning one, a
KPCA algorithm as a nonlinear dimensionality reduction routine is proposed to act on a
nonlinearly transformed state signal, which is available from the linear dynamics of a KKL
observer. Thus, the KPCA-reduced states, which are diffeomorphic to the actual states,
can be tracked by the online optimization. In other words, with the help of a KKL observer
structure, even when the states are not measured, the problem can be regarded as a self-
supervised learning one. The KPCA algorithm implemented here is also an online version,
which allows data to be collected in real time and updates the coefficients in principal com-
ponents recursively. The complexity of the online KPCA is restricted ultimately.

The case studies on a two-dimensional oscillator dynamics (with a limit cycle) and a three-
dimensional chaotic dynamics have demonstrated the use of the proposed method. The
restriction is, however, that only autonomous systems are considered in this work. For
non-autonomous systems involving exogenous inputs, such a data-driven observation can
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F IGURE 7 Dependence of average observation error on the observer rate for theLorenz system.
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F IGURE 8 Online least squares for the Chen-Fliess series for state observation in theLorenz system (η = 5).
be more challenging, since the KKL observer will have a dynamics in the form of ¤z = Az +
By + ω (z )u with an unknown term ω (z ) present.21 This problem, as well as its application
in data-driven control approaches will be investigated in future research.
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F IGURE 10 Dataset in KPCA for the Lorenz system (η = 5, ν = 0.05, λ0 = 5, σ = 0.5).The z4 component is indicated by the marker color under the “jet” color map.
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NOMENCLATURE
A,B Linear dynamics in the KKL observer
Az Attractor of observer states
a, b Index of two initial states
C Constants
Ã Field of complex numbers
D Diameter
d Distance
E Recursive integral
Å Expectation
e Observer error
F Process state equation
G Kernel matrix
g Observer state equation
H Process output equation
H Reproducing kernel Hilbert states
h Observer output equation
I Unit matrix
É Multi-index set
i Index for process states
id Identity mapping
Im Imaginary part
J Objective function
j Index for process outputs or datapoints
K Maximum multi-index length for trun-cation
k Multi-index length; Discrete time
L Lie derivative
M Constants
m Dimension of process outputs
N Number of data points
n Dimension of process states
nz Dimension of observer states

O Open set
O Order of magnitude
P Projection onto principal coordinates
q , q Constants in eigenvalue decay
Ò Field of real numbers
r Residual in Chen-Fliess series trunca-tion
Re Real part
S Subspace
∫ Dummy time variable
T Immersion transform
t Time
U Upper triangular matrix
X ODE solution
X Process state space
x Process states
y Process outputs
Z Observer state space
z Observer states
α Coefficients in principal vector
α∆ Constant in persistent exciation
β Regression for kernels in online KPCA
γ Decay rate of eigenvalues
∆ Time window for Chen-Fliess series
δ Time duration
ϵ Small positive real number
ε Small positive real number
η Update rate in online least squares
θ Parameters to be estimated
ϑ Small positive real number
κ Kernel function or vector
Λ Set of eigenvalues of A
λ Eigenvalues of A; Update rate in on-line KPCA
µ Multi-index
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ν Threshold in online KPCA
ξ Complexity terms
π Principal components
ρ Decay rate of observation error
ϱ Eigenvalues of kernel matrix
σ Kernel bandwidth
ς Backward time
τ Time constant; Dummy time variable
τ∗ Sampling time
Φ Regressor matrix
φ Basis vector
ϕ Feature mapping
ψ Label vector for regression

ω Short-hand notation for terms
∅ Empty multi-index
+ Gradient operator
∼ On the order of
A ⪰ (⪯)B A − B is positive (negative)semidefinite
† Left-inverse mapping
∗ Optimal estimate; Offline estimate
◦ True value
X̄ Closure of set X
x̂ Estimation of x
¤x Time derivative of x
x̃ Increment of x
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