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February 7, 2023

Abstract

In this paper, we prove the well-posedness of a nonlinear wave equation coupled with boundary conditions of Dirichlet and

acoustic type imposed on disjoints open boundary subsets. The proposed nonlinear equation models small vertical vibrations of
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Abstract

In this paper, we prove the well-posedness of a nonlinear wave equation coupled with
boundary conditions of Dirichlet and acoustic type imposed on disjoints open boundary sub-
sets. The proposed nonlinear equation models small vertical vibrations of an elastic medium
with weak internal damping and a general nonlinear term. We also prove the exponential
decay of the energy associated with the problem. Our results extend the ones obtained by
Frota-Goldstein [18] and Limaco-Clark-Frota-Medeiros [26] to allow weak internal dampings
and removing the dimensional restriction 1 ≤ n ≤ 4. The method we use is based on a
�nite-dimensional approach by combining the Faedo-Galerkin method with suitable energy
estimates and multiplier techniques.
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1 Introduction

Let Ω be an open, bounded and connected set of Rn, n ∈ N, n ≥ 1. Assume that its boundary
Γ = ∂Ω is a compact and regular (n− 1)-manifold. Additionally, suppose that Γ is divided into
two disjoint sets in the following sense:

Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅,

where Γ0 and Γ1 are connected subsets of Γ both with positive measure in Rn−1. For T > 0,
we denote by Q = Ω × (0, T ), the time-cylinder of Rn+1 with lateral boundary Σ = Γ × (0, T ).
According to the above decomposition of Γ, we have

Σ = Σ0 ∪ Σ1, Σ0 = Γ0 × (0, T ), Σ1 = Γ1 × (0, T ).
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This paper aims to prove the existence and uniqueness of global regular weak solutions (see
De�nition 3.1) to the following nonlinear initial-boundary value problem

(1)



u′′(x, t)−M
(∫

Ω
|u(x, t)|2Rdx

)
∆u(x, t) + Φ(u(x, t)) + βu′(x, t) = 0, in Q

u(x, t) = 0, on Σ0,

f(x)υ′′(x, t) + g(x)υ′(x, t) + h(x)υ(x, t) = −ρu′(x, t), on Σ1

∂νu(x, t) = υ′(x, t), on Σ1,

u(x, 0) = u0(x), u′(x, 0) = u1(x), in Ω

υ(x, 0) = υ0(x); υ′(x, 0) = ∂νu0(x), on Γ.

We also prove the exponential decay of the energy associated with (1), see (13). Here ∆ and ∂ν
represent the usual Laplace and ν · ∇ operators in Rn, respectively. Moreover, ν is the outward
unit normal vector at Γ. The real constants β and ρ are positive. The functions M , f , g, h are
nonnegative functions withM , f and h strictly positive; and u0, u1 and v0 are initial conditions.

Let us explain the motivation to consider the nonlinear model (1) and declare previous
references. The rigorous mathematical foundation of acoustic wave propagation goes back to the
seminal works of Beale, and Rosencrans [4, 5, 6]. They introduced and studied the well-posedness
and spectral properties of the linear wave equation

u′′ − c2∆u = 0, in Q

subject to full acoustic boundary condition to model acoustic wave behavior of a �uid (gas)
undergoing small irrotational perturbations from rest in a bounded medium. Here c stands for
the sound speed of the medium. This corresponds to the case when M = c2, Φ ≡ 0 and β = 0
in (1)1. In this physical framework, it is natural to assume that the medium's boundary acts
like a spring or a resistive harmonic oscillator in response to the excess pressure in the �uid.
Such a boundary is called locally reacting. See for instance [35, pp. 259-264]. Thus, the normal
boundary displacement v(x, t) must satisfy the following spring equation, see (1)3:

(2) f(x)υ′′(x, t) + g(x)υ′(x, t) + h(x)υ(x, t) = −excess pressure = −ρu′(x, t), (x, t) ∈ Σ,

where for x ∈ ∂Ω, f(x) represent the �uid's mass, g(x) and h(x) act as weighted dissipative
and linear boundary displacement factors, respectively. Here ρ is the �uid's density and u′ the
velocity potential. The above equation must be complemented with an impenetrable condition.
Namely, the boundary Σ should act as an impenetrable barrier: the medium's interior �uid does
not go out Q and is not disturbed by some other exterior �uid. Mathematically, it reads as the
following Neumann condition, see (1)4:

(3) ∂νu(x, t) = υ′(x, t), (x, t) ∈ Σ.

We refer the reader to Beale and Rosencrans' work [4, 5, 6] and the reference therein for a com-
prehensive physical explanation of the linear wave equation with full acoustic boundary. Among
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other results, Beale and Rosencrans [4, 5, 6] proved existence, uniqueness and spectral properties
to (1)1 with M = c2, Φ = 0 and β = 0; and subject to (2)-(3), by using a suitable energy-norm
and Semigroup Theory.

For completeness, we also mention results strongly connected with Control Theory. Motivated
by vibration controllability matters, the authors in [21] considered localized internal damping
with partial acoustic boundary conditions to study

u′′(x, t)−∆u(x, t) + ω(x)u′(x, t) = 0, in Q.

The nonlinear coe�cient ω ∈ L∞(Ω) is a cuto� function with zero values close to ∂Ω. They
obtained uniform decay rates for the damped wave equations with nonlinear acoustic boundary
conditions using the multipliers method. See also [38] for polynomial decay of the energies with
smooth initial data. Note that this corresponds to the case M ≡ 1, Φ ≡ 0 and β = ω(x) in (1)1.
In [22], the authors studied a wave equation with semilinear porous acoustic boundary conditions.
They showed several decay rates of the energies depending on the damping's location, namely,
interior or boundary damping. This corresponds to the case when M ≡ 1, Φ(u) and βu′ are
replaced, respectively, by Φ(u′) and β(x)u in (1)1. Their method relies on showing that the en-
ergy associated with the system satis�es certain ODE. Explicit decay rates are obtained in cases
where the involved ODE is explicitly solved. Additionally, the solution blows up roughly when
the interior source dominates the interior damping term and if the boundary source dominates
the boundary damping. For related results, including numerical implementation and Laplace-
Beltrami operator instead of ∆, we refer the reader to [1]-[2], [9]-[10], and the references therein.

On the other hand, it is well-known that the evolution and behavior of acoustic waves are
highly nonlinear in real applications. In counterpart, mixed acoustic boundary conditions are
easy to imagine. One can think of a music auditorium designed so that a portion of the boundary
(for example, the ceiling) absorbs noise and another portion absorbs or re�ects acoustic waves
(for example, the lateral walls and �oor). The former can be modelled by (1)1 with acoustic
boundary condition like (1)3-(1)4, and the latter by assuming zero boundary Dirichlet data like
(1)2. This class of problems was �rst considered by Frota and Goldstein [18] to study the problem

(4) u′′ −M
(∫

Ω
|u(x, t)|2Rdx

)
+ β|u′|αu′ = 0, in Q,

where α > 1 and β > 0. This class of models is known in the literature as of Carrier type. To
avoid repeatedly mentioning mixed boundary conditions, we kindly refer readers to see details
of such conditions in the cited article. Unless otherwise indicated, the below-listed results are
also considered with these boundary conditions. At this point, it is enough to know that they
are similar to the ones in (1). The authors in [18] proved the existence and uniqueness of global
solutions to (4) by employing the Faedo-Galerkin method. It is worth mentioning that Frota and
Goldstein's work [18] was motivated to study nonlinear wave equations of Carrier and Kirchho�
type [8, 11]. Many authors have extended Frota, and Goldstein's seminal work [18]. Remark-
able examples of nonlinearities with weak and strong dissipative mechanisms were considered,
including damping, delay, and memory. In this direction, we quote the results in [1]-[3], [15]-[26],
[23]-[25], [28]-[29], [31]-[33], [36]-[37], [39], [45]-[46]; and the references therein. The main idea in
proving the works mentioned above is getting a-priori estimates in appropriate �nite-dimensional
Hilbert spaces to perform a Faedo-Galerkin method combined with multipliers methods (energy



4

estimates) and Semigroup Theory. We also mention the stability results in [19], where the au-
thors studied the energy decay associated with nonlinear wave equations of Carrier type. The
novelty in their results is that the acoustic boundary conditions are imposed with non-locally
reacting properties. See also [42]-[45] for more details.

Limaco et al. [26] considered acoustic wave equations with quadratic nonlinearities when the
dimension is restricted to 2 ≤ n < 4. They studied the case M(λ) = a + bλ with a > 0, b > 0,
and Φ(u) = u2. More precisely, Limaco et al. [26] considered equation (1) with (1)1 replaced by

(5) u′′(x, t)−M
(
a+ b

∫
Ω
|u(x, t)|2Rdx

)
∆u(x, t) + u2(x, t) + βu′(x, t) = 0, in Q.

In this case, the existence and uniqueness of solutions were performed by imposing the initial
data in bounded sets. It particularly holds when the initial data is small enough; see [26,
Theorem 1.1, condition (1.8) ]. We point out that the damping considered by Limaco et al.
[26] (βu′) is weaker than the one considered by Frota and Goldstein [18] (β|u′|αu′), see (4). It
induces several no mild consequences in the analysis. Thus, the method used in [18] can not
be straightforwardly implemented. Roughly, the weaker damping introduces integral terms of
the form

∫
Ω u

p dx (p ∈ N and odd) into the energy estimates, which can not be easily absorbed
due to sign issues, see (10) for details. This technical di�culty was overcome by choosing initial
data in suitable bounded sets. This idea goes back to Tartar [40]. We will closely follow this
clever idea in our proof. This is the main reason to consider initial data small enough or lying
in a bounded set: see condition (12) in Theorem 2.1 below. See the discussion in Remark 2.1.
We also mention the very recent well-posedness, and stability results for Kirchho� type equation
with acoustic boundary conditions [41] for

u′′(x, t)−M
(∫

Ω
|∇u(x, t)|2Rdx

)
∆u(x, t) + βu′(x, t) = 0.

Motivated by previous results, in this paper, we prove the well-posedness of the nonlinear
wave equation with acoustic boundary conditions (1). See Theorem 2.1. Exponential decay of
the energy is also obtained. See Theorem 2.2. In the following sense, our results extend the
ones declared in [18] and [26]. We allow dampings weaker than β|u′|αu′, namely, βu′; and non-
linearities of the form Φ(u) = up with p > 1 so that the case p = 2 is included. Additionally,
M(λ) = a+bλ is extended toM ∈ C1([0,∞),R) under certain growth condition, see (9). Finally,
the restriction on the dimension (2 ≤ n ≤ 4) is removed.

The remaining part of this paper is organized as follows. In Section 2, we introduce some
important notation, and we state our main results declaring the precise conditions on the involved
parameters, functions, and initial data. The well-posedness problem for the nonlinear system
(1) will be discussed in Section 3. We perform the Galerkin method to derive useful energy
estimates. In Section 4, we prove the exponential decay of the solutions for system (1). Finally,
some additional comments and open problems are presented in Section 5.

2 Notation and statement of main results

We �rst introduce a few notations. Let us consider a sub-space of H1(Ω) larger than H1
0 (Ω),

which is represented by V and de�ned by

V =
{
v ∈ H1(Ω); γ0(u) = 0 a. e. on Γ0

}
.
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Here γ0 : H1(Ω) → H1/2(∂Ω) stands for the continuous trace operator. It is well known [18]
that the Poincaré inequality is also true in V . This motivates to consider the inner product and
norm in V as

((u, v)) =

∫
Ω
∇u(x) · ∇v(x) dx and ‖u‖2V =

∫
Ω
|∇u(x)|2R dx.

Henceforth, the symbols (·, ·), (·, ·)Γ, ((·, ·)), | · |2, | · |2Γ and ‖ · ‖2 denote the inner products and the
norms in the Hilbert spaces L2(Ω), L2(Γ) and V , respectively.

Due to the continuity of the trace mapping γ0, and the continuous embedding of V into Lj ,
j = 2, 3, 4, we deduce that there exist positive real constants Cj , j = 0, 1, 2, 3, satisfying

|γ0(ϕ)|Γ ≤ C0‖ϕ‖; |ϕ| ≤ C1‖ϕ‖; |ϕ|L3(Ω) ≤ C2‖ϕ‖
and |ϕ|L4(Ω) ≤ C3||ϕ‖, for all ϕ ∈ V.

(6)

Let p ∈ R be chosen so that

p > 1, if n = 1, 2; 1 < p ≤ n

n− 2
, if n ≥ 3.

Under these conditions, we deduce that there exist positive constants Cp, C2p and Cn,p−1, so that

(7)

∣∣∣∣∣∣∣∣
‖ϕ‖Lp+1(Ω) ≤ Cp‖ϕ‖,
‖ϕ‖L2p(Ω) ≤ C2p‖ϕ‖,
‖ϕ‖Ln(p−1)(Ω) ≤ Cn,p−1‖ϕ‖,
for all ϕ ∈ V.

Let move to consider the conditions imposed over the functions M , f , g, h; and the initial
conditions u0, u1 and v0. To ensure the strictly positive conditions, we assume f, g, h ∈ C0(Γ)
being real-valued functions and the existence of positive constants f1, g1 and h1 such that

(8) 0 < f1 ≤ f(x), 0 <
C2

0βρ

2
≤ g1 ≤ g(x) and 0 < h1 ≤ h(x) for all x ∈ Γ.

Above C0 > 0 is de�ned in (6) and β and ρ as in (1). Additionally, we assumeM ∈ C1([0,∞);R)
is strictly positive and satis�es the following growth condition

(9) 0 < r0 6M(λ),

∣∣M ′(λ)λ1/2
∣∣

M(λ)
6 r1, for all λ > 0,

where r0 and r1 are positive suitable constants. Note that the functional studied in [26], namely
M(λ) = a + bλ �see also (5)� trivially holds condition (9). In the same fashion, assume that
there exist positive constants b0, b1, and b2 such that Φ ∈ C1(R) is a real function and∣∣∣∣∣∣∣∣∣∣∣∣

|Φ(s)| ≤ b0|s|p,

|Φ′(s)| ≤ b1|s|p−1,

|Φ(s)| ≤ b2|s|p+1, Φ(s) :=

∫ s

0
Φ(σ)dσ

(10)
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For simplicity, and after normalization, we should consider b0 = b1 = b2 = 1.
The existence of regular weak solution for the mixed problem (1) is established by assuming

u0 ∈ V , u1 ∈ H2(Ω) and υ0 ∈ L2(Γ). The following positive constant will repeatedly appear in
our computations

Λ0 =
3ρ

2
|u1|2 +

3ρ

8
|u0|2 +M

(
|u0|2

)[
ρ ‖u0‖2 +

(∣∣∣∣f1/2∂u0

∂η]

∣∣∣∣2
Γ

+
∣∣∣h1/2υ0

∣∣∣2
Γ

)]
(11)

+
2

p+ 1
ρCp+1

p ‖u0‖p+1 .

Now, we are in a position to state the �rst main result of this paper.

Theorem 2.1. Assume that hypotheses (6)-(10) are satis�ed. Then, for each (u0, u1, υ0) ∈
V ∩H2(Ω)× V × L2(Γ) such that

(12)
4C1√
r0

∣∣M ′ (|u0|2
)∣∣Λ0 +

2C2
1

(
M ′
(
|u0|2

))2
ρβr2

0

Λ2
0 +

ρβ

2

(
2

ρr0

) p−1
2

Cp+1
p Λ

p−1
2

0 <
ρβr0

8
,

there exists a unique regular global weak solution (u, υ) of (1).

Remark 2.1. We emphasize that the initial conditions u0, u1, and v0 can not be arbitrarily large.

They must belong to an a-priori bounded set in Sobolev spaces. Indeed, suppose that, for instance,

u0 is arbitrarily large so that we can construct a sequence (u0,n)n∈Z with

lim
n→∞

|u0,n| = +∞.

For each n ∈ Z, let us denote by Λ0,n the positive number in (11) with u0 replaced by u0,n. Since
3ρ
8 |u0,n|2 ≤ Λ0,n, we deduce

lim
n→∞

Λ0,n = +∞.

Consequently, inequality (12) is not veri�ed when Λ0 is replaced by Λ0,n, and when |n| is large
enough. In this sense, Theorem 2.1 holds, roughly speaking, when either initial conditions are

small or when they lie in Sobolev-bounded sets. The question concerning the optimality of condi-

tion (12) is reserved for upcoming work.

Assume the hypotheses from Theorem 2.1. Let us consider the energy associated to system
(1) as

E [u, υ] (t) = |u(t)|2 +
∣∣u′(t)∣∣2 +M

(
|u(t)|2

)
‖u(t)‖2 +M

(
|u(t)|2

) ∣∣∣g1/2υ′m(t)
∣∣∣2
Γ
,(13)

where (u, v) is a solution to (1). Set

(14) h2 = max
x∈Γ
|h(x)|R, and α0 >

16h2C
2
0

3ρβ
.

We restrict the energy decay analysis to couples (u, v) satisfying

u(x, t) = υ(x, t), on Σ1,
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and

f = g = α0h, on Γ.(15)

Let us de�ne

Y0 =
4C1√
r0

∣∣M ′ (|u0|2
)∣∣Λ0 +

2C2
1

(
M ′
(
|u0|2

))2
ρβr2

0

Λ2
0 +

ρβ

2

(
2

ρr0

) p−1
2

Cp+1
p Λ

p−1
2

0 .

Next, we state our second main result: the exponential decay of the energy.

Theorem 2.2. Suppose that (14)-(15) holds. Then, for each (u0, u1, υ0) ∈ V ∩H2(Ω)× V ×L2(Γ)
such that

(16) Y0 <
ρβr0

16
,

there exists a unique regular global weak solution (u, υ) of (1), satisfying

|E [u, υ] (t)| ≤ Ce−C t, t > 0

for some positive constants C and C, depending on a priori assumptions but independent of time.

In particular, the energy goes to zero when times goes to in�nity.

3 Existence and uniqueness of solutions

The concept of solution for the mixed problem (1) is established in the de�nition below.

Definition 3.1. A regular global weak solution for the nonlinear initial-boundary value problem

(1.1) is a pair of real-valued functions (u, υ), with u : Ω × [0,∞) → R and υ : Γ × [0,∞) → R,
such that for each �xed T > 0 it satis�es:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u ∈ L∞(0, T ;V ), u′ ∈ L∞(0, T ;V ) ∩ L2
(
0, T ;L2(Ω)

)
, u′′ ∈ L∞

(
0, T ;L2(Ω)

)
,

υ, υ′, υ′′ ∈ L∞
(
0, T ;L2(Γ)

)
,∫

Q

[
u′′ξ +M

(
|u|2
)
∇u∇ξ + Φ(u)ξ + βu′ξ

]
dxdt =

∫
Σ1

M
(
|u|2
)
υ′γ0(ξ)dxdt,

∫
Σ

[
ργ0

(
u′
)
ψ + fυ′′ψ + gυ′ψ + hυψ

]
dxdt = 0,

for all ξ ∈ L2(0, T ;V ) and ψ ∈ L2
(
0, T ;L2(Γ)

)
.

We can now pass to prove the main result of this section.

3.1 Proof of Theorem 2.1

3.1.1 Existence of solutions

The proof of the solutions' existence will be done using the Faedo-Galerkin method combined
with a modi�cation of the Tartar method (see [40]). Let (wi)i∈N and (zi)i∈N basis of V ∩H2(Ω)
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and L2(Γ), respectively. For each m ∈ N, we consider the ansatz

um(x, t) =
m∑
i=1

gi,m(t)wi(x) and υm(x, t) =
m∑
j=1

hj,m(t)zj(x)

aimed to be the solutions to the approximate family problem

(17)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(u′′m(t), w) +M
(
|um(t)|2

)
[(∇um(t),∇w)− (υ′m(t), γ0(w))Γ] + (Φ(um(t)), w)

+β (u′m(t), w) = 0,

(ργ0 (u′m(t)) + fυ′′m(t) + gυ′m(t) + hυm(t), z)Γ = 0,

um(0) = u0m → u0 in V ∩H2(Ω), u′m(0) = u1m → u1 in V,

υm(0) = υ0m → υ0 in L2(Γ), υ′m(0) = ∂νu0m → ∂νu0 in L2(Γ),

for all w ∈ Vm = Span {w1, . . . , wm} and z ∈ Zm = Span {z1, . . . , zm} .

The system (17) has local solution {um, υm} in the interval [0, tm] and its extension to the whole
semi-line [0,∞) is a consequence of the a priori estimates established below.

Estimate I - First, setting w = 2u′m and z = 2υ′m in (17)1 and (17)2, respectively, we obtain

d

dt

∣∣u′m(t)
∣∣2 +M

(
|um(t)|2

)[ d
dt
‖um(t)‖2 − 2

(
υ′m(t), γ0

(
u′m(t)

))
Γ

]
+(18)

+ 2
d

dt

∫
Ω

Φ(um(t))dx+ 2β
∣∣u′m(t)

∣∣2 = 0,

where Φ(s) =

∫ s

0
Φ(σ)dσ, and

ρ
(
γ0

(
u′m(t)

)
, υ′(t)

)
Γ

+
d

dt

∣∣∣f1/2υ′m(t)
∣∣∣2
Γ

+
d

dt

∣∣∣h1/2υm(t)
∣∣∣2
Γ

+ 2
∣∣∣g1/2υ′m(t)

∣∣∣2
Γ

= 0.(19)

A straightforward computation shows

d

dt

[
M
(
|um(t)|2

)(
‖um(t)‖2 +

∣∣∣f1/2υ′m(t)
∣∣∣2
Γ

+
∣∣∣h1/2υm(t)

∣∣∣2
Γ

)]

= M
(
|um(t)|2

) d

dt

(
‖um(t)‖2 +

∣∣∣f1/2υ′m(t)
∣∣∣2
Γ

+
∣∣∣h1/2υm(t)

∣∣∣2
Γ

)
+

+ 2M ′
(
|um(t)|2

) (
u′m(t), um(t)

)(
‖um(t)‖2 +

∣∣∣f1/2υ′m(t)
∣∣∣2
Γ

+
∣∣∣h1/2υm(t)

∣∣∣2
Γ

)
.
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Multiplying (18) by ρ, (19) by M
(
|um(t)|2

)
and adding the resulting expressions, yields

d

dt

[
ρ
∣∣u′m(t)

∣∣2 + ρM
(
|um(t)|2

)
‖um(t)‖2 + 2ρ

∫
Ω

Φ(um(t))dx+M
(
|um(t)|2

) ∣∣∣f1/2υ′m(t)
∣∣∣2
Γ

(20)

+M
(
|um(t)|2

) ∣∣∣h1/2υm(t)
∣∣∣2
Γ

]
+ 2ρβ

∣∣u′m(t)
∣∣2 + 2M

(
|um(t)|2

) ∣∣∣g1/2υrm(t)
∣∣∣2
Γ

≤ I1,m(t) + I2,m(t),

where

I1,m(t) = 2ρM ′
(
|um(t)|2

) ∣∣u′m(t)
∣∣ |um(t)| ‖um(t)‖2,

and

I2,m(t) = 2M ′
(
|um(t)|2

) ∣∣u′m(t)‖um(t)
∣∣ [∣∣∣f1/2υ′m(t)

∣∣∣2
Γ

+
∣∣∣h1/2υm(t)

∣∣∣2
Γ

]
.

On the other hand, setting w = um in (17)1 allows us to deduce

d

dt

(
u′m(t), um(t)

)
−
∣∣u′m(t)

∣∣2 +M
(
|um(t)|2

)
‖um(t)‖2 +

β

2

d

dt
|um(t)|2 ≤ I3,m(t),(21)

where

I3,m(t) = C0M
(
|um(t)|2

) ∣∣υ′(t)∣∣
Γ
‖um(t)‖ −

∫
Ω

Φ(um(t))um(t)dx.

The above C0 > 0 is de�ned in (6). Multiplying (21) by (ρβ)/2 and adding the resulting
expression with (20), we get

(22)

d

dt

[
ρ |u′m(t)|2 +

ρβ

2
(u′m(t), um(t)) +

ρβ2

4
|um(t)|2 + ρM

(
|um(t)|2

)
‖um(t)‖2 +

2ρ

∫
Ω

Φ(um(t))dx+M
(
|um(t)|2

) ∣∣∣f1/2υ′m(t)
∣∣∣2
Γ

+M
(
|um(t)|2

) ∣∣∣h1/2υm(t)
∣∣∣2
Γ

]
+

ρβ

2
M
(
|um(t)|2

)
‖um(t)‖2 +

3ρβ

2
|u′m(t)|2 + 2M

(
|um(t)|2

) ∣∣g1/2υ′m(t)
∣∣2
Γ
≤

≤ I1,m(t) + I2,m(t) +
ρβ

2
I3,m(t).

Next, we upper bound the terms on the right-hand-side of (22). In fact, if C0, C1 are the positive
real constants de�ned by (6) and (7) (with p = 1), then

I1,m(t) ≤ 2ρC1M
′
(
|um(t)|2

) ∣∣u′m(t)
∣∣ ‖um(t)‖3,

I2,m(t) ≤ ρβ

2

∣∣u′m(t)
∣∣2 +

2C2
1

ρβ

(
M ′
(
|um(t)|2

))2
‖um(t)‖2

[∣∣∣f1/2υ′m(t)
∣∣∣2
Γ

+
∣∣∣h1/2υm(t)

∣∣∣2
Γ

]2

,
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and

ρβ

2
I3,m(t) ≤ ρβ

2

[
1

2
M
(
|um(t)|2

)
‖um(t)‖2 +

C2
0

2
M
(
|um(t)|2

) ∣∣υ′(t)∣∣2 + Cp+1
p ‖um(t)‖p+1

]

≤ ρβ

2

[
1

2
M
(
|um(t)|2

)
‖um(t)‖2 +

1

2
M
(
|um(t)|2

) ∣∣∣g1/2υ′(t)
∣∣∣2 + Cp+1

p ‖um(t)‖p+1

]
.

Inserting the last inequalities in (22) and using M 's growth condition(9), we obtain

d

dt

[
Λm(t) +

ρ

2
M
(
|um(t)|2

)
‖um(t)‖2 + 2ρ

∫
Ω

Φ(um(t))dx

]
+ ρβ

∣∣u′m(t)
∣∣2(23)

+
3

2
M
(
|um(t)|2

) ∣∣∣g1/2υ′m(t)
∣∣∣2
Γ

+ ‖um(t)‖2
[
ρβr0

4
−Km(t)

]
≤ 0,

where

Λm(t) =ρ
∣∣u′m(t)

∣∣2 +
ρβ

2

(
u′m(t), um(t)

)
+
ρβ2

4
|um(t)|2 +

ρ

2
M
(
|um(t)|2

)
‖um(t)‖2(24)

+M
(
|um(t)|2

)(∣∣∣f1/2υ′m(t)
∣∣∣2
Γ

+
∣∣∣h1/2υm(t)

∣∣∣2
Γ

)
and

Km(t) =
2C2

1

ρβ

(
M ′
(
|um(t)|2

))2
(∣∣∣f1/2υ′m(t)

∣∣∣2
Γ

+
∣∣∣h1/2υm(t)

∣∣∣2
Γ

)2

+
ρβCp+1

p

2
‖um(t)‖p−1(25)

+ 2C1ρ
∣∣∣M ′ (|um(t)|2

)∣∣∣ ∣∣u′m(t)
∣∣ ‖um(t)‖ .

Lemma 3.1. Let P : R→ R be de�ned by P (s) =
ρr0

2
s2 − 2ρCp+1

p sp+1.

Then,

Wm(t) =
ρ

2
M
(
|um(t)|2

)
‖um(t)‖2 + 2ρ

∫
Ω

Φ(um(t))dx ≥ P (‖um(t)‖) .

Proof. From (10), we have∣∣∣∣2ρ∫
Ω

Φ(um(t))dx

∣∣∣∣
R
≤ 2ρ

∫
Ω
|um(t)|p+1dx ≤ 2ρCp+1

p ‖um(t)‖p+1 ,

where Cp is de�ned in (7). Thus,

2ρ

∫
Ω

Φ(um(t))dx ≥ −2ρCp+1
p ‖um(t)‖p+1 .

From (9), we get
ρ

2
M
(
|um(t)|2

)
‖um(t)‖2 ≥ ρr0

2
‖um(t)‖2 .

Therefore, from the two previous inequalities the lemma is proved.
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Remark 3.1. We have that s1 = 0 and s2 = (r0/2C
p+1
p )1/p−1 are critical points of P. Morever,

P ′(s) > 0 for all s in the open interval (s1, s2).

Lemma 3.2. For all m ∈ N, the function Λm de�ned in (24) satis�es

Λm(t) ≥ ρ

2

∣∣u′m(t)
∣∣2 +

ρβ2

8
|um(t)|2 +

ρr0

2
‖um(t)‖2 + r0

(∣∣∣f1/2υ′m(t)
∣∣∣2
Γ

+
∣∣∣h1/2υm(t)

∣∣∣2
Γ

)
(26)

and

Λm(t) ≤ 3ρ

2

∣∣u′m(t)
∣∣2 +

3ρ

8
|um(t)|2 +

ρ

2
M
(
|um(t)|2

)
‖um(t)‖2(27)

+M
(
|um(t)|2

)(∣∣∣f1/2υ′m(t)
∣∣∣2
Γ

+
∣∣∣h1/2υm(t)

∣∣∣2
Γ

)
.

Proof. From Cauchy-Schwartz inequality, we obtain∣∣∣∣ρβ2 (
u′m(t), um(t)

)∣∣∣∣
R
≤ ρ

2

∣∣u′m(t)
∣∣2 +

ρβ2

8
|um(t)|2 .

Thus,

ρβ

2

(
u′m(t), um(t)

)
≥ −ρ

2

∣∣u′m(t)
∣∣2 − ρβ2

8
|um(t)|2 .(28)

From (24) and (28), we easily get (26). Moreover, (27) is deduced from (24).

Lemma 3.3. For all m ∈ N, the function Km de�ned in (25) satis�es the inequality

Km(t) ≤ 2C2
1

ρβr2
0

(
M ′
(
|um(t)|2

))2
[Λm(t)]2 +

4C1√
r0

∣∣∣M ′ (|um(t)|2
)∣∣∣Λm(t)(29)

+
ρβ

2

(
2

ρr0

)(p−1)/2

Cp+1
p [Λm(t)](p−1)/2 .

Proof. From Lemma 3.2, we obtain ∣∣u′m(t)
∣∣ ≤√2

ρ

√
Λm(t),

‖um(t)‖ ≤
√

2

ρr0

√
Λm(t)

and ∣∣∣f1/2υ′m(t)
∣∣∣2
Γ

+
∣∣∣h1/2υm(t)

∣∣∣2
Γ
≤ 1

r0
Λm(t).

Inserting these three inequalities into (25) we obtain (29). This proves the lemma.

Remark 3.2. In particular, taking t = 0 in (27), we have

Λm(0) +Wm(0) ≤ Λm(0) +
ρ

2
M
(
|u0m|2

)
‖u0m‖2 + 2ρCp+1

p ‖u0m‖p+1 ≤ Λ0,

where Cp and Λ0 are positive constants de�ned in (7) and (11), respectively.
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Remark 3.3. If Km(t) < (ρβr0)/8, t ≥ 0 then we have

ρβCp+1
p

2
‖um(t)‖p−1 ≤ ρβr0

8
, t ≥ 0

and this implies ‖um(t)‖ ≤ (r0/4C
p+1
p )1/p−1, t ≥ 0 Thus, from Lemma 3.1 and Remark 3.1 we

get

Wm(t) ≥ P (‖um(t)‖) ≥ 0, t ≥ 0.

Now, we prove that the hypothesis assumed in the Remark 3.3 is true for all t ≥ 0.

Lemma 3.4. For all m ∈ N, the function Km de�ned in (25) satis�es the inequality

Km(t) <
ρβr0

8
, for all t ≥ 0.

Proof. We use a contradiction argument. There exist m ∈ N and t0 > 0 such that

Km(t0) ≥ (ρβr0)/8.

By applying Lemma 3.3 at t = 0, combined with condition (12) we deduce

Km(0) < (ρβr0)/8.

From continuity of Km, we can see that there exists t∗ > 0 such that

Km(t) <
ρβr0

8
for all 0 < t < t∗, and Km (t∗) =

ρβr0

8
.(30)

Integrating (23) from 0 to t∗, using (30) and Remark 3.2, we get

Λm (t∗) +Wm (t∗) ≤ Λm(0) +Wm(0) ≤ Λ0.(31)

On the other hand, as Km (t∗) = (ρβr0)/8 , from Remark 3.3, we obtain that

Wm(t) ≥ P (‖um(t)‖) ≥ 0.(32)

Thus, from (31)-(32), we deduce Λm (t∗) ≤ Λ0. Therefore, combining Lemma 3.3 with (12), gives

Km(t∗) ≤ 2C2
1

ρβr2
0

(
M ′
(
|u0(t)|2

))2
[Λ0]2 +

4C1√
r0

∣∣∣M ′ (|u0|2
)∣∣∣Λ0

+
ρβ

2

(
2

ρr0

)(p−1)/2

Cp+1
p [Λ0](p−1)/2 <

ρβr0

8
.

This inequality contradicts (30). So the lemma is proved.

Thus, combining inequalitites from Lemma 3.2 and Lemma 3.4, and using Remark 3.3, we
have

ρ

2
|u′m(t)|2 +

ρβ2

8
|um(t)|2 +

ρr0

2
‖um(t)‖2 + r0

(
f1 |υ′m(t)|2Γ + h1 |υm(t)|2Γ

)
+

ρβ

∫ t

0

∣∣u′m(s)
∣∣2 ds+

3r0g1

2

∫ t

0

∣∣υ′m(s)
∣∣2
Γ
ds ≤ Λ0.

(33)
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Remark 3.4. Using Poincaré inequality with (33), we have

|um(t)|2 ∈ [0, C], m ∈ N, t ≥ 0.

for some C > 0. Using the fact that M ∈ C1([0,∞)) with (9), we immediately assert that

r0 ≤M
(
|um(t)|2

)
≤ r3, m ∈ N, t ≥ 0

for some r0 and r3.

Estimate II - For all m ∈ N, there exists C > 0, independent of m, such that∣∣u′′m(0)
∣∣ ≤ C, and

∣∣υ′′m(0)
∣∣ ≤ C.(34)

Taking t = 0 and considerig w = u′′m(0) and z = υ′′m(0) in (17), we have∣∣u′′m(0)
∣∣2 ≤ [M (

|u0m|2
)
|υu0m|+ Cpp ‖u0m‖p + β |u1m|

] ∣∣u′′m(0)
∣∣(35)

≤ 1

2

[
M
(
|u0|2

)
|∆u0|+ Cpp ‖u0‖p + β |u1|

]2
+

1

2

∣∣u′′m(0)
∣∣2 ,

and

f1

∣∣υ′′m(0)
∣∣2 ≤ [g2C4 ‖u0m‖H2(Ω) + h2 |υ0m|+ ρC0 ‖u1m‖

] ∣∣υ′′m(0)
∣∣(36)

≤ 1

2f1

[
g2C4 ‖u0‖H2(Ω) + h2 |υ0|+ ρC0 ‖u1‖

]2
+
f1

2

∣∣υ′′m(0)
∣∣2 ,

where g2 = maxx∈Γ |g(x)|R and h2 = maxx∈Γ |h(x)|R. Therefore, from (35) and (36), we get (34).

Estimate III - Dividing (1)1 by M (|um(t)|) and di�erentiating the resulting expression
with respect to the time variable t, we get

(u′′′m(t), w)

M
(
|um(t)|2

) − 2I4,m(t) (u′′m(t), w) + (∇u′m(t),∇w)−

(υ′′m(t), γ0(w))Γ +
(u′m(t)Φ′(um(t)), w)

M
(
|um(t)|2

) − 2I4,m(t) (Φ(um(t)), w) +

β (u′′m(t), w)

M
(
|um(t)|2

) − 2βI4,m(t) (u′m(t), w) = 0,

(37)

with

I4,m(t) =
M ′
(
|um(t)|2

)
(u′m(t), um(t))[

M
(
|um(t)|2

)]2 .

A straightforward computation shows

(u′′′m(t), u′′m(t))

M
(
|um(t)|2

) =
1

2

d

dt

 |u′′m(t)|2

M
(
|um(t)|2

)
+ I4,m(t)

∣∣u′′m(t)
∣∣2 ,



14

and considering w = ρu′′m(t) in (37), we obtain

ρ

2

d

dt

 |u′′m(t)|2

M
(
|um(t)|2

)
+

ρ

2

d

dt

∥∥u′m(t)
∥∥2

+
ρβ |u′′m(t)|2

M
(
|um(t)|2

) − ρ (υ′′m(t), γ0(u′′m(t))
)

Γ
=(38)

ρI4,m(t)
∣∣u′′m(t)

∣∣2 − 2ρI4,m(t)
(
Φ(um(t)), u′′m(t)

)
+ 2ρβI4,m(t)

(
u′m(t), u′′m(t)

)
− ρ (u′m(t)Φ′(um(t)), u′′m(t))

M
(
|um(t)|2

) .

Now, di�erentiating (1)2 with respect to t and considering z = υ′′m(t), we have

ρ
(
υ′′m(t), γ0(u′′m(t))

)
Γ

+
1

2

d

dt

∣∣∣f1/2υ′′m(t)
∣∣∣2
Γ

+
1

2

d

dt

∣∣∣h1/2υ′m(t)
∣∣∣2
Γ

+
∣∣∣g1/2υ′′m(t)

∣∣∣2
Γ

= 0.(39)

Adding (38) and (39), result in

1

2

d

dt

 ρ |u′′m(t)|2

M
(
|um(t)|2

) + ρ
∥∥u′m(t)

∥∥2
+
∣∣∣f1/2υ′′m(t)

∣∣∣2
Γ

+
∣∣∣h1/2υ′m(t)

∣∣∣2
Γ

+(40)

+
ρβ |u′′m(t)|2

M
(
|um(t)|2

) +
∣∣∣g1/2υ′′m(t)

∣∣∣2
Γ

= ρI4,m(t)
∣∣u′′m(t)

∣∣2 + 2ρI4,m(t)
(
Φ(um(t)), u′′m(t)

)

+ 2ρβI4,m(t)
(
u′m(t), u′′m(t)

)
− ρ (u′m(t)Φ′(um(t)), u′′m(t))

M
(
|um(t)|2

) .

From (9)-(10) and (33), we have

I4,m(t)
∣∣u′′m(t)

∣∣2 ≤ r1

∣∣u′m(t)
∣∣ |u′′m(t)|2

M
(
|um(t)|2

) ≤ r1

√
2

ρ

√
Λ0

|u′′m(t)|2

M
(
|um(t)|2

) ,(41)

I4,m(t)
(
Φ(um(t)), u′′m(t)

)
≤ r1

√
2

ρ

√
Λ0

‖um(t)‖p
L2p(Ω)

|u′′m(t)|

M
(
|um(t)|2

)

≤ r1

√
2

ρ

√
Λ0

C2p
2p ‖um(t)‖2p + |u′′m(t)|2

2M
(
|um(t)|2

)

≤ C2p
2p

r1

2r0

√
2

ρ

√
Λ0

(
2

ρr0
Λ0

)p
+
r1

2

√
2

ρ

√
Λ0

|u′′m(t)|2

M
(
|um(t)|2

) ,
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and

I4,m(t)
(
u′m(t), u′′m(t)

)
≤ r1

√
2

ρ

√
Λ0
|u′m(t)|2 + |u′′m(t)|2

2M
(
|um(t)|2

)

≤ C2
1

r1

2r0

√
2

ρ

√
Λ0

∥∥u′m(t)
∥∥2

+
r1

2

√
2

ρ

√
Λ0

|u′′m(t)|2

M
(
|um(t)|2

) .
Furthermore, for qn = 2n/n− 2, we get 1

n + 1
qn

+ 1
2 = 1. Therefore, from (10), we have that

(u′m(t)Φ′(um(t)), u′′m(t))

M
(
|um(t)|2

) ≤
‖um(t)‖p−1

Ln(p−1)(Ω)
‖u′m(t)‖Lqn (Ω) |u′′m(t)|

M
(
|um(t)|2

)(42)

≤
Cp−1
n,p−1 ‖um(t)‖p−1Cqn ‖u′m(t)‖ |u′′m(t)|

M
(
|um(t)|2

)

≤ Cp−1
n,p−1

Cqn
2

(
2

ρr0
Λ0

)(p−1)/2
‖u′m(t)‖2

r0
+

|u′′m(t)|2

M
(
|um(t)|2

)
 .

Inserting (41)-(42) into (40), we obtain a couple of positive constants C5 and C6, such that

1

2

d

dt

 ρ |u′′m(t)|2

M
(
|um(t)|2

) + ρ
∥∥u′m(t)

∥∥2
+
∣∣∣f1/2υ′′m(t)

∣∣∣2
Γ

+
∣∣∣h1/2υ′m(t)

∣∣∣2
Γ

+(43)

+
ρβ |u′′m(t)|2

M
(
|um(t)|2

) +
∣∣∣g1/2υ′′m(t)

∣∣∣2
Γ
≤ C5 +

C6

2

 ρ |u′′m(t)|2

M
(
|um(t)|2

) + ρ
∥∥u′m(t)

∥∥2

 .
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Now integrating (43) from 0 to t we get

1

2

 ρ |u′′m(t)|2

M
(
|um(t)|2

) + ρ
∥∥u′m(t)

∥∥2
+
∣∣∣f1/2υ′′m(t)

∣∣∣2
Γ

+
∣∣∣h1/2υ′m(t)

∣∣∣2
Γ

(44)

+

∫ t

0

 ρβ |u′′m(s)|2

M
(
|um(s)|2

) +
∣∣∣g1/2υ′′m(s)

∣∣∣2
Γ

 ds

≤ ρ

2

 |u′′m(0)|2

M
(
|u0|2

) + ‖u1m‖2
+

1

2

[
f2

∣∣υ′′m(0)
∣∣2
Γ

+ h2

∣∣∣∣∂u0m

∂η

∣∣∣∣2
Γ

]

+ C7

1 +

∫ t

0

 |u′′m(s)|2

M
(
|um(s)|2

) +
∥∥u′m(s)

∥∥2

 ds
 ,

where C7 is a positive constant depending only on T .

On the other hand, from (9), (17)4 and the estimate (34), we deduce that there exists C8 > 0
(independent of m) such that

ρ

2

 |u′′m(0)|2

M
(
|u0|2

) + ‖u1m‖2
+

1

2

[
f2

∣∣υ′′m(0)
∣∣2
Γ

+ h2

∣∣∣∣∂u0m

∂η

∣∣∣∣2
Γ

]
≤ C8.(45)

Therefore, inserting (45) into (44) and using the Gronwall inequality, yields

1

2

 ρ |u′′m(t)|2

M
(
|um(t)|2

) + ρ
∥∥u′m(t)

∥∥2
+
∣∣∣f1/2υ′′m(t)

∣∣∣2
Γ

+
∣∣∣h1/2υ′m(t)

∣∣∣2
Γ

(46)

+

∫ t

0

 ρβ |u′′m(s)|2

M
(
|um(s)|2

) +
∣∣∣g1/2υ′′m(s)

∣∣∣2
Γ

 ds ≤ C9,

where C9 = C9 (u0, u1, υ0, T ) with T > 0 �xed.
Thus, combining Remark 3.4, (8) and (46), we deduce the following estimate

∣∣u′′m(t)
∣∣2 +

∥∥u′m(t)
∥∥2

+ f1

∣∣υ′′m(t)
∣∣2
Γ

+ h1

∣∣υ′m(t)
∣∣2
Γ

+

∫ t

0

[∣∣u′′m(s)
∣∣2 + g1

∣∣υ′′m(s)
∣∣2
Γ

]
ds ≤ C10(47)

for some constant C10 > 0.



17

Passage to Limit. Now we can prove the main result, namely, Theorem 2.1. Indeed, let
T > 0 be �xed and arbitrary. As an immediate consequence of estimates (33) and (47), we get∣∣∣∣∣∣∣∣

(um) bounded in L∞(0, T ;V )
(u′m) bounded in L∞(0, T ;V ) ∩ L2

(
0, T ;L2(Ω)

)
(u′′m) bounded in L2

(
0, T ;L2(Ω)

)
(υm) , (υ′m) , (υ′′m) bounded in L∞

(
0, T ;L2(Γ)

)
.

These facts allow us to deduce that there exist subsequences (uµ)µ∈N and (υµ)µ∈N of the sequences
of approximations (um)m∈N and (υm)m∈N respectively, such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uµ
∗
⇀ u in L∞(0, T ;V );

u′µ
∗
⇀ u′ in L∞(0, T ;V );

u′µ ⇀u′ in L2
(
0, T ;L2(Ω)

)
;

u′′µ ⇀u′′ in L2
(
0, T ;L2(Ω)

)
;

υµ
∗
⇀ υ in L2

(
0, T ;L2(Γ)

)
;

υ′µ
∗
⇀ υ′ in L2

(
0, T ;L2(Γ)

)
;

υ′′µ
∗
⇀ υ′′ in L2

(
0, T ;L2(Γ)

)
.

(48)

Since V
c
↪→ L2(Ω), the estimates (48)1-(48)2 and Aubin-Lions' Theorem provides us

uµ → u a.e in Q = Ω× (0, T ),

and, as Φ ∈ C1(R), we obtains

Φ(uµ)→ Φ(u) a.e in Q = Ω× (0, T ).(49)

From (7), (10) and (33), we get for some positive C > 0∫
Ω
|Φ(uµ)|2dx ≤

∫
Ω
|uµ|2pdx ≤ C2p

2p‖uµ‖
2p ≤ C(50)

Then, from (49)-(50) and using Lions' Lema yield

Φ(uµ)
∗
⇀ Φ(u) in L∞(0, T ;L2(Ω)).

The proof of the convergence for the other nonlinear term of (1) is quite similar to the ideas
developed in [26]. Therefore it will be omitted. Combining all the above facts, we �nally
conclude that (u, v) is a solution to (1).

3.1.2 Uniqueness of solutions

To prove the uniqueness of solutions, we rewrite (1) as

∣∣∣∣∣∣∣∣∣∣

∫
Ω

[
u′′

M (|u|2)
ξ +∇u∇ξ +

Φ(u)

M (|u|2)
ξ + β

u′

M (|u|2)
ξ

]
dx =

∫
Γ
υ′γ0(ξ)dx,

∫
Γ

[
ργ0

(
u′
)
ψ + fυ′′ψ + gυ′ψ + hυψ

]
dx = 0,
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for all ξ ∈ L2(0, T ;V ) and for all ψ ∈ L2
(
0, T ;L2(Γ)

)
.

Let (u1, υ1) and (u2, υ2) be two regular global weak solutions to (1). Then, for all T > 0
�xed, we have that w = u1 − u2, θ = υ1 − υ2, ξ = ρw′ and ψ = θ′ satisfy

(51)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ

∫
Ω

(
u′′1

M (|u1|2)
− u′′2
M (|u2|2)

)
w′dx+

ρ

2

d

dt
|∇w|2dx− ρ

∫
Γ
γ0

(
w′
)
θ′dx+

ρ

∫
Ω

(
Φ(u1)

M (|u1|2)
− Φ(u2)

M (|u2|2)

)
w′dx+ βρ

∫
Ω

(
u′1

M (|u1|2)
− u′2
M (|u2|2)

)
w′dx = 0,

ρ

∫
Γ
γ0

(
w′
)
θ′dx+

1

2

d

dt

∣∣∣f1/2θ′
∣∣∣2
Γ

+
1

2

d

dt

∣∣∣h1/2θ
∣∣∣2
Γ

+
∣∣∣g1/2θ′

∣∣∣2
Γ

= 0,

w(x, 0) = 0; w′(x, 0) = 0; θ(x, 0) = 0 and θ′(x, 0) = 0.

Adding (51)1 with (51)2, integrating over (0, t) the resulting identity, and using the third equation
of (51), we obtain

(52)

ρ

2
‖w‖2 +

1

2

∣∣f1/2θ′
∣∣2
Γ

+
1

2

∣∣h1/2θ
∣∣2
Γ

+

∫ t

0

∣∣∣g1/2θ′
∣∣∣2
Γ
dt =

−ρ
∫ t

0

∫
Ω

[
w′′

M (|u1|2)
w′ + u′′2

(
1

M (|u1|2)
− 1

M (|u2|2)

)
w′
]
dxdt

−ρ
∫ t

0

∫
Ω

[
Φ(u1)− Φ(u2)

M (|u1|2)
w′ + Φ(u2)

(
1

M (|u1|2)
− 1

M (|u2|2)

)
w′
]
dxdt

−βρ
∫ t

0

∫
Ω

[
[w′]2

M (|u1|2)
+ u′2

(
1

M (|u1|2)
− 1

M (|u2|2)

)
w′

]
dxdt.

Now, we upper bound each term on the right-hand side of (52). In the upcoming computations,
we denote a generic constant that can change line by line by C > 0. It only depends on a priori
assumptions. Let us start with the �rst term

(53)

− ρ
∫ t

0

∫
Ω

w′′

M (|u1|2)
w′dxdt

= −ρ
2

∫ t

0

∫
Ω

1

M (|u1|2)

d

dt

∣∣w′∣∣2R dxdt
= −ρ

2

∫ t

0

d

dt

(
|w′|2

M (|u1|2)

)
dt+

ρ

2

∫ t

0

∣∣w′∣∣2M ′ (|u1|2
)( (u1, u

′
1)

[M (|u1|2)]2

)
dt

= −ρ
2

|w′|2

M (|u1|2)
+
ρ

2

∫ t

0

∣∣w′∣∣2M ′ (|u1|2
)( (u1, u

′
1)

[M (|u1|2)]2

)
dt

≤ −ρ
2

|w′|2

M (|u1|2)
+
r1

r0

∫ T

0
|u′1|

∣∣w′∣∣2 dt ≤ −ρ
2

|w′|2

M (|u1|2)
+ C

∫ T

0

∣∣w′∣∣2 dt.
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On the other hand, using condition (9), we easily deduces

∣∣M (
|u2|2

)
−M

(
|u1|2

)∣∣ =

∣∣∣∣∣
∫ |u2|2
|u1|2

M ′(s)ds

∣∣∣∣∣ ≤ ∥∥M ′∥∥L∞ (|u1|+ |u2|) |w|.

For the second term of (52), we have the following estimate:

− ρ
∫ t

0

∫
Ω
u′′2

(
1

M (|u1|2)
− 1

M (|u2|2)

)
w′dxdt

≤ C
∫ T

0

[
(|u2|+ |u1|) |w|

∫
Ω

∣∣u′′2w′∣∣R dx] dt ≤ C ∫ T

0
‖w‖|w′|dt.

For the third term of (52), we shall use the following fact. For all nonnegative constants α, β
with α < β, there exists z ∈ (α, β) such that

Φ(α)− Φ(β) = Φ′(z)(α− β).

Hence, using conditions declared in (10), we get∣∣∣∣−ρ∫
Q

Φ(u1)− Φ(u2)

M (|u1|2)
w′dxdt

∣∣∣∣
R

=

∣∣∣∣ρ ∫
Q

Φ′(z)w

M (|u1|2)
w′dxdt

∣∣∣∣
R

≤ ρ

r0

∫ T

0

∫
Ω

(
|u1|p−1

R + |u2|p−1
R

)
|w|R|w′|Rdxdt

≤ Cρ

r0

∫ T

0

(
‖ u1‖p−1

Ln(p−1)(Ω)
+ ‖u2‖p−1

Ln(p−1)(Ω)

)
‖w‖|w′|dt

≤ C
∫ T

0
‖w‖|w′|dt.

The remainder terms of (52) can be estimated similarly. Thus, we have

− ρ
∫ t

0

∫
Ω

Φ(u2)

(
1

M (|u1|2)
− 1

M (|u2|2)

)
w′dxdt

≤ C
∫ T

0

[
(|u2|+ |u1|) |w|

∫
Ω
|u2|pR

∣∣w′∣∣R dx] dt ≤ C ∫ T

0
‖w‖|w′|dt,

and

(54)

− βρ
∫ t

0

∫
Ω

[
[w′]2

M (|u1|2)
+ u′2

(
1

M (|u1|2)
− 1

M (|u2|2)

)
w′

]
dxdt

≤ C
∫ T

0
|w′|2dt+ C

∫ T

0

[
(|u2|+ |u1|) |w|

∫
Ω

∣∣u′2∣∣R ∣∣w′∣∣R dx] dt
≤ C

∫ T

0
|w′|2dt+ C

∫ T

0
‖w‖|w′|dt.

Plugging (53)-(54) into (52), we get

|w′|2 + ‖w||2 +
1

2

∣∣f1/2θ′
∣∣2
Γ

+
1

2

∣∣h1/2θ
∣∣2
Γ

+

∫ t

0

∣∣∣g1/2θ′
∣∣∣2
Γ
dt ≤ C

∫ T

0

(∣∣w′∣∣2 + ‖w‖2
)
dt
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and hence

|w′|2 + ‖w||2 ≤ C
∫ T

0

(∣∣w′∣∣2 + ‖w‖2
)
dt.

Finally, Gronwall's inequality allow us to deduce that w = 0 and θ = 0. This concludes the
proof.

4 Decay of solutions

In this section, we demonstrate the exponential decay of the energy E, de�ned in (13), associated
with the system (1). Consequently, the energy goes to zero when time goes to in�nity. The
strategy we use is mainly based on the multiplier method.

4.1 Proof of Theorem 2.2

Assume the hypothesis from Theorem 2.2. Since (16) holds, that is, Y0 <
ρβr0

8 ; Theorem 2.1
ensures the existence of a unique regular global weak solution (u, υ) of (1).

Now, similar calculations done in (18)-(22) shows that

(55)

d

dt

[
Λ(t) +W (t)

]
+
ρβ

2
M
(
|u(t)|2

)
‖u(t)‖2 +

3ρβ

2
|u′(t)|2

+2M
(
|u(t)|2

) ∣∣g1/2υ′(t)
∣∣2
Γ

+ 2ρβ

∫
Ω

Φ(u(t))u(t)dx ≤ I1(t) + I2(t) + I3(t) +
ρβ

2
I4(t),

where

Λ(t) =ρ
∣∣u′(t)∣∣2 +

ρβ

2

(
u′(t), u(t)

)
+
ρβ2

4
|u(t)|2 +

ρ

2
M
(
|u(t)|2

)
‖u(t)‖2

+M
(
|u(t)|2

) ∣∣∣f1/2υ′(t)
∣∣∣2
Γ
,

W (t) =
ρ

2
M
(
|u(t)|2

)
‖u(t)‖2 + 2ρ

∫
Ω

Φ(u(t))u(t)dx,(56)

I1(t) = 2ρM ′
(
|u(t)|2

) ∣∣u′(t)∣∣ |u(t)| ‖u(t)‖2 ≤ 2ρC1M
′
(
|u(t)|2

) ∣∣u′(t)∣∣ ‖u(t)‖3,

I2(t) = 2M ′
(
|u(t)|2

) ∣∣u′(t)∣∣ |u(t)|
∣∣∣f1/2υ′(t)

∣∣∣2
Γ

≤ ρβ

2

∣∣u′(t)∣∣2 +
2C2

1

ρβ

(
M ′
(
|u(t)|2

))2
‖u(t)‖2

∣∣∣f1/2υ′(t)
∣∣∣4
Γ
,

I3(t) = 2M
(
|u(t)|2

)
(hυ(t), υ′(t)) ≤M

(
|u(t)|2

)(
ε
∣∣∣h1/2υ(t)

∣∣∣2
Γ

+
1

ε

∣∣∣h1/2υ′(t)
∣∣∣2
Γ

)

≤ C2
0εh2M

(
|u(t)|2

)
‖u(t)‖2 +

1

α0ε
M
(
|u(t)|2

) ∣∣∣g1/2υ′(t)
∣∣∣2
Γ
, for all ε > 0,
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and

ρβ

2
I4(t) =

ρβ

2

[
C0M

(
|u(t)|2

) ∣∣υ′(t)∣∣
Γ
‖u(t)‖+

∫
Ω

Φ(u(t))u(t)dx

]
(57)

≤ ρβ

4
M
(
|u(t)|2

)
‖u(t)‖2 +

1

2
M
(
|u(t)|2

) ∣∣∣g1/2υ′(t)
∣∣∣2 +

ρβ

2
Cp+1
p ‖u(t)‖p+1 ,

with C0, C1 are positive real constants de�ned by (6) and Cp > 0 is de�ned by (7).

From (55)-(57), we have that

d

dt

[
Λ(t) +W (t)

]
+

(
ρβ

4
− C2

0εh2

)
M
(
|u(t)|2

)
‖u(t)‖2 + ρβ |u′(t)|2

+

(
3

2
− 1

α0ε

)
M
(
|u(t)|2

) ∣∣g1/2υ′(t)
∣∣2
Γ

+ 2ρβ

∫
Ω

Φ(u(t))u(t)dx ≤ ‖u(t)‖2K(t),

(58)

where

K(t) = 2ρC1M
′
(
|u(t)|2

) ∣∣u′(t)∣∣ ‖u(t)‖+
2C2

1

ρβ

(
M ′
(
|u(t)|2

))2 ∣∣∣f1/2υ′(t)
∣∣∣4
Γ

+
ρβ

2
Cp+1
p ‖u(t)‖p−1 .

From (15), we have that ρβ
8h2C2

0
> 2

3α0
. Thus, taking ε ∈

(
2

3α0
, ρβ

8h2C2
0

)
, results

ρβ

4
− C2

0εh2 >
ρβ

8
> 0 and l0 =

3

2
− 1

α0ε
> 0.(59)

Therefore, from (58) and (59), we obtain

d

dt

[
Λ(t) +W (t)

]
+

(
ρβ

8
M
(
|u(t)|2

)
−K(t)

)
‖u(t)‖2 + ρβ |u′(t)|2

+l0M
(
|u(t)|2

) ∣∣g1/2υ′(t)
∣∣2
Γ

+ 2ρβ

∫
Ω

Φ(u(t))u(t)dx ≤ 0.

(60)

We proceed as in the proof of Lemma 3.4 to obtain

K(t) <
ρβr0

16
, for all t ≥ 0,

and, from Remark 3.3, we have that

W (t) ≥ P (‖u(t)‖) ≥ 0

where P is de�ned in Lemma 3.1.
By combining (60) and last above estimates, we deduce that

d

dt

[
Λ(t) +W (t)

]
+ C1E [u, υ] (t) + C2W (t) ≤ 0.(61)
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The above constants are de�ned by

C1 = min

{
ρβ,

ρβr0

32C2
0

,
ρβ

32
, l0

}
> 0,

and

C2 = min

{
ρβ

32
, β(p+ 1)

}
> 0.

On the other hand, we can proceed as in the proof of Lemma 3.2, to obtain

C3E [u, υ] (t) ≤ Λ(t) ≤ C4E [u, υ] (t),(62)

for some positive constants C3 and C4.

Hence, from (61) and (62), there exist C5 = min
{
C1

C4
, C2

}
> 0 such that

d

dt

[
Λ(t) +W (t)

]
+ C5

[
Λ(t) +W (t)

]
≤ 0,

and, from estimate above, it follows that

Λ(t) +W (t) ≤ (Λ(0) +W (0))e−C5t.

Moreover, from (56) and (13), the following inequality holds true

W (t) ≤ ρ

2
M
(
|u(t)|2

)
‖u(t)‖2 +

2ρCp+1
p

(p+ 1)rp+1
0

[
M
(
|u(t)|2

)
‖u(t)‖2

](p+1)/2
,(63)

≤ C6

[
E [u, υ] (t) + (E [u, υ] (t))(p+1)/2

]
,

for some constant C6 > 0.
Since W (t) ≥ 0, from (62)-(63), we have that

E [u, υ] (t) ≤ C7

[
E [u, υ] (0) + (E [u, υ] (0))(p+1)/2

]
e−C5t,

for any t ≥ 0 and some positive constants C5, C7.
Consequently,

lim
t→+∞

E [u, υ] (t) = 0

and the proof of Theorem 2.2 is complete.

5 Comments and open problems

It is possible to apply the ideas developed in this paper to study the well-posedness of the problem

u′′(x, t)−M
(
t,

∫
Ω
|u(x, t)|2Rdx

)
∆u(x, t) + Φ(x, u(x, t)) + β(x)u′(x, t) = 0,
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with acoustic conditions on a part of the boundary, where Mt(t, s) ≤ 0, 0 < β0 < β(x) < β1 and∣∣∣∣∣∣∣∣
|Φ(x, s)| ≤ b0|s|p,
|Φs(x, s)| ≤ b1|s|p−1,

|Φ(x, s)| ≤ b2|s|p+1, Φ(x, s) =

∫ s

0
Φ(x, σ)dσ

for some positive constants b0, b1, b2.

There are some interesting issues growing out of this work that are worthy of further study:

• It remains open the study of the equation

u′′(x, t)− div

(
M

(
x,

∫
Ω
|u(x, t)|2Rdx

)
∇u(x, t)

)
+ Φ(u(x, t)) + βu′(x, t) = 0,

with acoustic conditions on a nonempty part of the boundary.

The problem without the nonlinear term in the operator

p(x)u′′(x, t)− div (k(x)∇u(x, t)) + f1(u(x, t)) + a(x)g1(u′(x, t)) = 0,

with acoustic conditions on a part of the boundary, was already studied by Cavalcanti et
al. in [12].

• On the other hand, another interesting open problem to study are the properties for the
equation

u′′(x, t)−A(t)u(x, t) + Φ(u(x, t)) + βu′(x, t) = 0,

with acoustic conditions on a part of the boundary, where

A(t)u =

N∑
i,j=1

Bij(u(., t), t)
∂2u

∂xi∂xj
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bij = Bji : L1(Ω)× [0, T ] 7→ R, −∞ < β0 ≤ Bij ≤ β1 < +∞,

Bij is globally Lipschitz-continuous in L2(Ω)× [0, T ], for all i, j,

N∑
i,j=1

Bij(z, t)ξiξj ≥ α0|ξ|2,∀ξ ∈ RN , (z, t) a.e. in L1(Ω)× [0, T ]

and some positive constant α0.

In particular, if

Bij(z, t) =


∫

Ω
|z(x, t)|2Rdx, for i = j = 1,

0, for i 6= 1, j 6= 1,

we obtain the system (1), which was studied in this work.

The way how the estimations (33), (34) and (47) were performed in this work, it is not
possible to do so for the operator A(t)u de�ned above. For a comprehensive study of
parabolic equations with this operator, we refer the readers to [13]-[14] and the references
therein.
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