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Abstract

Reliable estimates of population size and demographic rates are central to assessing the status of threatened species. However,
obtaining individual-based demographic rates requires long-term data, which is often costly and difficult to collect. Photographic
data offer an inexpensive, non-invasive method for individual-based monitoring of species with unique markings, and could
therefore increase available demographic data for many species. However, selecting suitable images and identifying individuals
from photographic catalogues is prohibitively time-consuming. Automated identification software can significantly speed up this
process. Nevertheless, automated methods for selecting suitable images are lacking, as are studies comparing the performance
of the most prominent identification software packages. In this study, we develop a framework that automatically selects images
suitable for individual identification, and compare the performance of three commonly used identification software packages;
Hotspotter, I3S-Pattern, and WildID. As a case study, we consider the African wild dog Lycaon pictus, a species whose
conservation is limited by a lack of cost-effective large-scale monitoring. To evaluate intra-specific variation in the performance
of software packages, we compare identification accuracy between two populations (in Kenya and Zimbabwe) that have markedly
different coat colouration patterns. The process of selecting suitable images was automated using Convolutional Neural Nets
that crop individuals from images, filter out unsuitable images, separate left and right flanks, and remove image backgrounds.
Hotspotter had the highest image-matching accuracy for both populations. However, the accuracy was significantly lower
for the Kenyan population (62%), compared to the Zimbabwean population (88%). Our automated image pre-processing
has immediate application for expanding monitoring based on image-matching. However, the difference in accuracy between
populations highlights that population-specific detection rates are likely and may influence certainty in derived statistics. For
species such as the African wild dog, where monitoring is both challenging and expensive, automated individual recognition
could greatly expand and expedite conservation efforts.
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Running head: Automating African wild dog recognition

Abstract

Reliable estimates of population size and demographic rates are central to assessing the status of threatened
species. However, obtaining individual-based demographic rates requires long-term data, which is often costly
and difficult to collect. Photographic data offer an inexpensive, non-invasive method for individual-based
monitoring of species with unique markings, and could therefore increase available demographic data for
many species. However, selecting suitable images and identifying individuals from photographic catalogues
is prohibitively time-consuming. Automated identification software can significantly speed up this process.
Nevertheless, automated methods for selecting suitable images are lacking, as are studies comparing the
performance of the most prominent identification software packages.

In this study, we develop a framework that automatically selects images suitable for individual identification,
and compare the performance of three commonly used identification software packages; Hotspotter, I3S-
Pattern, and WildID. As a case study, we consider the African wild dog Lycaon pictus , a species whose
conservation is limited by a lack of cost-effective large-scale monitoring. To evaluate intra-specific variation
in the performance of software packages, we compare identification accuracy between two populations (in
Kenya and Zimbabwe) that have markedly different coat colouration patterns.

The process of selecting suitable images was automated using Convolutional Neural Nets that crop individuals
from images, filter out unsuitable images, separate left and right flanks, and remove image backgrounds.
Hotspotter had the highest image-matching accuracy for both populations. However, the accuracy was
significantly lower for the Kenyan population (62%), compared to the Zimbabwean population (88%).

Our automated image pre-processing has immediate application for expanding monitoring based on image-
matching. However, the difference in accuracy between populations highlights that population-specific de-
tection rates are likely and may influence certainty in derived statistics. For species such as the African wild
dog, where monitoring is both challenging and expensive, automated individual recognition could greatly
expand and expedite conservation efforts.

Key words: automated individual recognition, Hotspotter, I3S-pattern, Lycaon pictus, photographic iden-
tification, Wild-ID

1. Introduction

Reliable estimates of population size and demographic rates are central to monitoring the status of threat-
ened species. However, obtaining individual-based demographic parameters requires long-term data, gath-
ered through intensive monitoring that is often costly and difficult to conduct (Horswill, Humphreys &
Robinson, 2018; Caughlan, 2001). Identification of individuals from photographic records could provide an
inexpensive alternative, and open up the possibility of using camera traps and citizen scientists to expand
the spatial coverage of monitoring (Seber, 1965; Marnewick et al., 2014; Wearn & Glover-Kapfer, 2019).
This method can be used for species where individuals can be identified from individual markings, including
many threatened species (Durant et al., 2014, Pierce & Norman, 2016).

Photographic records have already been used to estimate demographic parameters in several endangered
species. For example, long term photographic data have been used to obtain survival and abundance esti-
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mates of tigers Panthera tigris and cheetahs Acinonyx jubatus (Karanth & Nichols, 2011; Kelly et al., 1998),
and tourist images have been used to estimate population sizes of whale sharksRhincodon typus (Davies et
al., 2013). In addition, photographs can provide data on individual movement, ranging behaviour, and social
structure (Randić et al., 2012; Armstrong et al., 2019). Many species are photographed frequently as part
of monitoring programs, and by members of the public, including tourists. Such image catalogues therefore
represent a large, and potentially under-used, data resource that inform conservation action.

Nevertheless, visually identifying all individuals in large image databases is time-consuming. To partly
automate this process, several software packages are available to match images based on an individual’s
unique body markings (e.g. APHIS and WildID, Óscar et al. , 2015; Bolger et al. , 2012). These image-
matching software packages assist the user by ranking potential image matches using a similarity score. The
algorithms underpinning the software packages find these potential matches by comparing images on either
a pixel-by-pixel or feature basis. Pixel-based algorithms, such as APHIS, have been successfully applied to
numerous species, including horseshoe whip snakes Hemorrhois hippocrepis and Balearic lizardsPodiarcis
lilfordi (Óscar et al., 2015; Rotger, 2019). However, they are susceptible to differences in camera angle,
scale, and cropping (Matthé et al., 2017), and are therefore unsuitable for animals that cannot be caught
and photographed using a standardised methodology. By contrast, feature-based software packages, such
as Wild-ID (Bolger, 2012), I3S-Pattern (Reijns, 2014) and Hotspotter (Crall et al., 2013), match images
based on unique features including spots, stripes, blotches, or other marks. The algorithms that feature-
based packages use vary, but all have a higher tolerance to differences in camera angle, scale, and lighting
conditions than pixel-based algorithms. However, researchers are still required to select images that are
suitable for identification, in that the distinctive marks must face the camera and must be clearly visible.
Furthermore, when these suitable images are selected, the user has to crop the region of interest from the
image, which is laborious, potentially preventing the application to large image catalogues (Miguel et al.,
2019).

The feature-based packages have been tested on a range of taxa (Table 1), and the reported proportion of
true matches that the software detects, i.e., accuracy rate, varies markedly, ranging between 36% and 100%.
This variation can be attributed to differences in species markings, image quality, size of database, how
many potential matches were inspected per image, and the image-matching software used (Nipko, Holcombe
& Kelly, 2020; Matthé et al., 2017; Crall et al., 2013). Studies directly comparing the accuracy of different
feature-based packages are considerably more limited, even though the most accurate software differs between
species. For example, studies on jaguarsPanthera onca, ocelots Leopardus pardalis , and Saimaa ringed seals
Phoca hispida saimensis found that Hotspotter outperformed Wild-ID (Nipko et al. 2020, Chehrsimin et
al. 2018), whilst studies on amphibian species found that Wild-ID outperformed I3S-Pattern (Nipko et al .,
2020, Matthéet al. , 2017), and Hospotter (Morrison et al ., 2016). The only study that directly compared
all three software packages found that Hotspotter was superior to I3S-pattern and Wild-ID for identifying
individual green toads Bufotes viridis (Burgstaller, Gollmann & Landler, 2021). To date, studies comparing
image-matching accuracy across all three software packages for a mammal species are lacking.

African wild dogs Lycaon pictus (hereafter ‘wild dogs’) have unique coat markings, which vary between
individuals (Figure 1, Maddock & Mills, 1994). Wild dogs are classified as globally endangered, and a lack
of cost-effective large-scale monitoring has been highlighted as a major limitation in developing effective
conservation strategies (Woodroffe & Sillero-Zubiri, 2020). Consequently, there is a pressing need to devise
new approaches for monitoring wild dogs. Demographic processes of African wild dogs are typically studied
by monitoring a subset of individuals fitted with tracking collars (Woodroffe et al. , 2019; Rabaiotti et al
2021; Jenkins et al. , 2015). Such collar-based monitoring is labour-intensive and expensive, so upscaling is
difficult. However, many wild dog packs have already been systematically photographed as part of monitoring
programs, and many are also regularly photographed by tourists. Therefore, photographic identification of
wild dogs potentially offers a non-invasive, cheaper approach for monitoring, and could reduce uncertainties in
demographic rates and expand the spatial representation of monitoring (Maddock & Mills, 1994; Marnewick
et al., 2014).
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Wild dog coat patterns contain tan, white, and black patches that can vary considerably between populations.
For example, wild dogs in eastern African populations tend to have coats consisting of predominantly black
fur, whilst those in southern African populations have relatively more white and tan blotches (Figure 1,
McIntosh, Woodroffe & Rabaiotti, 2016). In amphibian species with contrasting colour patterns of similar
blotches, Wild-ID, Hotspotter, and I3S-Pattern have been shown to effectively match images of the same
individual, reaching accuracy rates of up to 97% (Matthé et al., 2017; Burgstaller, Gollmann & Landler,
2021). Therefore, it is likely that feature-based image matching algorithms will effectively identify individual
wild dogs from image catalogues. However, variation in the degree of contrast in the colour patterns amongst
populations could affect the image-matching accuracy, and the best performing software package could
therefore also vary between populations.

In this study, we develop a method to automatically isolate and crop images from catalogues that are
suitable for automated image-matching. We then use these images to compare the efficacy of three feature-
based software packages with different underlying image-matching algorithms (I3S-Pattern, Hotspotter, and
Wild-ID; Reijns, 2014; Bolger, 2012; Crall et al. , 2013). Finally, we compare whether there is a difference in
the accuracy of each software package between two populations with differing coat patterns.

2. Methods

2.1 Image datasets

To examine whether the performance of feature-based image matching software packages varies for different
populations of African wild dogs, we considered image catalogues from two wild dog populations, one that
spans Laikipia, Samburu, and Isiolo Counties in Kenya (37°2’E, 0deg6’N) and another from the Save Valley
Conservancy in Zimbabwe (32deg4’E, 20deg3’S). The Kenyan dataset contained images taken between 2004
and 2017 (n = 9139), and the Zimbabwean dataset contained images taken between 2010 and 2013 (n = 2066).
In Kenya, these images were taken with ten different cameras (Olympus(c) C765UZ, Canon(c) PowerShot
A720IS, EOS Digital Rebel XT, 10D, 40D, and 60D, Fujifilm(c) FinePix S5500, Kodak(c) Easyshare Z1015IS,
Nikon(c) D70s, and Nikon(c) Coolpix90). In Zimbabwe, they were taken with five different cameras (Canon(c)
EOS 450D, 20D, and Digital Rebel XT, and Panasonic(c) DMC-FZ20, and Zoran(c) Coach). Both datasets
were collected as part of long-term monitoring programmes, and contained images of both single wild dogs
and groups of wild dogs, ranging in their posture from lying down to walking.

2.2 Pre-processing steps

To automate the selection of suitable images for image-matching we developed a five-step image pre-
processing method (Figure 2).

2.2.1 Detecting and cropping individuals from images

The aim of the first step in the image pre-processing method was to automatically detect and crop wild
dog individuals from the images. To do this, we used the Microsoft AI for Earth MegaDetector (hereafter
‘MegaDetector’, Beery, Morris & Yang, 2019) that automatically detects and crops animals in images. We
assessed the efficacy of this method by visually recording the presence of wild dogs in a subset of 1060 images
from the Kenyan dataset and 246 images from the Zimbabwean dataset, and comparing the results to the
cropped images (hereafter ‘crops’) produced by the MegaDetector for the same subset of images. In this
way, we obtained the MegaDetector’s number of true positives (wild dogs that were successfully detected),
false positives (detections which did not contain a wild dog), and false negatives (wild dogs which were found
by visual inspection, but not by the MegaDetector). All images contained wild dogs, so there were no true
negatives in the dataset.

2.2.2 Aspect-ratio filtering

The aim of the second step in the image pre-processing method was to filter out images that were unsuitable
for identification due to the individual’s body rotation in the image. We considered crops suitable for image-
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matching if approximately [?]80% of the individual’s flank was visible, and the angle between the image axis
and animal’s flank was less than approximately 30deg, i.e., the flank was facing the camera. Crops where
the angle between the image axis and the animal’s flank was more than 30deg were expected to be narrower
than crops suitable for image-matching and therefore demonstrate a relatively low aspect-ratio. By contrast,
crops where the flank was concealed because the individual was lying down, or obscured by vegetation,
were expected to be considerably wider and demonstrate a relatively high aspect-ratio. These criteria were
visually assessed for the crops that the MegaDetector produced in the previous step. We then calculated
the range of aspect-ratios for suitable crops, i.e., where an unobscured flank was facing the camera, using
the “jpeg” package (Urbanek, 2021) in Program R (version 4.0.4, R Core Team, 2020). Images with an
aspect-ratio outside of this range were removed from the dataset.

2.2.3 Selecting standing individuals

Not all sitting or lying individuals could be filtered out solely using image aspect-ratios. Therefore, the
aim of the third step in the image pre-processing method was to filter out the remaining crops that were
unsuitable for identification because the individual’s body position, i.e. sitting or lying, obscured the full
coat pattern. To do this, we trained a Convolutional Neural Net (CNN) to classify crops as either a standing
wild dog or a sitting wild dog. To obtain data to train this image classifier, we used the full image catalogues
from both sites (n = 11205). The crops produced by steps 1 and 2 of the pre-processing (n = 21745) were
then manually classified as either containing a standing wild dog (n = 13500) or sitting wild dog (n = 6512).
We removed all crops depicting anything other than wild dogs (e.g., birds, rocks or logs), or wild dogs where
it could not be confirmed whether they were standing or sitting, because only a small part of the animal
was visible (n = 1733). We trained a CNN using the remaining 20012 pre-processed crops, to classify these
as containing either a standing wild dog or not. The CNN was made using Tensorflow (Abadi et al., 2016)
in Python (Version 3.6.10). The model was trained with 16012 crops, validated with 2000 crops, and tested
with 2000 crops.

CNN’s consist of convolutional layers (Albawi, Mohammed & Al-Zawi, 2017): filter layers which digitally
‘slide’ over the image and aim to recognise specific features. The convolutional layers pass a map of specific
features to the next layer, a Max Pooling layer. The Max Pooling layer reduces the resolution of this feature
map, thus reducing the importance of the position of features within this map. This step can help prevent
the model from becoming too fine-tuned to the training data, which causes over-fitting and reduces the
generalisability of the classifier. After this, a dropout layer is applied, which randomly removes 50% of
connections made between layers. This benefits the model by teaching it to recognise robust features, again
preventing over-fitting. The data are then passed on to a flattening layer, which turns the data into a 1-
dimensional string, which is passed onto the final two layers. Firstly, the string goes through a layer which
connects all the data from the previous layer and produces prediction scores from the inputs. Secondly,
another layer turns these scores into a single prediction: standing, or not standing (for a more detailed
description of CNNs, see O’Shea & Nash, 2015 and Albawi, Mohammed & Al-Zawi, 2017).

The number of convolutional layers and the size of the filters that they comprise was optimised using
KerasTuner (O’Malley et al., 2019). KerasTuner runs CNNs with a range of values, and automatically
selects the model with the highest validation accuracy, i.e., the proportion of correct classifications on the
validation database. KerasTuner ran CNNs with between one and three convolutional layers, with 16, 32
and 64 filters per layer, and with a kernel size (the number of pixels in the filters) of 3x3 pixels. This was
done for 20 different random combinations for the number of convolutional layers and number of filters per
layer. Test runs showed that the maximum accuracy was reached before the 70th epoch, and therefore each
combination was run for 70 epochs, meaning that the training data were passed through the CNN 70 times.
The learning rate of the model, that is, the speed at which the model improved itself, was also optimised
with KerasTuner, testing a rate of 10-3, 10-4, and 10-5, with the optimal number of convolutional layers. The
model with the highest test-accuracy was selected as the final model.

2.2.4 Separating left and right flanks
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The aim of the fourth step in the image pre-processing method was to separate crops depicting left- and
right-flanks of a wild dog, because image-matching software packages can only match images for one side
of the animal. To do this, we made another CNN to automate the separation of left- and right-flanks. To
obtain training data for this CNN, we visually classified all crops of standing dogs used for the CNN in step
three (n = 12357) whose side was facing the camera, as showing the right (n = 6140) or left flank (n = 6217).
We optimised this CNN’s parameters as described in step three of the image pre-processing method, using
KerasTuner to find the optimal number of convolutional layers and learning rate. Each CNN ran for 100
epochs, because test runs showed that this model took longer than the previous model to reach its maximum
accuracy. The first layer of this CNN was an average pooling layer, a layer which reduced the resolution of
the input images by a factor of four, which prevents overfitting. This layer was added to this CNN, because
preliminary runs showed this CNN was more prone to overfitting than the CNN developed in step three of
the image pre-processing method. We used 9857 crops as training data, 1246 as validation data, and 1246
as testing data. All other layers were equal to the previous CNN. For the full model conditions, see Table
S1 in Supporting Information.

2.2.5 Image background removal

Lastly, we removed the image backgrounds of suitable images using the “rembg” package in Python (Gatis,
2020). We removed image backgrounds to remove the risk of the background confounding image-matching
results, while eliminating the need to manually select an individual’s flank.

2.3 Image-matching software packages

We compared the performance of three feature-based image-matching software packages that differ in the
underlying algorithms used to match individuals: I3S-Pattern (Reijns, 2014), WildID (Bolger et al., 2012)
and Hotspotter (Crall et al., 2013). All three assist the user by listing potential matches for each image,
ranked by a similarity score. The user then confirms which of these potential matches are true matches.

2.3.1 I3S-Pattern

I3S-Pattern uses the Speeded-up Robust Features (SURF) algorithm (Reijns, 2014; Bay et al., 2008) that
selects key points and compares each image-pair in a dataset based on the size and position of these key
points. The software requires the user to select three reference points per image, as well as the outline of the
animal. As reference points, we used the base of the tail, the withers (i.e., the ridge between the shoulder
blades), and the base of the neck (Figure S1).

2.3.2 Wild-ID

Wild-ID uses the Scale Invariant Feature Transform (SIFT) algorithm (Bolger et al., 2012; Lowe, 2004). It
requires the user to input crops of the region of interest: the part of the animal which bears unique marks.
The SIFT algorithm detects salient features regardless of their scale and viewpoint. For each image pair in
a database, these features are compared, both in how the features look, and how the different features are
positioned relative to each other. Based on these two characteristics, a goodness-of-fit score is computed per
image pair.

2.3.3 Hotspotter

Hotspotter also uses the SIFT algorithm to conduct pairwise comparisons (Lowe, 2004; Crall et al., 2013).
Users enter either entire pictures of individuals and select the rectangular region of interest, or image crops
containing the region of interest. Hotspotter supplements the pairwise comparisons used by Wild-ID with a
one-vs-many approach that uses a Local Naive Bayes Nearest Neighbour method (McCann & Lowe, 2012)
to take all of the images in the database into account when computing similarity scores.

2.4 Performance of the image-matching software

To test which image-matching software most accurately matched crops of the same individual, we created
two separate datasets for the Kenyan and Zimbabwean populations. To select suitable crops, we used

6
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the four-step image pre-processing method described above. We also visually inspected discarded crops to
avoid missing suitable crops. We then manually identified individuals from the dataset of right flank crops,
to provide a standard against which automated identifications could be compared, and randomly selected
two crops per individual. To prevent similar lighting conditions and posture from creating a bias towards
matching images of the same individual, we ensured selected images were taken on different days. The two
generated datasets consisted of 104 individuals from the Kenyan population, and 48 individuals from the
Zimbabwean population. To increase the dataset for the Zimbabwean population, we also included left-flank
crops for 41 individuals and horizontally mirrored the crops to enable comparison with the right-flank crops.
This increased the total number of unique flanks from the Zimbabwean population to 89. The coat pattern
of wild dogs differs between right and left flanks, and we have no reason to expect that including left-flank
crops would bias our results.

We analysed the Kenyan dataset with each of the three image-matching software packages: Hotspotter,
WildID, and I3S-Pattern. We then analysed the Zimbabwean dataset with Hotspotter and WildID. I3S-
Pattern was not tested with the Zimbabwean dataset because tests with the Kenyan dataset identified it to
be considerably less accurate than the other software packages and considerably more time-consuming to
input images and assign reference points.

We also examined whether image background removal increased the accuracy of WildID and Hotspotter.
I3S-Pattern requires users to manually select the outline of the animal in the program and therefore was
not included in this analysis, because it does not take the background into account in its default use.
We compared the image-matching results obtained using images from which we manually cropped just
the individuals’ flanks, with those based on crops of complete individuals from which the background was
automatically removed (see Figure S2). For three of the 178 images from the Zimbabwe site, the algorithm
did not crop out the wild dog, instead cropping out vegetation in the foreground. For these images, a
manually cropped flank of the wild dog was used.

To compare the image-matching performance of each software package, we examined the 10 crops identified as
most similar to the sample individual. We used the first 10 ranked images, as the best performing software’s
accuracy started levelling off around this rank, indicating that inspecting the first 10 image matches could
maximise recognition rates, while minimising the time spent visually inspecting and confirming potential
matches. We used a mixed effects logistic regression to test for differences in the efficacy of the software
packages. Here, the response variable was a binary variable describing whether or not an individual was
successfully matched in the first 10 ranked images, and software package was the explanatory variable.
Individual identity was included as a random effect to avoid pseudoreplication. Post-hoc pairwise comparisons
were carried out using Tukey contrasts. This analysis was performed separately for the Zimbabwean and
Kenyan datasets. Models were run using the “lme4” (v. 1.1-27.1, Bates et al., 2015) package in Program R
(R Core Team, 2020, version 4.0.4).

Previous studies have shown that the image-matching performance of different software packages is affected
by database size (Matthe et al., 2017). Therefore, to compare software performance on wild dogs from
Kenyan and Zimbabwean populations, we randomly selected a subset of the Kenyan individuals to equal the
number of identified individuals in the Zimbabwean dataset (n = 89). We then used the best performing
software package identified in the previous step of the analysis to rerun the image-matching analysis for both
datasets. Differences in software performance between the two populations were then assessed using a mixed
effects logistic regression with a binomial link function. The response variable in the model was whether
or not a match was detected in the first 10 ranked images, and study site (Kenya or Zimbabwe) was the
explanatory variable. To correct for possible differences in image quality, two proxies for image quality were
included in the model. Firstly, we included image size (total number of pixels of the crop) as a continuous
predictor. Secondly, all images were visually scored on a scale of 1 to 3, based on how well their distinct
marks could be recognised. This approach followed Nipko, Holcombe & Kelly (2020), where score 1 was
given to images that were out of focus, of a moving animal, or badly lit, score 2 was given to images of
intermediate quality, and score 3 was given to images where all features were clearly visible (for examples,
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see Figure S3). Score was included as a fixed effect, and individual identity was included as a random effect.
Furthermore, a Wilcoxon Rank Sum test was performed to test for differences between the quality score of
crops from Kenya and Zimbabwe. The model was fit using the “lme4” package (v 1.1-27.1, Bates et al., 2015)
in R (version 4.0.4, R Core Team, 2020).

3. Results

3.1 Automatic detection and aspect-ratio filtering

The Microsoft AI for Earth MegaDetector, which is designed to automatically detect and crop animals from
images, produced 2652 crops from the test dataset of 1306 images, meaning that on average, approximately
two detections were made per image. Of these, 2523 crops contained a wild dog (true positive rate = 0.951),
129 were false detections, such as rocks or vegetation (false positive rate = 0.049), while 531 wild dogs were
not successfully detected (false negative rate = 0.174). However, only five of these false negatives were images
suitable for image-matching. By contrast, the flank of the wild dog was not visible in the other 526 false
negatives. In total, 722 crops were suitable for identification using image matching software, of which five
were not detected by the automated processing (false negative rate = 0.007). For the 2652 crops that were
produced by the MegaDetector, all crops considered suitable for identification on visual inspection had an
aspect-ratio between 0.65 and 2.25. Applying the MegaDetector to the entire image dataset (n = 11205), as
opposed to the test dataset, resulted in 21745 crops. Of these, 5788 (21%) fell outside the suitable range of
aspect ratios and were therefore removed from the dataset.

3.2 Using Convolutional Neural Nets to filter out unsuitable images

The optimal conditions for the Convolutional Neural Net (CNN) trained to recognise wild dogs standing up
were two convolutional layers, with kernel sizes of 32 and 64, respectively, and a learning rate of 10-5. This
model achieved a training accuracy of 100%, a validation accuracy of 91% (95% C.I. 90 – 92), and a testing
accuracy of 90% (95% C.I. 88 – 91, Table 2). For the CNN designed to separate images of the left and right
flanks, the optimal conditions were three convolutional layers, one with a kernel size of 64 and two with
kernel sizes of 32, with a learning rate of 10-4. Its training, validation and testing accuracy were 100%, 96%
(95% C.I. 95 - 97), and 95% (95% C.I. 94 - 96), respectively.

3.3 Performance of the image-matching software packages

For both the Kenyan and Zimbabwean datasets, Hotspotter achieved the highest image-matching accuracy
(Figure 3). For the Kenyan dataset, using Hotspotter with crops of the full individual from which the
background was removed, was most effective. This method detected 62% of the matches in the 10 highest
ranked crops (Figure 3B). This was significantly higher than using manually cropped flanks of the individual
in both WildID (z = 5.0, p < 0.01) and Hotspotter (z = 2.8, p = 0.046), as well as crops of the full individual
in WildID (z = 4.7, p < 0.01) and I3S-Pattern (z = 5.0, p < 0.01).For the Zimbabwean dataset, Hotspotter
detected 88% of matches within the first 10 ranked images when the background was removed from a crops
of the full individual (Figure 3A). The matching performance was significantly lower when crops of just the
flank were used (z = 2.7, p = 0.03). Hotspotter with background removal performed significantly better
than WildID with background removal, (z = 4.7, p < 0.01), as well as WildID with crops of the flanks (z =
5.1, p < 0.01).

The probability of accurate image-matching occurring within the first 10 ranked images was significantly
higher for wild dogs from Zimbabwe than wild dogs from Kenya (OR = 9.64, 95% CI 3.65 - 15.63, Figure 4).
The proportion of matched individuals identified in this analysis was not significantly associated with image
size (X2

1 = 0.16, p = 0.69) or image quality (ORQuality Score 2 / Quality Score 1 = 0.89, 95% C.I. -2.26 – 4.04,
ORQuality Score 3 / Quality Score 1 = 1.82, 95% C.I. -2.20 – 5.83). In addition, the image quality score did not
differ between the populations (W = 15008, p = 0.33).
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4. Discussion

This study presents a novel framework for automating the individual recognition of species with distinct
marks. The framework includes an automated pre-processing method for identifying images suitable for
image-matching, and then using image-matching software for individual recognition. The automated pre-
processing method consists of five steps that (1) crop all images containing animals from a large database,
(2) filter out a portion of the unsuitable images based on image aspect ratio, (3) use convolutional neural
nets to select images of standing individuals (accuracy of 90%), (4) separate images into left and right flanks
(accuracy of 95%), and (5) remove image backgrounds. As a case study, we applied the described methods to
an image catalogue of African wild dogs and found that Hotspotter (Crall et al., 2013) was the most efficient
software package for matching images. Image-matching performance was also significantly improved by using
the full image of an individual from which the background was removed, as opposed to just the cropped flank.
Finally, we found that image-matching performance differed between populations of wild dogs with different
coat coloration patterns. This work showed that image-matching software could become a powerful method
for monitoring populations of African wild dogs. However, caution is needed as detection rates are likely to
vary between – and even within – populations. This could affect the certainty of derived population-specific
demographic parameters, such that careful consideration is needed to account for individual heterogeneity
in detection when large variation in coat colouration occurs within a population.

The automated pre-processing method presented in this study could eliminate the need to manually select
suitable images for image-matching and crop individuals from original photographs. This method thus
enables processing of large image catalogues where selection using visual inspection would be extremely time
consuming. We found that the method does discard a small number of suitable images, and therefore in
situations where it is important to include all suitable images, the pre-processing method outlined here could
also be used as a pre-sorting approach. The user could then visually review images that were classified as
not suitable, to prevent usable images from being discarded.

The described method of pre-processing is particularly useful for wild dogs, since an individuals’ posture
varies substantially between images. Images taken by tourists provide an opportunity to bolster and spatially
extend image catalogues. However, these images are also likely to contain many images unsuitable for
identification, as they are not taken for the purpose of identification. Accordingly, filtering unsuitable
images from these datasets using an automated approach could be especially timesaving. The described pre-
processing method is therefore highly suitable to species targeted by wildlife watching excursions, that have
distinctive marks and where individual posture influences image suitability, for example cheetahs, leopards
Panthera pardus , and tigers.

Hotspotter outperformed I3S-Pattern and Wild-ID at matching images of individual wild dogs. This find-
ing agrees with studies on green toads that compared Hotspotter and I3S-pattern (Burgstaller, Gollmann
& Landler 2021), as well as studies comparing Hotspotter and WildID (Nipko, Holcombe & Kelly, 2020;
Burgstaller, Gollmann & Landler, 2021; Chehrsimin et al., 2018). Nevertheless, this result is not ubiquitous.
Wild-ID was superior to Hotspotter at matching images for a blotched amphibian species, the Wyoming
toad Anaxyrus baxteri (Morrison et al., 2016). This indicates that the identification performance of different
software packages is dependent on species, even when two species’ patterns show similarities. Consequently,
we recommend that all three software packages are tested on new species before deciding on which one to
use.

Using crops of full individuals from which the background was removed significantly increased the image-
matching accuracy of Hotspotter, compared to using crops of just individuals’ flanks. This method also
speeds up image pre-processing by eliminating the need to manually crop the region of interest. The improved
accuracy is likely caused by two factors. Firstly, removing the background prevents images being matched
based on similar backgrounds, as the flanks are not perfect rectangles, meaning that crops of the flank also
contain some background (see Figure S2). Secondly, using complete individuals allows images to be matched
based on unique features on the legs, in addition to the flanks. This result is in line with studies on Saimaa
ringed seals Pusa hispida and Thornicroft’s giraffes Giraffa camelopardalis thornicrofti , which found evidence
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that using a full individual from which the background is removed, could result in a higher accuracy (Chermin
et al., 2018; Halloran, Murdoch & Becker 2015). However, neither of these previous studies statistically
tested whether background removal increased identification accuracy. Our study therefore provides the first
statistical evidence that background removal can increase the performance of image-matching software. This
also indicates that the common usage of Hotspotter, in which a rectangular region of interest is manually
cropped (e.g. Dunbar et al. , 2021; Nipko, Holcombe & Kelly, 2020), could be improved by removing the
image background.

Hotspotter was significantly better at matching images from Zimbabwean wild dogs, compared to Kenyan
individuals. The higher image-matching accuracy found for the Zimbabwean population is likely to reflect
the regional difference in wild dog coat colouration patterns. The Kenyan population has darker, more
uniform coats, consisting of large black patches, often with few white or tan areas (McIntosh, Woodroffe
& Rabaiotti, 2016, Daniels, Woodroffe & Rabaiotti, 2022). By contrast, the proportion of tan fur is ~1.5
times higher, and the proportion of white fur is almost 7 times higher for the Zimbabwean population
(Figure 1, Daniels, Woodroffe & Rabaiotti, 2022). Therefore, the higher contrast within the patterns of
the Zimbabwean wild dogs could make it easier for the software to match images of these individuals. The
identified relationship between image-matching performance and software package remained unaltered when
image quality and image size were included in analyses, and there was no significant difference between the
image quality scores between the Zimbabwean and Kenyan populations. The image quality score approach
was modelled after Nipko, Holcombe & Kelly (2020), who found that it significantly affected the probability of
matching ocelot and jaguar individuals. As a result, we are confident that the differences in coat colouration
patterns between wild dogs from Zimbabwe and Kenya reflect variation in identification performance between
populations.

Inter-population variation in image-matching performance indicates that detection probabilities derived from
using this approach will not be directly comparable between populations. Since the probability of finding
an accurate image-match depends on individual coat pattern, this finding highlights that individual het-
erogeneity in detection may also occur if large variation in coat colouration occurs within a population.
Capture-mark-recapture techniques assume individuals experience equal detection probability across a pop-
ulation (White and Burnham, 2009). Therefore, individual coat pattern may also need accounting for when
deriving survival estimates using such analysis. This also applies to other species whose coat pattern varies
regionally, such as Asian golden cats Catopuma temminckii and ocelots (Allen et al., 2011; Khan, Ali & Mo-
hammed, 2017). Furthermore, the coat patterns of other wild dog populations can differ considerably from
the two populations included in this study (McIntosh, Woodroffe & Rabaiotti, 2016, Daniels, Woodroffe &
Rabaiotti, 2022). Consequently, we advocate that estimating a population-specific image-matching accuracy
score becomes an essential pre-requisite step for applying these techniques in different locations.

Automatically pre-processing wild dog image datasets and using image-matching software facilitates the use
of archived and citizen science image catalogues where visually identifying all individuals would be extremely
time-consuming. Although the best performing image-matching software did not detect all matches, it could
be used to identify a large proportion of the individuals in a dataset. Afterwards, individuals that were not
matched to any other images could be visually identified, to prevent missing actual matches. Using image-
matching software in this way still saves time by rapidly identifying a large portion of the matches, without
compromising on accuracy. Furthermore, it is plausible that the likelihood of correctly detecting matching
images increases if more than two images per individual are included, for example if multiple viewpoints per
individual are present in a dataset, the probability of matching these is expected to increase (Crall et al.,
2013). Our accuracy values therefore represent a conservative estimate of Hotspotter’s true accuracy.

Our study indicates that image-matching could provide a valuable new approach for monitoring wild dogs.
A combination of citizen science and image-matching has already been successfully employed to monitor
other species, such as Blanding’s turtles Emydoidea blandingii and whale sharks (Araujo et al. , 2017; Cross
et al. , 2021). Similarly, previous studies have used tourist images to estimate the population size of wild
dogs in Kruger National Park, South Africa (Marnewick et al., 2014). Combining citizen science, image-
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matching software, and capture-recapture methods therefore has the potential to improve understanding of
wild dog demography. However, more research is needed to investigate whether photographic data could
improve our understanding of wild dog demography beyond population size, by estimating parameters such
as pack structure, dispersal rates, and death and birth rates. This can be achieved by applying image-
matching software to existing image datasets, to assess whether they generate enough data to estimate key
demographic parameters, or whether more intensive monitoring - for example using long term camera trap
surveys - would be necessary.

In conclusion, we have developed a new automated method for pre-processing image datasets, by automati-
cally cropping animals from images, removing images in which the individuals’ posture hinders identification,
separating left and right flanks, and removing the image background. This framework will enable large image
datasets to be analysed rapidly, thereby expanding monitoring efforts and expediting conservation action.
Furthermore, we have shown how well different image-matching software packages perform on African wild
dogs. Hotspotter outperformed the other software packages, while its performance differed between two
populations which exhibit intra-specific variation in their coat patterns. Our pre-processing method, in com-
bination with Hotspotter, has immediate application in research and monitoring efforts for wild dogs and
other species. Data obtained in this way could provide cost-effective large-scale monitoring for endangered
species, therefore supporting the implementation of effective conservation.
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Species Species
Software
package

Software
package

Accuracy
(%)

Accuracy
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Number of
inspected
ranks per
image

Number of
inspected
ranks per
image Reference Reference

Jaguar
(Pan-
thera
onca)

Jaguar
(Pan-
thera
onca)

Hotspotter Hotspotter 77 77 1 1 Nipko,
Hol-
combe
&
Kelly,
2020

Nipko,
Hol-
combe
&
Kelly,
2020

Ocelot
(Leop-
ardus
pardalis)

Ocelot
(Leop-
ardus
pardalis)

76 76
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Species Species
Software
package

Software
package

Accuracy
(%)

Accuracy
(%)

Number of
inspected
ranks per
image

Number of
inspected
ranks per
image Reference Reference

Jaguar Jaguar Wild-
ID

Wild-
ID

68 68

Ocelot Ocelot 63 63
Thornicroft’s
giraffe
(Gi-
raffa
camelopardalis
thorni-
crofti)

Thornicroft’s
giraffe
(Gi-
raffa
camelopardalis
thorni-
crofti)

Wild-
ID

Wild-
ID

71.6 71.6 20 20 Halloran
et al.,
2014

Halloran
et al.,
2014

Thornicroft’s
giraffe

Thornicroft’s
giraffe

Wild-
ID

Wild-
ID

100 100 1 1 Bolger
et al,
2012

Bolger
et al,
2012

Leopard
cat
(Prion-
ailurus
ben-
galen-
sis)

Leopard
cat
(Prion-
ailurus
ben-
galen-
sis)

Hotspotter Hotspotter 100 100 1 1 Park et
al.,
2019

Park et
al.,
2019

Jaguar Jaguar Hotspotter Hotspotter 100 100 1 1 Crall et
al.,
2013

Crall et
al.,
2013

Giraffe
(Gi-
raffa
giraffa)

Giraffe
(Gi-
raffa
giraffa)

100 100

Ambystoma
opachum

Ambystoma
opachum

I3S-
Pattern

I3S-
Pattern

30.8–
48.4

30.8–
48.4

10 10 Matthé
et al.,
2017

Matthé
et al.,
2017

Wild-
ID

Wild-
ID

65.9-
82.3

65.9-
82.3

Yellow-
bellied
toad
(Bombina
variegata)

Yellow-
bellied
toad
(Bombina
variegata)

I3S-
Pattern

I3S-
Pattern

88.6-92.0 88.6-92.0

Wild-
ID

Wild-
ID

96.4-
97.3

96.4-
97.3

Rio
grande
cooter
(Pseude-
mys
gorzugi)

Rio
grande
cooter
(Pseude-
mys
gorzugi)

I3S-
Pattern

I3S-
Pattern

41.94 41.94 20 20 Suriyamongkol
&
Mali,
2018

Suriyamongkol
&
Mali,
2018

Wild-
ID

Wild-
ID

66.13 66.13 20 20
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Species Species
Software
package

Software
package

Accuracy
(%)

Accuracy
(%)

Number of
inspected
ranks per
image

Number of
inspected
ranks per
image Reference Reference

Green
toad
(Bufotes
viridis)

Green
toad
(Bufotes
viridis)

I3S-
Pattern
Wild-ID
Hotspotter

I3S-
Pattern
Wild-ID
Hotspotter

~100 ~60
~60

~100 ~60
~60

1 1 Burgstaller,
Gollmann
&
Landler,
2021

Burgstaller,
Gollmann
&
Landler,
2021

Wyoming
toad
(Anaxyrus
baxteri)

Wyoming
toad
(Anaxyrus
baxteri)

Wild-ID
Hotspotter

Wild-ID
Hotspotter

53 36 53 36 20 20 Morrison
et al.,
2016

Morrison
et al.,
2016

Italian
crested
newt
(Tritu-
rus
carnifex )

I3S-
Pattern

I3S-
Pattern

100 100 5 5 Sannolo
et al.,
2016

Sannolo
et al.,
2016

Table 2 : The accuracy and 95% confidence intervals of the best performing Convolution Neural Nets aiming
to classify images of African wild dog into (1) those depicting an individual standing up and not standing
up and (2) those depicting left or right flanks.

Model Training Accuracy (%) Validation Accuracy (%) Testing Accuracy (%)

Standing/not standing classifier 100 91 (90 - 92) 90 (88 - 91)
Left/right flank classifier 100 96 (94 - 97) 95 (94 - 96)
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Hosted file

image3.emf available at https://authorea.com/users/594521/articles/628946-optimising-the-
automated-recognition-of-individual-animals-to-support-population-monitoring

Figure 2: A flowchart describing the image pre-processing steps applied to the combined Zimbabwean and
Kenyan image catalogue, illustrated using two example images. Images outlined in red are filtered out of
the dataset.

Hosted file

image4.emf available at https://authorea.com/users/594521/articles/628946-optimising-the-
automated-recognition-of-individual-animals-to-support-population-monitoring

Figure 3 : The proportion of true matches in the dataset that were detected within the top 20 ranked
images using different software packages for A) 89 Zimbabwean and B) 104 Kenyan African wild dogs, that
were visually matched as a reference.

Hosted file

image6.emf available at https://authorea.com/users/594521/articles/628946-optimising-the-
automated-recognition-of-individual-animals-to-support-population-monitoring

Figure 4 : The proportion of image matches detected within the 10 highest ranked images by Hotspotter
for the Zimbabwean and Kenyan populations (n = 89 individuals for both populations). Error bars denote
95% confidence intervals.

Supplementary Information for

Optimising the automated recognition of individual animals to support population monitoring

T.A. de Lorm, C. Horswill, D. Rabaiotti, R.M. Ewers, R. J. Groom, J. Watermeyer, R.
Woodroffe
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Table S1 The structure of a Convolutional Neural Net that classifies images of African Wild Dogs into
“standing” or “not standing” (S1.A), and a Convolutional Neural Net that classifies images of African Wild
Dogs into “left flank” or “right flank” (S1.B). The layers are given in the order at which they occur in
the model. The models were optimised using RMSprop, an algorithm which guides how the model improves
itself (Tieleman & Hinton, 2012). The activation column refers to which activation function was used in each
layer, which determines how the nodes within layers convert its input to an output-value. ReLu was used as
activator function, as this has been found to improve multi-layer networks (Glorot, Bordes & Bengio, 2011).
The last layer is activated with a Sigmoid function, which turns the input into a single, binary prediction
(“standing” or “not standing”, “left” or “right”).

S1.A

Layer Kernel size Activation

Convolutional 32 Rectified Linear Activator (ReLu) (Agarap, 2019)
Convolutional 64 ReLu
Max Pooling 2D NA NA
Dropout NA NA
Flatten NA NA
Dense 128 ReLu
Dense 1 Sigmoid

S1.B

Layer Kernel size Activation

Average Pooling 2D NA NA
Convolutional 32 ReLu
Convolutional 64 ReLu
Convolutional 64 ReLu
Max Pooling 2D NA NA
Dropout NA NA
Flatten NA NA
Dense 128 ReLu
Dense 1 Sigmoid
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Figure S1. An image with the reference points used for I3S-Pattern: (1) the withers, (2) the base of the
neck, and (3) the base of the tail.

Figure S2. The two ways in which WildID and Hotspotter were tested: with crops of the full individual
from which the background was removed (left), and manually cropped flanks of the individual (right).

Hosted file

image10.emf available at https://authorea.com/users/594521/articles/628946-optimising-the-
automated-recognition-of-individual-animals-to-support-population-monitoring

Figure S3. Three images representative of the image quality scores that were assigned to images included
in a Mixed Effect Logistic Regression. The regression tested whether there was a difference in the accuracy
of Hotspotter between the Kenyan and Zimbabwean population. The image quality score was included to
correct for any potential influence of image quality.
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