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ulation immunity to assess the epidemiology of health and disease is a challenging task and is currently an active area of re-

search. However, to meet these challenges, mathematical modeling is an effective technique in shaping the population dynamics

that can help disease control. In this paper, we introduce a Susceptible-Infected-Recovered (SIR) model and a Susceptible-

Infected-Recovered-Exposed-Deceased (SEIRD) model based on conformable space-time PDEs for the Coronavirus Disease 2019

(COVID-19) pandemic. As efficient analytical tools, we present new modifications based on the fractional exponential rational

function method (ERFM) and an analytical technique based on the Adomian decomposition method for obtaining the solutions

for the proposed models. These analytical approaches are more efficious for obtaining analytical solutions for nonlinear systems

of partial differential equations (PDEs) with conformable derivatives. The interesting result of this paper is that it yields new

exact and approximate solutions to the proposed COVID-19 pandemic models with conformable space-time partial derivatives
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Abstract

Many challenges are still faced in bridging the gap between Mathematical modeling
and biological sciences. Measuring population immunity to assess the epidemiology
of health and disease is a challenging task and is currently an active area of research.
However, to meet these challenges, mathematical modeling is an effective technique
in shaping the population dynamics that can help disease control. In this paper, we
introduce a Susceptible-Infected-Recovered (SIR) model and a Susceptible-Infected-
Recovered-Exposed-Deceased (SEIRD) model based on conformable space-time
PDEs for the Coronavirus Disease 2019 (COVID-19) pandemic. As efficient analyt-
ical tools, we present new modifications based on the fractional exponential rational
function method (ERFM) and an analytical technique based on the Adomian decom-
positionmethod for obtaining the solutions for the proposedmodels. These analytical
approaches are more efficious for obtaining analytical solutions for nonlinear sys-
tems of partial differential equations (PDEs) with conformable derivatives. The
interesting result of this paper is that it yields new exact and approximate solutions
to the proposed COVID-19 pandemic models with conformable space-time partial
derivatives.

KEYWORDS:
Coronavirus disease 2019, Conformable derivatives, Fractional exponential rational function method,
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1 INTRODUCTION

Several problems in biology, ecology, ontology, and epidemiology can be modeled in terms of local and nonlocal diffusion
throughmathematical modeling.Mathematical modeling is implemented to compute and evaluate parameters that are substantial
for a dynamical understanding of epidemic transmission. However, mathematical modeling plays a significant role in epidemi-
ology. Results of mathematical modeling for epidemiological studies help to attract health interventions for effective disease
control. Although epidemiology is a descriptive science, evaluating epidemiological data is not often possible because of the high
complexity of epidemic observations and fighting against diseases. Fighting against infectious diseases, however, is like target-
ing a moving objective. Although diverse infection control strategies, still create large-scale continuous pathogens and generate
renewed challenges to infectious disease control. Many infectious diseases such as malaria, tuberculosis, SARS, and COVID-19,
have been and maintain a global threat to human health [1–3]. COVID-19 is a spread infectious disease that has been a threat to
humans for a long time. Most people infected with malaria, tuberculosis, SARS, or the COVID-19 virus will experience mild to
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moderate respiratory illness and recover without requiring special treatment. Although many factors for reduced activation rates
of COVID-19 such as the development of antibiotics and vaccines, some infectious diseases are drug-susceptible and resistant.
Consequently, some significant factors must be taken into account to limit the evolution of the infectious disease, for example,
improved diagnostic procedures and changes in host potential population size. However, many diverse challenges are still faced
in bridging the gap between immunology and epidemiology. Measuring population immunity to assess the epidemiology of
health and disease is a challenging task and is currently an active area of research. Therefore, modeling the potential host popu-
lation and developing mathematical techniques can help in the evolution and reduction of infectious diseases and inform public
health interventions. However, mathematical modeling plays a significant role in epidemiology. Results of mathematical model-
ing for epidemiological studies help to attract health interventions for effective disease control. Mathematical modeling, which
refers to the process of using mathematics to solve problems, is implemented to compute and evaluate essential parameters [4–
6]. Modeling infectious diseases with non-local diffusion equations through mathematical modeling provides a better fit due to
their non-local characters since the diffusion of a density function at a given point does not only depend on the value of that
function at the given point but all the values of the function in a neighborhood of the given point. Moreover, non-local diffu-
sion differential equations have a memory effect and they can capture long-distance interactions during the process that occur
in many epidemiological models [7–10]. In addition, time series modeling based on statistical methodology has been widely
used to model, analyze, forecast, and addressed various problems of epidemiological science. However, many challenges are
still faced in bridging the gap between mathematical modeling and epidemiology. Jyoti Mishra [11] investigated, by a developed
mathematical model, the spreading behavior of COVID-19 among humans using different differential and integral operators.
Further, Shabir Ahmad et al. [12] presented a mathematical model with different compartments for the transmission dynamics
of COVID-19 under the fractional-order derivative. Furthermore, Mohammed A. Aba Oud et al. [13] formulated a fractional
epidemic model in the Caputo sense with the consideration of quarantine, isolation, and environmental impacts to examine the
dynamics of the COVID-19 outbreak. These fractional models are quite useful for understanding better the disease epidemics
as well as capturing the memory and nonlocality effects.
Over the last decades, it was observed that some nonlinear phenomena could not be described due to their complex behavior.
Therefore, modeling such phenomena with conformable derivatives gives a better understanding due to their non-local charac-
ters. However, some properties of conformable derivatives were not satisfied. Consequently, a new significant contribution with
the so-called conformable derivative was introduced by Khalil et al. [14]. Moreover, throughout this contribution, several works
were devoted [15–19]. Further, with the conformable derivatives, it has been proved the product rule, the mean value theorem
with fractional order, and solved some differential equations of conformable derivatives. However, some functions could not be
represented or their integral transforms can not be calculated, but it is possible to do so with the help of conformable calculus
theory. Therefore, the conformable calculus theory is still an active area of research. Recently, Hayman Thabet and Subhash
Kendre [17] introduced a conformable differential transform for solving nonlinear conformable PDEs, Yücel Çenesiz et al. [20]
studied PDEs with conformable derivative using the first integral method, Thabet et al [21] obtained analytical solutions for
nonlinear wave equations of conformable derivatives, K. Hosseini et al. [22] applied the Kudryashov method for Klein–Gordon
equations with conformable derivatives, Yaslan [23] used the method to solve the conformable Kawahara equation, and Kho-
dadad et al. [24] introduced the of method sub equation to solve the Zakharov-Kuznetsov equation with conformable derivatives.
However, several methods have been introduced to solve conformable PDEs, most of which provide approximate solutions,
exact solutions, however, are rarely available. Therefore, obtaining exact solutions for a complex system, by analytical meth-
ods, is a changing problem and is currently a very active area of research. One of the most powerful methods for obtaining an
exact solution is the exponential rational function method (ERFM). The ERFM has been widely used to obtain a series of exact
solutions for higher-dimensional nonlinear PDEs (see, for example,[25–31]). Exact solutions, however, are vitally important
in the proper understanding of the qualitative features of the concerned phenomena and processes. In this paper, we introduce
effective modifications of ERFM. Further, we apply these effective modifications for solving conformable space-time nonlinear
PDEs. The rest of the sections are organized as follows. In Section 2, we introduce some properties of the conformable calculus
theory that are needed in this paper. Section 3 introduces effective modifications of ERFM for solving nonlinear systems of con-
formable space-time PDEs. In Section 5, we obtain new exact solutions of the conformable space-time SIR model describing
the COVID-19 pandemic. In Section 6, we introduce a discussion and graphical representations.
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2 BASIC RESULTS AND DEFINITIONS

There are several results on conformable calculus available in the literature. We present here some of these results which can be
found in [32–36] and among other references.

Definition 1. For ' ∶ ℝ×[a,∞)→ ℝ, the partial derivative of conformable order � with respect to t for ' is defined as follows:

a �
t '(x, t) = lim�→0

'(x, t + �(t − b)1−�) − '(x, t)
�

, t > b, 0 < � ≤ 1. (1)

Theorem 1. Let � ∈ (0, 1] and the functions '(x, t), �(x, t) be �-differentiable. Then

1)  �
t (a' ± b�) = a

�
t ' ± a

�
t �, 2) 

�
t (t

p) = ptp−� ,∀p ∈ ℝ,
3)  �

t (') = 0, for all '(x, t) = c, 4) 
�
t ('�) = '

�
t � + �

�
t ',

5)  �
t ('∕�) =

�( �
t ') − �(

�
t �)

�2
,

6) If ' is differentiable, then  �
t '(x, t) = t

1−� )'(x, t)
)t

.

Theorem 2. Let � ∈ (0, 1] and ' be �-differentiable. Then

1) t c
� ((t − c)

r) = r(t − c)r−�for all r ∈ ℝ, 2) t ac
� (e�(

(t−c)�

�
+x)) = �e�(

(t−a)�

�
+x),

3) t a
� (
(t − a)�

�
) = 1, 4) If ' is differentiable then, t a

� '(x, t) = (t − a)
1−� )'(x, t)

)t
.

Theorem 3. Let a function '(x, t) defined on ℝ × (0,∞) be m−times differentiable at (x, t0) ∈. Then, for 0 < � ≤ 0, the m−
times conformable partial derivative of order � with respect to t for a function ' is given by

t0 m�
t '(x, t) = (t − t0)m−m�

)m'(x, t)
)tm

|(x,t0) if )r'(x, t)
)tr

|(x,t0) = 0, (2)

for r = 1, 2,… , m − 1 where t0
m�
t '(x, t) = t0

�
t t0

 �
t
⋯ t0

�
t

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
m−times

'(x, t).

Definition 2. Let a function '(x, t) defined on ℝ × (t0,∞). The conformable integral of order � with respect to t for a function
' is defined by

t0
�
t '(x, t) =

t

∫
t0

(� − t0)�−1'(x, �)d�, 0 < � ≤ 1. (3)

Theorem 4. Let u(x, t) ∶ ℝ × (t0,∞)→ ℝ be k, ℎ-differentiable. Then, for all x ≥ x0, t ≥ t0, we have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x0
k�
x x0

k�
x u(x, t) = u(x, t) −

k−1
∑

i′=0

xi′

i′!
)i′u(x, t)
)xi′

|(x0,t),

t0
ℎ�
t t0

ℎ�
t u(x, t) = u(x, t) −

ℎ−1
∑

j′=0

tj′

j′!
)j′u(x, t)
)tj′

|(x,t0).

(4)

3 MODIFIED ERFM FOR SOLVING NONLINEAR SYSTEMS OF CONFORMABLE PDES

In this section, we introduce effective modifications of ERFM for solving nonlinear PDEs with conformable derivatives of the
following type:

 k�
t ui(x, t) + Li(u(x, t)) +Ni(u(x, t)) = 0, k − 1 < � ≤ k, i = 1, 2,… , m (5)

where Lj are linear operators and Ni are nonlinear operators of functions ui and their conformable derivatives, and  k�
t ui(x, t)

are the k−times conformable derivatives of orders �i of the functions ui(x, t) for i = 1, 2,… , m.
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3.1 Fractional ERFM
In this section, we introduce new tools based on ERFM for solving nonlinear systems of PDEs with conformable derivatives of
arbitrary orders of the form (5). To apply these tools, we assume that the system (5) has solutions of the form

ui(x, t) = ui(�), �� = elix
�+kit� , i = 1, 2,… , m. (6)

for lj , kj ∈ ℝ are nonzero arbitrary constants to be determined later. From the system (6), we have

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

 �
t ui(x, t) =  �

t ui(�), �� = elix�+kit� , i = 1, 2,… , m,

= t1−�u′(�)
d�
dt
,
d�
dt
= ki�t�−1, ki ≠ 0,

 �
t ui(x, t) = ki�u

′(�), ki ≠ 0, i = 1, 2,… , m,
 2�
t ui(x, t) = k2i (�

2u′′(�) + �u′(�)), ki ≠ 0, i = 1, 2,… , m,
⋮

(7)

Similarly, we obtain
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

 �
x ui(x, t) =  �

x ui(�), �� = elix�+kit� , i = 1, 2,… , m,

= x1−�u′(�)
d�
dx
,
d�
dt
= li�x�−1, ki, li ≠ 0,

 �
x ui(x, t) = li�u

′(�), li ≠ 0, i = 1, 2,… , m,
 2�
x ui(x, t) = l2i (�

2u′′(�) + �u′(�)), li ≠ 0, i = 1, 2,… , m,
⋮

(8)

However, by substituting the systems (7) and (8) into equation (5), we obtain a reduced system of ODEs. Further, we assume
that the reduced system of ODEs has a solution given by

ui(�) =
M
∑

j=0

bij
(1 + ��)j

, i = 1, 2,… , m, j = 0, 2,… ,M. (9)

where bij ∈ ℝ, j = 1, ...,M are arbitrary constants to be determined (biM ≠ 0). By a similar argument, after that, the balancing
number M is obtained from the reduced equation ( 13) by using the homogeneous balance principle. When we substitute
equation (9) into equation (13), and collect the coefficients of each power of �� , we obtain a polynomial of �� .By equating all the
coefficients of �� to zero to obtain a system of algebraic equations. Then, we solve the obtained system of algebraic equations,
we obtain the values of bij(j = 1, ...,M), ki, and li Subsequently, by inserting these values into equation (14), we find a series
of exact solutions for equation (5).

3.2 Inverse fractional ERFM
In this section, we introduce the inverse fractional ERFM for solving nonlinear systems of PDEs with conformable derivatives
of arbitrary orders of the form (5). However, to find exact solutions for the nonlinear system of conformable PDEs of the form
(5) by using fractional ERFM, we assume that the solutions of (5) are given by

ui(x, t) = ui(�), �� = lix� + kit� , li, ki ≠ 0, i = 1, 2,… , m, (10)

From the system (10), we have

 �
t ui(x, t) =  �

t ui(�), �� = lix� + kit� , i = 1, 2,… , m,

= t1−�u′i(�)
d�
dt
, ��−1 d�

dt
= kit�−1, ki ≠ 0,

 �
t ui(x, t) = ki

�ui(�), ki ≠ 0, i = 1, 2,… , m,
⋮

 k�
t ui(x, t) = kki 

k�ui(�), k = 1, 2,… , ki ≠ 0, i = 1, 2,… , m, (11)
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Similarly, we may have

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

 �
x ui(x, t) =  �

x ui(�), �
� = lix� + kit� , i = 1, 2,… , m,

= x1−�u′i(�)
d�
dx
, ��−1 d�

dt
= li�x�−1, li ≠ 0,

 �
x ui(x, t) = li

k�
x ui(�), li ≠ 0, i = 1, 2,… , m,

⋮

 k�
x ui(x, t) = lki 

k�
x ui(�), k = 1, 2,… , li ≠ 0, i = 1, 2,… , m,

(12)

for lj , kj ∈ ℝ are nonzero constants that should be evaluated. Therefore, by substituting (10), (11), and (12) into equation (5),
we obtain the following system of conformable ordinary differential equations

 M�
t ui(�) + L�(ū(�)) +N�(ū(�)) = 0, ū = (u1, u2,… , um), i = 1, 2… , m. (13)

Next, we assume that the system (13) of ODEs has solutions given by

ui(�) =
M
∑

j=0

aij
(1 + e�� )j

, �� = lix� + kit� , li, ki,≠ 0, i = 1, 2,… , m. (14)

where aij ∈ ℝ, j = 1, ...,M are arbitrary constants to be determined (aiM ≠ 0). After that, the balancing numberM is obtained
from the reduced equation (13) by using the homogeneous balance principle. When we substitute equation (14) into equation
(13), and collect the coefficients of each power of e�� , we obtain a polynomial of e�� . Then equate all the coefficients of e��

to zero to obtain a system of algebraic equations. By solving this system, we find the values of aij(j = 1, ...,M), li, and ki.
Therefore, by inserting the obtained values of aij into equation (14), we obtain a series of exact solutions for equation (5).

4 ANALYTICAL TECHNIQUE FOR SOLVING NONLINEAR SYSTEM OF
CONFORMABLE PDES

In this section, we introduce an approximate analytical method to solve a nonlinear system of variable time-fractional order
partial differential equations of the following form:

⎧

⎪

⎨

⎪

⎩

 �
t uj(x, t) = fj(x, t) + Lj ū(x, t) +Nj ū(x, t), k − 1 < � ≤ k,
)iuj(x, t0)

)ti
= fj(x), t0 ≥ 0, i = 0, 1,… , k − 1, j = 1, 2,… , m,

(15)

where ū(x, t) = (u1(x, t), u2(x, t),… , un(x, t)), and Lj , Nj are linear and nonlinear operators respectively of ū = ū(x, t) and
its derivatives which might include other fractional derivatives of orders other than �, and fj(x, t) and fj(x), j = 1, 2,… , m,
are known analytic functions and � is the conformable time fractional partial derivative of variable order q(t). In the case of
fj(x, t) = 0, the system (15) becomes in the homogeneous form.
In order to solve system (15), we assume that the solution function uj(barx, t) can be written as uj(x, t) = fj(x)gj(t), where

fj(x) and gj(t) are analytical functions.

Theorem 5. Let a function ū(x, t) be ū(x, t) ∶ ℝ × (0,∞) → ℝ. For ū(x, t) = f̄ (x)ḡ(t), with assumption that f̄ (x) and ḡ(t) are
analytical functions, then the nonlinear operatorNj ū(x, t) has the following conformable power series:

Nj ū(x, t) =
∞
∑

n=0

(t − t0)n�

�nΓ(n + 1)
 n�
t Nj(ū(x, t))|(x,t0), (16)

for j = 1, 2,… , m.

Theorem 6. Let a function ū(x, t) be ū(x, t) ∶ ℝ × (0,∞) → ℝ. For ū =
∑∞
k=0 �

k�(x)ūk(x, t), the nonlinear operators Nj ū(x, t)
are satisfied the following property:

Nj ū = Nj

∞
∑

k=0
�kq(t)ūk =

∞
∑

n=0

[ 1
�nΓ(n + 1)

 n�
�

[

Nj

n
∑

k=0
�k� ūk

]

�=0

]

�n� , (17)

for 0 < q(t) < 1 and i = 1, 2,… , m.
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Proof. The proof of Theorem 6 is similar to the proof of Theorem 3 in [37].

Definition 3. The polynomials Pin = Pin(ui0, ui1,… , uin), for i = 1, 2,…m, are defined as

Pin =
1

�nΓ(n + 1)
 n�
�

[

Nj

n
∑

k=0
�k� ūk

]

�=0, (18)

Remark 1. Let Pin = Pin(ui0, ui1,… , uin), by using Theorem 5 and Definition 3, the nonlinear operatorsNj ū� can be expressed
in terms of Pin as

Nj ū =
∞
∑

n=0
Pin, i = 1, 2,… , n. (19)

Let the solutions series uj(x̄, t) of the system (15) be as in the following form:

uj(x̄, t) =
∞
∑

r=0
uir(x̄, t), i = 1, 2,… , m. (20)

By an analytical technique, (see, [37]), the components of the series (20) can be obtained as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ui0(x, t) =
k−1
∑

j=0

tj

j!
fij(x),

ui1(x, t) = f
(−�)
it (x, t) + L(−�)it ū0 + P

(−�)
i0t ,

uir(x, t) = L
(−�)
it ū(r−1) + P

(−�)
i(r−1)t,

(21)

for r = 2, 3,… , i = 1, 2,… , m, where f (−�)it (x, t), L(−�)it = −�t Lj ū, and P
(−�)
it = (−�)t Pi(ui0, ui1,… , uir) denote the time

conformable partial integral of order � for fj(x, t), Lj ū and Pi(ui0, ui1,… , uir) respectively.

Theorem 7. Let  be a Banach space. Then the series solution given by (21) converges to Sj ∈  for j = 1, 2,… , m, if there
exists �i, 0 ≤ �i < 1 such that, ‖uin‖ ≤ �i‖ui(n−1)‖ for ∀n ∈ ℕ.

Proof. See [37].

5 ANALYTICAL SOLUTIONS OF COVID-19 PANDEMIC CONFORMABLE MODELS

5.1 Exact solutions for a SIR model
In this section, we apply the advances we introduce in the previous section to obtain exact analytical solutions for the following
conformable SIR model of dispersion using diffusion describing the COVID-19 pandemic:

⎧

⎪

⎨

⎪

⎩

 �
t s(x, t) = �bn(x, t) + �s(x, t)i(x, t) − �s(x, t) + �s

2�
x s(x, t),

 �
t i(x, t) = �s(x, t)i(x, t) − (� + �)i(x, t) + �i

2�
x i(x, t),

 �
t r(x, t) = �i(x, t) − �r(x, t) + �r

2�
x r(x, t),

(22)

where �b is the birth rate, � is the general (non-COVID-19) mortality rate, � is the infection rate, � is the recovery rate, and
�s, �i and �r are diffusion parameters respectively corresponding to the different population groups. Here s(x, t), e(x, t), i(x, t),
and r(x, t) denote the densities of the susceptible, infected, and recovered populations respectively, such that

n(x, t) = s(x, t) + i(x, t) + r(x, t), (23)

where n(x, t) denotes the sum of the host population. In this paper, we use the system (22) to illustrate the dynamics of the
spatiotemporal dispersal of the COVID-19 epidemic. The model 22 is represented by the diagram in Figure 1 Further, we
assume that n(x, t) = 1 and we consider the following reduced system:

{

 �
t s(x, t) = �s(x, t)i(x, t) − �s(x, t) + �s

2�
x s(x, t),

 �
t i(x, t) = �s(x, t)i(x, t) − (� + �)i(x, t) + �i

2�
x i(x, t).

(24)

The size of recovered host population r(x, t) can be obtained using the solutions of system (24) and equation (23) with the
assumption that n(x, t) = 1.
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To solve the system (24) by using the fractional ERFM, we assume the following transformations

s(x, t) = s(�), i(x, t) = i(�), �� = elix�+kit� , i = 1, 2. (25)

From (25) with the help of 7 and 8, we obtain
{

 �
t s(x, t) = k1�s

′(�),  2�
x s(x, t) = l21�s

′(�) + l21�
2s′′(�),

 �
t i(x, t) = k2�i

′(�),  2�
x i(x, t) = l22�i

′(�) + l22�
2i′′(�).

(26)

By substituting systems (25) and (26) into system (22), we obtain
{

k1�s
′(�) = �s(�)i(�) − �s(�) + �s(l21�s

′(�) + l21�
2s′′(�)),

k2�i
′(�) = �s(�)i(�) − (� + �)i(�) + �i(l22�i

′(�) + l22�
2i′′(�)),

(27)

By doing some simplifications, system (27) can be rewritten as
{

(k1 − �sl21)�s
′(�) = (�i(�) − �)s(�) + �sl21�

2s′′(�),
(k2 − �il22)�i

′(�) = (�s(�) − � − �)i(�) − �il22�
2i′′(�),

(28)

By equating the highest order derivatives in system (28) to the highest order of the nonlinear terms, we find the balancing
numbers as m1 = m2 = m3 = 2. Therefore, we assume that the system (28) has solutions of the form

⎧

⎪

⎨

⎪

⎩

s(�) = a0 +
a1

1 + ��
+

a2
(1 + ��)2

, �� = el1x�+k1t� , l1, k1 ≠ 0,

i(�) = b0 +
b1

1 + ��
+

b2
(1 + ��)2

, �� = el2x�+k2t� , l2, k2 ≠ 0.
(29)

Next, we substitute equation (29) into equation (28) and equating the coefficients with identical powers of �� to zero, we obtain
the following systems of algebraic equations

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�4� ∶ a0�b0 − a0�,
�3� ∶ 4a0�b0 + a1�b0 + a0�b1 + �a1k1 + �2a1l21�s − 4a0� − a1�,
�2� ∶ 6a0�b0 + 3a1�b0 + a2�b0 + 3a0�b1 + a1�b1 + a0�b2 + 2�a1k1 + 2�a2k1 + 4�2a2l21�s − 6a0�

− 3a1� − a2�,
�� ∶ 4a0�b0 + 3a1�b0 + 2a2�b0 + 3a0�b1 + 2a1�b1 + a2�b1 + 2a0�b2 + a1�b2 + �a1k1 + 2�a2k1

− �2a1l21�s − 2�
2a2l21�s − 4a0� − 3a1� − 2a2�,

�0� ∶ a0�b0 + a0�b1 + a0�b2 + a1�b0 + a2�b0 + a1�b1 + a2�b1 + a1�b2 + a2�b2 + a0(−�)
− a1� − a2�,

(30)

and
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�4� ∶ a0�b0 + b0(−� ) − b0�,
�3� ∶ 4a0�b0 + a1�b0 + a0�b1 − 4b0� − b1� + �b1k2 + �2b1�il22 − 4b0� − b1�,
�2� ∶ 6a0�b0 + 3a1�b0 + a2�b0 + 3a0�b1 + a1�b1 + a0�b2 − 6b0� − 3b1� − b2� + 2�b1k2 + 2�b2k2

+ 4�2b2�il22 − 6b0� − 3b1� − b2�,
�� ∶ 4a0�b0 + 3a1�b0 + 2a2�b0 + 3a0�b1 + 2a1�b1 + a2�b1 + 2a0�b2 + a1�b2 − 4b0� − 3b1�

− 2b2� + �b1k2 + 2�b2k2 − �2b1�il22 − 2�
2b2�il22 − 4b0� − 3b1� − 2b2�,

�0� ∶ a0�b0 + a1�b0 + a2�b0 + a0�b1 + a1�b1 + a2�b1 + a0�b2 + a1�b2 + a2�b2 + b0(−� ) − b1�
− b2� − b0� − b1� − b2�,

(31)

Next, we solve systems (30) and (31) of algebraic equations inℝwith the help of Mathematica andMaple, we have the following
two cases:
Case 1:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a0 =
� + �
�

, a1 = 0, a2 = −
� + �
�

, b0 =
�
�
, b1 = 0, b2 = −

�
�
,

k1 = −
5�
6�
, k2 = −

5(� + �)
6�

, l1 = ±

√

�

�
√

6�s
, l2 = ±

√

� + �

�
√

6�i
.

(32)
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By using systems (32), (29), (25), and (23), we obtain the following exact solutions of (22):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

s1(x, t) =
� + �
�

−
�+�
�

(

1 + e
±

√

6�
6�

√

�s
x�−5∕6 �

�
t�)2

,

i1(x, t) =
�
�
−

�
�

(

1 + e±
√

�+�
�
√

6�i
x�−5∕6 �+�

�
t�)2

,

r1(x, t) = 1 −
� + 2�
�

−
�+�
�

(

1 + e
±

√

6�
6�

√

�s
x�−5∕6 �

�
t�)2

−
�
�

(

1 + e±
√

�+�
�
√

6�i
x�−5∕6 �+�

�
t�)2

.

(33)

Case 2:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

a0 = 0, a1 =
2(� + �)

�
, a2 = −

� + �
�

, b0 = 0, b1 =
2�
�
, b2 = −

�
�
,

k1 =
5�
6�
, k2 =

5(� + �)
6�

, l1 = ±

√

6�
6�

√

�s
, l2 = ±

√

� + �

�
√

6�i
.

(34)

By using the systems (34), (29), and (25), we obtain the following exact traveling solutions of (22):
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

s2(x, t) =
2(� + �)

�
(

e
(5�)t�
6�

±
√

6�x�

6�
√

�s + 1
)

−
� + �

�
(

e
(5�)t�
6�

±
√

6�x�

6�
√

�s + 1
)2
,

i2(x, t) =
2�

�
(

e
(5(�+�))t�

6�
±

√

�+�x�

�
√

6�i + 1
)

−
�

�
(

e
(5(�+�))t�

6�
±

√

�+�x�

�
√

6�i + 1
)2
,

r2(x, t) = 1 −
2(� + �)

�
(

e
(5�)t�
6�

±
√

6�x�

6�
√

�s + 1
)

+
� + �

�
(

e
(5�)t�
6�

±
√

6�x�

6�
√

�s + 1
)2

−
2�

�
(

e
(5(�+�))t�

6�
±

√

�+�x�

�
√

6�i + 1
)

+
�

�
(

e
(5(�+�))t�

6�
±

√

�+�x�

�
√

6�i + 1
)2
.

(35)

Next, we solve the system (24) by using the inverse conformable ERFM, we assume the following

s(x, t) = s(�), i(x, t) = i(�), �� = lix� + kit� , ki, li ≠ 0, i = 1, 2. (36)

By using the conformable derivatives in (36), we have
{

 �
t s(x, t) = k1

�s(�),  2�
x s(x, t) = l21

2�s(�),
 �
t i(x, t) = k2

�s(�),  2�
x i(x, t) = l22

2�i(�).
(37)

By using (37) into (22), we obtain the following system

{

k1 �s(�) = �s(�)i(�) − �s(�) + �sl21
2�s(�),

k2 �i(�) = �s(�)i(�) − (� + �)i(�) + �il22
2�i(�).

(38)

By equating the highest order derivatives in system (28) to the highest order of the nonlinear terms, we find the balancing
numbers as m1 = m2 = m3 = 2. Therefore, we assume that the system (28) has solutions of the form

⎧

⎪

⎨

⎪

⎩

s(�) = a0 +
a1

1 + e��
+

a2
(1 + e�� )2

, �� = l1x� + k1t� , l1, k1 ≠ 0,

i(�) = b0 +
b1

1 + e��
+

b2
(1 + e�� )2

, �� = l2x� + k2t� , l2, k2 ≠ 0.
(39)
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Further, we substitute system (39) into system (38) and collecting the coefficients of each power of e�� and set them to zero, we
obtain a system of algebraic equations

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

e4�� ∶ a0�b0 − a0�,
e3�� ∶ 4a0�b0 + a1�b0 + a0�b1 + �a1k1 + �2a1l21�s − 4a0� − a1�,
e2�� ∶ 6a0�b0 + 3a1�b0 + a2�b0 + 3a0�b1 + a1�b1 + a0�b2 + 2�a1k1 + 2�a2k1 + 4�2a2l21�s

− 6a0� − 3a1� − a2�,
e�� ∶ 4a0�b0 + 3a1�b0 + 2a2�b0 + 3a0�b1 + 2a1�b1 + a2�b1 + 2a0�b2 + a1�b2 + �a1k1 + 2�a2k1

− �2a1l21�s − 2�
2a2l21�s − 4a0� − 3a1� − 2a2�,

e0�� ∶ a0�b0 + a0�b1 + a0�b2 + a1�b0 + a2�b0 + a1�b1 + a2�b1 + a1�b2 + a2�b2 + a0(−�)
− a1� − a2�,

(40)

and
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

e4�� ∶ a0�b0 − b0� − b0�,
e3�� ∶ 4a0�b0 + a1�b0 + a0�b1 − 4b0� − b1� + �b1k2 + �2b1l22�i − 4b0� − b1�,
e2�� ∶ 6a0�b0 + 3a1�b0 + a2�b0 + 3a0�b1 + a1�b1 + a0�b2 − 6b0� − 3b1� − b2� + 2�b1k2 + 2�b2k2

+ 4�2b2l22�i − 6b0� − 3b1� − b2�,
e�� ∶ 4a0�b0 + 3a1�b0 + 2a2�b0 + 3a0�b1 + 2a1�b1 + a2�b1 + 2a0�b2 + a1�b2 − 4b0� − 3b1� − 2b2�

+ �b1k2 + 2�b2k2 − �2b1l22�i − 2�
2b2l22�i − 4b0� − 3b1� − 2b2�,

e0�� ∶ a0�b0 + a1�b0 + a2�b0 + a0�b1 + a1�b1 + a2�b1 + a0�b2 + a1�b2 + a2�b2 + b0(−� ) − b1�
− b2� − b0� − b1� − b2�.

(41)

Next, we solve systems (40) and (41) of algebraic equations in ℝ with the help of Mathematica and Maple, we obtain the
following two cases:
Case 1:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a0 = 0, a1 =
2(� + �)

�
, a2 = −

� + �
�

, b0 = 0, b1 =
2�
�
, b2 = −

�
�
,

k1 =
5�
6�
, k2 =

5(� + �)
6�

, l1 = ±

√

6�
6�

√

�s
, l2 = ±

√

� + �

�
√

6�i
.

(42)

By using the systems (42), (39), (36), and (23), we obtain the following exact solutions of (22):

s3(x, t) =
2(� + �)

�
(

e
(5�)t�
6�

±
√

6�x�

6�
√

�s + 1
)

−
� + �

�
(

e
(5�)t�
6�

±
√

6�x�

6�
√

�s + 1
)2
,

i3(x, t) =
2�

�
(

e
(5(�+�))t�

6�
±

√

�+�x�

�
√

6�i + 1
)

−
�

�
(

e
(5(�+�))t�

6�
±

√

�+�x�

�
√

6�i + 1
)2
,

r3(x, t) = 1 −
2(� + �)

�
(

e
(5�)t�
6�

±
√

6�x�

6�
√

�s + 1
)

+
� + �

�
(

e
(5�)t�
6�

±
√

6�x�

6�
√

�s + 1
)2

−
2�

�
(

e
(5(�+�))t�

6�
±

√

�+�x�

�
√

6�i + 1
)

+
�

�
(

e

(

(5(�+�))t�
6�

±
√

�+�x�

�
√

6�i

)

+ 1
)2
. (43)

Case 2:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

a0 =
� + �
�

, a1 = 0, a2 = −
� + �
�

, b0 =
�
�
, b1 = 0, b2 = −

�
�
,

k1 = −
5�
6�
, k2 = −

5(� + �)
6�

, l1 = ±

√

�

�
√

6�s
, l2 = ±

√

� + �

�
√

6�i
.

(44)
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By using the systems (44), (39), and (36), we obtain the following exact traveling solutions of (22)
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

s4(x, t) =
� + �
�

−
�+�
�

(1 + e
±

√

6�
6�

√

�s
x�+5∕6 �

�
t�
)2
,

i4(x, t) =
�
�
−

�
�

(1 + e±
√

�+�
�
√

6�i
x�+5∕6 �+�

�
t� )2

,

r4(x, t) = 1 −
� + 2�
�

−
�+�
�

(1 + e
±

√

6�
6�

√

�s
x�+5∕6 �

�
t�
)2
−

�
�

(1 + e±
√

�+�
�
√

6�i
x�+5∕6 �+�

�
t� )2

.

(45)

However, the exact solutions (43) and (45), obtained by the fractional ERFM are the same as the exact solutions (33) and (35)
obtained by the inverse fractional ERFM.

5.2 Approximate solutions for a SEIRD model
in this section, we present approximate analytical solutions for a SEIRD model with conformable space-time derivatives of the
following form:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 �
t s(x, t) = �bn(x, t) − �s(x, t) − �s(x, t)i(x, t) − �s(x, t)e(x, t) +

c∇�x ⋅
(

n�s
c∇�xs

)

,
 �
t e(x, t) = (−� − � − �)e(x, t) + �s(x, t)i(x, t) + �s(x, t)e(x, t) +

c∇�x ⋅
(

n�e
c∇�xe

)

,
 �
t i(x, t) = �e(x, t) + �s(x, t)i(x, t) + (−� − � − �)i(x, t) +

c∇�x ⋅
(

n�i
c∇�xi

)

,
 �
t r(x, t) = �i(x, t) − �e(x, t) − �r(x, t) +

c∇�x ⋅
(

n�r
c∇�xr

)

,  �
t d(x, t) = �i(x, t),

(46)

where s(x, t), e(x, t), i(x, t), r(x, t), and d(x, t) refer to the densities of the susceptible, exposed, infected, recovered, and deceased
populations respectively,  �

t is a conformable derivative of order 0 < � < 1 for t, and (x, t) ∈ Ω × [0, T ], Ω ⊂ ℝm, n(x, t) >
0,c∇�x =

∑m
j x

1−�
j

)j

)xj
and �b is the birth rate, � is the general (non-COVID-19) mortality rate, � is the infection rate, � is the

asymptomatic recovery, � is the inverse of the incubation period, � is the infected recovery rate, � is the deceased mortality
rate, and �s, �e, �i and �r are diffusion parameters respectively corresponding to the different population groups. The schematic
diagram of the model (46) is presented in Figure 2 We consider m = 1, and with assumption of n(x, t) = s(x, t) + i(x, t) +
r(x, t) + d(x, t). By comparing (46) with (15) for i = j, 2, 3, 4, 5, we have

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

 �
t s(x, t) = f1(x, t) + L1(s, e, i, r, d) +N1(s, e, i.r, d),

 �
t e(x, t) = L2(s, e, i, r, d) +N2(s, e, i, r, d),
 �
t i(x, t) = L3(s, e, i, r, d) +N3(s, e, i, r, d),

 �
t r(x, t) = L4(s, e, i, r, d) +N4, (s, e, i, r, d),

 �
t d(x, t) = L5(s, e, i, r, d)

(47)

subject to the following initial conditions given in (46) where we assume that
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

f1(x, t), f2(x, t),… , f5(x, t) = 0, L1(s, e, i, r, d) = �bn(x, t) − �s(x, t),
L2(s, e, i, r, d) = (−� − � − �)e(x, t), L3(s, e, i, r, d) = �e(x, t) + (−� − � − �)i(x, t),
L4(s, e, i, r, d) = �i(x, t) − �e(x, t) − �r(x, t), L5(s, e, i, r, d) = �i(x, t),
N1(s, e, i, r, d) = �s(x, t)i(x, t) − �s(x, t)e(x, t) + c∇�x ⋅

(

n�s
c∇�xs

)

,
N2(s, e, i, r, d) = �s(x, t)i(x, t) + �s(x, t)e(x, t) + c∇�x ⋅

(

n�e
c∇�xe

)

,
N3(s, e, i, r, d) = �s(x, t)i(x, t) + c∇�x ⋅

(

n�i
c∇�xi

)

,
N4(s, e, i, r, d) = c∇�x ⋅

(

n�r
c∇�xr

)

, N5(s, e, i, r, d) = 0.

(48)
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To solve the system (46), we assume that the solutions of (46) have the following forms:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

s(x, t) =
∞
∑

r=0
sr(x, t), e(x, t) =

∞
∑

r=0
er(x, t), i(x, t) =

∞
∑

r=0
ir(x, t),

r(x, t) =
∞
∑

r=0
rr(x, t), d(x, t) =

∞
∑

r=0
dr(x, t).

(49)

Thus from the system (21), we obtain

⎧

⎪

⎪

⎨

⎪

⎪

⎩

s0(x, t) =
k−1
∑

j=0

tj

j!
sj(x, 0), e0(x, t) =

k−1
∑

j=0

tj

j!
ej(x, 0), i0(x, t) =

k−1
∑

j=0

tj

j!
ij(x, 0),

r0(x, t) =
k−1
∑

j=0

tj

j!
rj(x, 0), d0(x, t) =

k−1
∑

j=0

tj

j!
dj(x, 0),

(50)

and
⎧

⎪

⎨

⎪

⎩

s1(x, t) = f1(x, t) + L
(−�)
1t + P (−�)1t (s0, e0, i0, r0, d0), e1(x, t) = f2(x, t) + L

(−�)
2t + P (−�)2t (s0, e0, i0, r0, d0),

i1(x, t) = f3(x, t) + L
(−�)
3t + P (−�)3t (s0, e0, i0, r0, d0), r1(x, t) = f4(x, t) + L

(−�)
4t + P (−�)4t (s0, e0, i0, r0, d0),

d1(x, t) = f5(x, t) + L
(−�)
5t (s0, e0, i0, r0, d0),

(51)

and
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

sr′(x, t) = L
(−�)
1t (sr′−1, er′−1, ir′−1, rr′−1, dr′−1) + P

(−�)
1t (

r′−1
∑

l=0
sl,

r′−1
∑

l=0
el,

r′−1
∑

l=0
il,

r′−1
∑

l=0
rl,

r′−1
∑

l=0
dl),

er′(x, t) = L
(−�)
2t (sr′−1, er′−1, ir′−1, rr′−1, dr′−1) + P

(−�)
2t (

r′−1
∑

l=0
sl,

r′−1
∑

l=0
el,

r′−1
∑

l=0
il,

r′−1
∑

l=0
rl,

r′−1
∑

l=0
dl),

ir′(x, t) = L
(−�)
3t (sr′−1, er′−1, ir′−1, rr′−1, dr′−1) + P

(−�)
3t (

r′−1
∑

l=0
sl,

r′−1
∑

l=0
el,

r′−1
∑

l=0
il,

r′−1
∑

l=0
rl,

r′−1
∑

l=0
dl),

rr′(x, t) = L
(−�)
4t (sr′−1, er′−1, ir′−1, rr′−1, dr′−1) + P

(−�)
4t (

r′−1
∑

l=0
sl,

r′−1
∑

l=0
el,

r′−1
∑

l=0
il,

r′−1
∑

l=0
rl,

r′−1
∑

l=0
dl),

dr′(x, t) = L
(−�)
5t (sr′−1, er′−1, ir′−1, rr′−1, dr′−1),

(52)

where P (−�)jt = (−�)t Pj(sj , ej , ij), j = 0, 1, , 5 are obtained by using Definition 3 and Remark 1.
By evaluating the components of (50)-(52) and substituting the results along with the values from (53) and (48) into (49), we
obtain the approximate analytical solutions for the model (22). In particular, we study the model (22) with the initial values

{

s(x, 0) = 1 + �x�∕� − e−�x�∕� , r(x, 0) = d(x, 0) = 0,
e(x, 0) = i(x, 0) = −�x�∕� + e−�x�∕� ,

(53)

for 0 < � < 1.
Therefore, from the systems (50) and (53), we obtain and

s1(x, t) =
�bt�

�
−
�2�st�e

− �x�

�

�
−
�t�

�
+
2�3t�x2�

�3
+
2�2t�x�

�2
−
4�2t�x�e−

�x�

�

�2

−
��t�x�

�2
+
�t�e−

�x�

�

�
+
2�t�e−

2�x�

�

�
−
2�t�e−

�x�

�

�
,

e1(x, t) = ��2�et�e�(−x
�) −

2�3t�x2�

�
+
��t�x�

�2
+
��t�x�

�2
+
��t�x�

�2
+
4�2t�x�e�(−x�)

�

−
2�2t�x�

�
−
�t�e−

�x�

�

�
−
�t�e−

�x�

�

�
− �t�e−

�x�

�

�
+
2�t�e�(−x�)

�
−
2�t�e−2�x�

�
,

i1(x, t) = ��2�it�e�(−x
�) −

�3t�x2�

�
+
��t�x�

�2
+
��t�x�

�2
+
��t�x�

�2
−
��t�x�

�2
+
2�2t�x�e�(−x�)

�
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−
�2t�x�

�
−
�t�e−

�x�

�

�
−
�t�e−

�x�

�

�
−
�t�e−

�x�

�

�
+
�t�e−

�x�

�

�
+
�t�e�(−x�)

�
−
�t�e−2�x�

�
,

r1(x, t) = −
��t�x�

�2
+
��t�x�

�2
+
�t�e−

�x�

�

�
− �t�e−

�x�

�

�
,

d1(x, t) =
�t�e−

�x�

�

�
−
��t�x�

�2
,

s2(x, t) =
t2�

2�5
(

e−
(�+1)�x�

�

(

�2
(

− e�x�
)(

�b
(

2�� − 2�2x�e
�x�

� + ��e
�x�

�

)

+ ��4�2s + 2�
2�s

(

3�2x� − �
(

3� + � − 3� sinh
(�x�

�

)

+ 7� cosh
(�x�

�

))))

− �4�3�i
(

�x�e
�x�

� + �
(

e
�x�

� − 1
)))

+ �4�3�ee
− (�+1)�x�

�

(

� + �x�
(

− e
�x�

�

)

− �e
�x�

�

)

+ e−
(2�+1)�x�

�

(

�x�e
�x�

� + �
(

e
�x�

� − 1
))(

�2
(

�2
(

− 3e�x� + 4e
2(�−1)�x�

� + 3
)

+ �2e2�x�

+ �e
(2�−1)�x�

� (� + � + 6� + �)
)

− ��2x�
(

e2�x� (−3�� + � + � + 6� + �) + 8�e
(2�−1)�x�

� + 6��e�x�
)

+
(

3�2 + 4
)

�4x2�e2�x�
))

,

e2(x, t) =
t2�e−

(2�+3)�x�

�

2�5
(

�2�
(

2e
(2�+1)�x�

�

(

� − �x�e
�x�

�

)(

�be
�x�

� − �2�s
)

+ �5�3�2e e
(�+3)�x�

�

+ ���e
(

�(4� + 1)�2x�e
(�+3)�x�

� − e
2�x�

�

(

�2e
(�+1)�x�

� (5� + � + � + �) + 8�2�e
�x�

� + 4�2�e
(2�+1)�x�

�

+ �2�e�x� + e2�x� (� + � + �)
))

+ �2�2�ie
(�+2)�x�

�

(

�x�e
�x�

� + �
(

e
�x�

� − 1
)))

+ 3�3�2e
2�x�

�

+ 4�3�2e2�x� − 3�3�2e
(�+2)�x�

�

(

2�x� + 1
)

− �2�e
(2�+1)�x�

�

(

�(4� − � − � − 4� − �) + 12�2x�
)

− �2�e
3�x�

�

(

3�� − 2�(� + � + �) + 3�2x�
)

+ �2�e
(�+3)�x�

�

(

2�x� + 1
)(

3�� − 2�(� + � + �) + 3�2x�
)

+ �x�e
(2�+3)�x�

�

(

− �2
(

��(3� − 2(� + � + �)) − �(� + � + 4� + �) + (� + � + �)2
)

−
(

3�2 + 4
)

�4x2�

− ��2x�
(

− 2�2(� + � + �) + (3�(� + 1) + 4)� − � − � − 4� − �
))

+ �e
2(�+1)�x�

�

(

�2
(

(� + � + �)2

− �(� + � + 4� + �)
)

+ 3
(

�2 + 4
)

�4x2� + ��2x�((3� + 8)� − 2(� + � + 4� + �))
))

,

i2(x, t) = −
t2�

2�5
(

�2�e−
3(�+1)�x�

�

(

e
(3�+1)�x�

�

(

� − �x�e
�x�

�

)(

�2�s − �be
�x�

�

)

− �3���ee
(2�+3)�x�

�

+ �5�3�2i
(

− e
(2�+3)�x�

�

)

+ ���ie
(�+2)�x�

�

(

4�2�e
�x�

� + 2�2�e
(2�+1)�x�

� + �2�e�x�

− �e
(�+1)�x�

�

(

(2� + 1)�2x� − �(2� + � + � + �)
)

+ e2�x� (� + � + � − �)
))

− 2�3�2e−
3�x�

�

− �3�2e−
(2�+1)�x�

� + �3�2e−
(�+1)�x�

�

(

2�x� + 1
)

+ �2�e−
2�x�

�

(

�(2� − � − � − 2� + �) + 6�2x�
)

+ �2�e−2�x�
(

�(� − � − � − � + 2�) + �2x�
)

− �2�e
�
(

−x�
)

(

2�x� + 1
)(

�(� − � − � − � + 2�) + �2x�
)

+ x�
(

�2�
(

��(� − � − � − � + 2�) − �(� + � + 2� − �) + (� + � + �)2 − �2 − �(� + � + 2� + �)
)

+
(

�2 + 2
)

�5x2� + ��3x�
((

�2 + � + 2
)

� −
(

�2(� + � + � − 2�)
)

− � − � − 2� + �
))

+ �e−
�x�

�

(

�2
(

�(� + � + 2� − �) − (� + � + �)2 + �2 + �(� + � + 2� + �)
)

−
(

�2 + 6
)

�4x2�

− ��2x�((� + 4)� − 2(� + � + 2� − �))
))

,

r2(x, t) =
t2�e−

(2�+1)�x�

�

2�3
(

��2
(

�2
(

− e
(�+1)�x�

�

)(

��e − ��i
)

− �r(� − � )e2�x
�
)

+ �x�e
(2�+1)�x�

�

(

� (� + � + 2� − �) + ��(2� − � )
(

�x� + 1
)

− �2 − �(2� + �)
)
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+ �e2�x�
(

− � (� + � + 2� − �) + �2 + �(2� + �)
)

+ ��(2� − � )e
�x�

� − ��(2� − � )e
(�+1)�x�

�

(

2�x� + 1
))

,

d2(x, t) =
�t2�

2�3
(

��e−2�x�
(

�2��ie
�x� −

(

�x�e�x� − 1
)(

e�x�
(

�x� + 1
)

− 1
))

−
(

(� + � + �)
(

�e−
�x�

� − �x�
))

+ �
(

�e−
�x�

� − �x�
))

, (54)

and so on. Therefore, the approximate analytical solutions for the system (46) are

s(x, t) = 1 + �x�∕� − e−�x�∕� + t�

�3
(

�2
(

�b − �2�se
− �x�

�

)

− e−
2�x�

�

(

�x�e
�x�

� + �
(

e
�x�

� − 1
))

×
(

2�� − 2�2x�e
�x�

� + ��e
�x�

�

))

+ t2�

2�5
(

e−
(�+1)�x�

�

(

�2
(

− e�x�
)(

�b
(

2�� − 2�2x�e
�x�

� + ��e
�x�

�

)

+ ��4�2s + 2�
2�s

(

3�2x� − �
(

3� + � − 3� sinh
(�x�

�

)

+ 7� cosh
(�x�

�

))))

− �4�3�i
(

�x�e
�x�

� + �
(

e
�x�

� − 1
)))

+ �4�3�ee
− (�+1)�x�

�

(

� + �x�
(

− e
�x�

�

)

− �e
�x�

�

)

+ e−
(2�+1)�x�

�

(

�x�e
�x�

� + �
(

e
�x�

� − 1
))(

�2
(

�2
(

− 3e�x� + 4e
2(�−1)�x�

� + 3
)

+ �2e2�x�

+ �e
(2�−1)�x�

� (� + � + 6� + �)
)

− ��2x�
(

e2�x� (−3�� + � + � + 6� + �) + 8�e
(2�−1)�x�

� + 6��e�x�
)

+
(

3�2 + 4
)

�4x2�e2�x�
))

,

(55)

e(x, t) = −�x�∕� + e−�x�∕� + ��2�et�e�(−x
�) − t�

�

(

�e−2�x�
(

�2��ee
�x� − 2

(

�x�e�x� − 1
)

×
(

e�x�
(

�x� + 1
)

− 1
))

+
(�x�

�
− e−

�x�

�

)

(� + � + �)
)

+ t2�e−
(2�+3)�x�

�

2�5
(

�2�
(

2e
(2�+1)�x�

�

(

� − �x�e
�x�

�

)(

�be
�x�

� − �2�s
)

+ �5�3�2e e
(�+3)�x�

�

+ ���e
(

�(4� + 1)�2x�e
(�+3)�x�

� − e
2�x�

�

(

�2e
(�+1)�x�

� (5� + � + � + �) + 8�2�e
�x�

� + 4�2�e
(2�+1)�x�

�

+ �2�e�x� + e2�x� (� + � + �)
))

+ �2�2�ie
(�+2)�x�

�

(

�x�e
�x�

� + �
(

e
�x�

� − 1
)))

+ 3�3�2e
2�x�

�

+ 4�3�2e2�x� − 3�3�2e
(�+2)�x�

�

(

2�x� + 1
)

− �2�e
(2�+1)�x�

�

(

�(4� − � − � − 4� − �) + 12�2x�
)

− �2�e
3�x�

�

(

3�� − 2�(� + � + �) + 3�2x�
)

+ �2�e
(�+3)�x�

�

(

2�x� + 1
)(

3�� − 2�(� + � + �) + 3�2x�
)

+ �x�e
(2�+3)�x�

�

(

− �2
(

��(3� − 2(� + � + �)) − �(� + � + 4� + �) + (� + � + �)2
)

−
(

3�2 + 4
)

�4x2�

− ��2x�
(

− 2�2(� + � + �) + (3�(� + 1) + 4)� − � − � − 4� − �
))

+ �e
2(�+1)�x�

�

(

�2
(

(� + � + �)2

− �(� + � + 4� + �)
)

+ 3
(

�2 + 4
)

�4x2� + ��2x�((3� + 8)� − 2(� + � + 4� + �))
))

,

i(x, t) = −�x�∕� + e−�x�∕� + t�

�2
(

��e−2�x�
(

�2��ie
�x� −

(

�x�e�x� − 1
)(

e�x�
(

�x� + 1
)

− 1
))

−
(

(� + � + �)
(

�e−
�x�

� − �x�
))

+ �
(

�e−
�x�

� − �x�
))

− t2�

2�5
(

�2�e−
3(�+1)�x�

�

(

e
(3�+1)�x�

�

(

� − �x�e
�x�

�

)(

�2�s − �be
�x�

�

)

− �3���ee
(2�+3)�x�

�

+ �5�3�2i
(

− e
(2�+3)�x�

�

)

+ ���ie
(�+2)�x�

�

(

4�2�e
�x�

� + 2�2�e
(2�+1)�x�

� + �2�e�x�

− �e
(�+1)�x�

�

(

(2� + 1)�2x� − �(2� + � + � + �)
)

+ e2�x� (� + � + � − �)
))

− 2�3�2e−
3�x�

�

− �3�2e−
(2�+1)�x�

� + �3�2e−
(�+1)�x�

�

(

2�x� + 1
)

+ �2�e−
2�x�

�

(

�(2� − � − � − 2�

+ �) + 6�2x�
)

+ �2�e−2�x�
(

�(� − � − � − � + 2�) + �2x�
)

− �2�e
�
(

−x�
)

(

2�x� + 1
)(

�(� − �
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− � − � + 2�) + �2x�
)

+ x�
(

�2�
(

��(� − � − � − � + 2�) − �(� + � + 2� − �) + (� + � + �)2 − �2

− �(� + � + 2� + �)
)

+
(

�2 + 2
)

�5x2� + ��3x�
((

�2 + � + 2
)

� −
(

�2(� + � + � − 2�)
)

− � − �

− 2� + �
))

+ �e−
�x�

�

(

�2
(

�(� + � + 2� − �) − (� + � + �)2 + �2 + �(� + � + 2� + �)
)

−
(

�2 + 6
)

�4x2� − ��2x�((� + 4)� − 2(� + � + 2� − �))
))

,

r(x, t) = t�

�2
(� − � )e−

�x�

�

(

�x�e
�x�

� − �
)

+ t2�e−
(2�+1)�x�

�

2�3
(

��2
(

�2
(

− e
(�+1)�x�

�

)(

��e − ��i
)

− �r(� − � )e2�x
�
)

+ �x�e
(2�+1)�x�

�

(

� (� + � + 2� − �) + ��(2� − � )
(

�x� + 1
)

− �2 − �(2� + �)
)

+ �e2�x�
(

− � (� + � + 2� − �) + �2 + �(2� + �)
)

+ ��(2� − � )e
�x�

� − ��(2� − � )e
(�+1)�x�

�

×
(

2�x� + 1
))

,

d(x, t) =
�t�

(

�e−
�x�

� − �x�
)

�2
+
�t2�

2�3
(

��e−2�x�
(

�2��ie
�x� −

(

�x�e�x� − 1
)(

e�x�
(

�x� + 1
)

− 1
))

−
(

(� + � + �)
(

�e−
�x�

� − �x�
))

+ �
(

�e−
�x�

� − �x�
))

. (56)

In the next section, we obtain the graphical representations of the solutions for the (22) subject to the initial conditions (53) with
the following assumed values:

⎧

⎪

⎨

⎪

⎩

� = � = 0, � = 0.0139, � = 0.0714, � = 0.1667,
� = 0.7348, � = 0.0218, �s = 0.05, �e = 0.025,
�i = 0.04, �r = 0.08, q(t) = 0.5et − 0.36t.

(57)

6 DISCUSSION AND GRAPHICAL REPRESENTATIONS

The 3D graphical representations of the exact solutions for the conformable SIR model with particular values of parameters
are presented to illustrate the physical behavior of the solutions. However, Figure 3 shows the graphs of solution s1(x, t) for
equation 22 for � = 0.01, � = 0.139, � = 0.0714, �s, �i = 0.05, and � = 0.5, 1, respectively. Further, Figure 4 shows the
graphs of solution i1(x, t) for equation 22 for � = 0.01, � = 0.139, � = 0.0714, �s, �i = 0.05, and � = 0.5, 1, respectively.
We plot the graphs of solution r1(x, t) for equation 22 for � = 0.01, � = 0.139, � = 0.0714, �s, �i = 0.05, and � = 0.5, 1
respectively in Figure 5 . However, the graphs of solution s3(x, t) are plotted in Figure 9 for equation 22 for � = 0.01, � =
0.139, � = 0.0714, �s, �i = 0.05, and � = 0.5, 1 respectively. The Figure 6 shows exact solution i3(x, t) of (22) for � = 0.01, � =
0.139, � = 0.0714, �s, �i = 0.05, and � = 0.5, 1 respectively. The Figure 7 shows the graphs of the exact solutions r3(x, t) for
� = 0.01, � = 0.139, � = 0.0714, �s, �i = 0.05, and � = 0.5, 1 respectively. Moreover, In Figure 8 , we plot the graphs of
solutions s1(x, t), i1(x, t), and r1(x, t) respectively at different values of t when x is fixed at x = 10 for � = 0.01, � = 0.139, � =
0.07348, �s, �i = 0.05 among various values of �. In Figures 10 , 11 , 12 , 13 , and 14 , we plot the graph of the solutions
s(x, t), e(x, t), i(x, t), r(x, t), and d(x, t) respectively according to the initial values of the parameters given in (53).

7 CONCLUSIONS

This paper introduced effective SIR and SEIRD models, based on conformable space-time PDEs for the COVID-19 pandemic.
These models are new and have not been introduced before in their current formulations. Moreover, we introduced two effective
modifications based on ERFM and an analytical technique based on the decomposition method for solving nonlinear systems
of PDEs with conformable derivatives in a general form. The advantage of the used conformable derivative for the debated
models is that it relies upon the characteristics of the entire solution functions (on time and size of selected population for all
� ∈ (0, 1]) and not just at the values in the vicinity of particular points, which is helpful to enhance the performance for the
dynamics of the transmission and evolution of infectious diseases. Further, we applied these analytical approaches to solving
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the proposed mathematical models of the COVID-19 pandemic. The interesting result of this article is that it yields exact and
approximate analytical solutions to the proposed models which can help significantly to predict and control the transmission of
infectious diseases. However, several analytical solutions of SIR and SEIRD models obtained by different analytical methods
are available in the literature. By comparing our solutions with those obtained previously, our analytical solutions obtained in
this paper are new and potentially helpful to describe the population dynamics of infectious diseases transmission and control-
ling infectious diseases.
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Fig. 1 . The schematic visualization of SIR model for COVID-19.

Fig. 2 . The schematic description of SEIRD model for COVID-19 pandemic.

Fig. 3 . The graphical representations of solution s1(x, t) in system (33) for � = 0.5 (on the left) and � = 1 (on the right).
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Fig. 4 . The graphical representations of solution i1(x, t) in system (33) for � = 0.5 (on the left) and � = 1 (on the right).

Fig. 5 . The graphical representations of solutions r1(x, t) in system (33) for � = 0.5 (on the left) and � = 1 (on the right).
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Fig. 6 . The graphical representations of solution s3(x, t) in system (43) for � = 0.5 (on the left) and � = 1 (on the right).

Fig. 7 . The graphical representations of solution i3(x, t) in system (43) for � = 0.5 (on the left) and � = 1 (on the right).
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Fig. 8 . The graphical representations of solutions r3 for system (43) for � = 0.5 (on the left) and � = 1 (on the right).
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Fig. 9 . The graphical representations of solutions s1, i1, and r1 vs. t when x = 1 is fixed for system 33 at different values of �.
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Fig. 10 . The graphical representations of solution s(x, t) (left) and s(t) (right when x = 1) subject to the initial values given in (57) for the system (46).
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Fig. 11 . The graphical representations of solution e(x, t) (left) and e(t) (right when x = 1) subject to the initial values given in (57) for the system (46).
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Fig. 12 . The graphical representations of solution i(x, t) (left) and i(t) (right when x = 1) subject to the initial values given in (57) for the system (46).
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Fig. 13 . The graphical representations of solution r(x, t) (left) and r(t) (right when x = 1) subject to the initial values given in (57) for the system (46).
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Fig. 14 . The graphical representations of solution d(x, t) (left) and d(t) (right when x = 1) subject to the initial values given in (57) for the system (46).
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