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Abstract

We present a method based on graph community detection algorithms to analyse velocity fields induced by an intruder particle
impinging upon a stationary bed of particles. Based on velocity relations between the pairs of adjacent particles, the “velocity
similarity” graphs are built where the graph vertices represent the particles and the edge weights are calculated according to
the velocities of the respective particle pairs. A few different expressions for the edge weights are tested. Based on the graph,
a Louvain community detection algorithm with the “geographic” null model is used to identify the goups of particles moving
in a coordinated manner, represented in the graph as a community of vertices, for which the community detection algorithms
developed for graph analysis can be applied. Selection of the expression of the graph edge weights based on the velocities of the
respective particles influences the resulting graph structure and thereby has an influence on the community detection results.
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Abstract

We present a method based on graph community detection algorithms
to analyse velocity fields induced by an intruder particle impinging upon a
stationary bed of particles. Based on velocity relations between the pairs
of adjacent particles, the “velocity similarity” graphs are built where the
graph vertices represent the particles and the edge weights are calculated
according to the velocities of the respective particle pairs. A few different
expressions for the edge weights are tested. Based on the graph, a Lou-
vain community detection algorithm with the “geographic” null model is
used to identify the goups of particles moving in a coordinated manner,
represented in the graph as a community of vertices, for which the com-
munity detection algorithms developed for graph analysis can be applied.
Selection of the expression of the graph edge weights based on the veloci-
ties of the respective particles influences the resulting graph structure and
thereby has an influence on the community detection results.

1 INTRODUCTION

Mechanical behaviour of granular media is determined by multiple interactions
of the constituent particles giving rise to the bulk properties in moving matter.
Discrete element simulations (DEM) provide the data of each individual particle
i at certain time moments, i.e., the “microscopic” state of the matter, whereas
the bulk behaviour, encountered in experiments and practical applications in-
volving granular materials, depends on the large groups of particles arranged
in certain structural patterns that can be thought of as a “macroscopic” state.
Identification of characteristic larger-scale features of motion of granular media
from the particle data is important for understanding the bulk behaviour.

The processes in granular media are based on pairwise particle interactions.
These interactions can be represented as a graph where the vertices represent the
particles and their interactions as the edges. Earlier, graph theory algorithms
were applied for analysis of larger scale structures in granular media [1], as
the force chains can be readily represented by graphs. Application of certain
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algorithms from graph analysis, such as community detection [2, 3], becomes
equivalent to identification of structures in granular media [4, 5, 6]. Analogously,
groups of particles moving in a coordinated manner can be identified as graph
communities if the edge weights represent the velocity relations [7].

Motion of an “intruder” particle in granular media was analysed from a
number of viewpoints [8, 9, 10, 11, 12, 13, 14, 15, 16]. In our case, it is interesting
because it provides a characteristic feature of a “shock wave” with rather clear
boundary propagating in front of the intruder particle. Detection of this wave
can be used as a test of the proposed method. The velocity similarity graph can
be constructed using various expressions of the edge weight. We analysed a few
expressions to calculate the graph edge weights to construct such a graph from
the velocities of the respective particles.

2 SIMULATION METHOD

The considered system consists of a packed bed of 10000 spherical particles
partially filling a container (Fig. 1a). The bottom corners of the container are
slanted, in order to facilitate the particle motion and thereby prevent excessive
mechanical force buildup, in order to avoid possible instabilities during the DEM
simulations. The particle radii are random in the range from rmin = 0.005 m to
rmax = 0.015 m. The particle density is ϱ = 2500 kg/m3. Additionally, an extra
particle (“intruder”) with the radius rint = 0.1 m and density ϱint = 5000 kg/m3

is placed at a small height above the packed bed. The initial “intruder” velocity
is 10 m/s directed vertically downward. As the intruder reaches the packed bed,
the particles therein are put to motion by contact with the intruder (Fig. 1). For
easy visualisation, all the particles are fixed in a single plane, but their shapes are
considered spherical (a quasi–2D problem). The process was simulated using the
liggghts software package [17, 18]. In the initial stages, the particles nearest to
the intruder start to move and, as the intruder continues its passage, the motion
gradually propagates throughout the packed bed and a boundary between the
moving and immobile particles appears that can be thought of as a kind of shock
wave propagation; even though it is not a rigorous definition, it is a convenient
term to refer to the areas of moving particles as opposed to the mostly immobile
bulk. Later, the particles in the whole volume of the packed bed start to move
and the character of the motion changes. This early propagation of the “shock
wave” is a characteristic feature in the granular bed, containing a rather clear-
cut single particle group, that can be thought of as a group of particles sharing
a certain characteristic parameter (in our case – speed). At later stages of the
intruder motion, a canal opens in the wake of the intruder particle (Fig. 1d)
that gradually backfills later on (Fig. 1e,f). In these later stages, the character
of particle motion is more complex, encompassing a few areas where the nature
of motion (direction and speed) varies.

The emergence of particle groups moving faster than the surrounding bulk,
i.e., the structure of the velocity field, can be estimated by visualising only
the particles moving faster than a certain predefined threshold. Fig. 2 shows
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the velocity field (particle velocity vectors) for particles moving faster than a
certain fraction of the maximum velocity |v|max ≈ 11 m/s, at the time moment
t = 0.7 s. A group of particles having velocities > 0.05|v|max is visible in
front of the advancing intruder particle. The velocity field configuration at this
time moment is convenient for analysis, because the single group of moving
particles, in contrast to mostly immobile particles located deeper, can be used
as a benchmark for easy estimation of detection methods of such groups. At
this time, the group still has not reached the walls of the container, therefore,
there is no “secondary” motion due to particles bouncing off the walls, and the
velocity field has a rather regular structure.

At a later time, after the intruder particle has reached the bottom of the
container, the “ballistic canal” starts to fill in. By the same thresholding, a few
groups of particles moving bilaterally into the void of the canal can be seen at
t = 3, 5 s (Fig. 3).

3 BUILDING THE VELOCITY RELATION-
SHIP GRAPHS

As we represent the similarity of velocities of the nearby particles as the graph
edges, the groups of particles having similar velocities can be detected using the
mentioned method based on the “velocity similarity” graph.

The graph was built based on the velocities vi, vj of the nearby particles
i, j. The particles are considered nearby if |xi − xj | ≤ fR (ri + rj), where xi

and ri are position and radius, respectively, of particle i. To allow inclusion of
particle pairs that are not in direct contact but still close enough from each other,
an “extension factor” fR = 1.2 was introduced. The building of the velocity
relationship graph is based on defining the graph edge weights depending on
the velocities of the respective particles. The particles are considered having
“similar” velocity if the angle between their respective velocity vectors is small
and the vector lengths are similar. In this case, the values of the scalar (dot)
product of the respective vector pairs or the cosine of the angles between these
vectors would be high. Moreover, taking into account the speeds of the particles
|v|, would enhance the groups of swiftly moving particles against the background
of mostly immobile bulk. With these considerations in minds, we used the
following expressions for the edge weights:

� similarity of velocities:

wsim
ij = 1− |vi − vj |

max
(i,j)∈[1,Np]

|vi − vj |
, (1)

� velocity difference:

wdiff
ij =

|vi − vj |
max

(i,j)∈[1,Np]
|vi − vj |

; (2)
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a) 0,0 s b) 0,5 s c) 1,0 s

d) 2,0 s e) 3,0 s f) 4,0 s

0.000 3.000 6.000 9.000 12.000
|v|, m/s

Figure 1: Passage of the intruder at different time moments. The particles are
colored according to their speeds (velocity moduli |vi|).
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a) |v|th = 0.01 |v|max b) |v|th = 0.05 |v|max

c) |v|th = 0.10 |v|max d) |v|th = 0.15 |v|max

0.000 3.000 6.000 9.000 12.000
|v|, m/s

Figure 2: Particle velocities at different speed thresholds at t = 0.7 s: only the
velocity vectors for particles with speeds larger than the threshold values |v|th
are shown, with the threshold values of 0.01 (a), 0.05 (b), 0.10 (c) and 0.15 (d)
of the maximum speed |v|max ≈ 11 m/s.
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a) |v|th = 0.01 |v|max b) |v|th = 0.05 |v|max

c) |v|th = 0.10 |v|max d) |v|th = 0.15 |v|max

0.000 3.000 6.000 9.000 12.000
|v|, m/s

Figure 3: Particle velocities at different speed thresholds at t = 3, 5 s: only the
velocity vectors for particles with speeds larger than the threshold values |v|th
are shown, with the threshold values of 0.01 (a), 0.05 (b), 0.10 (c) and 0.15 (d)
of the maximum speed |v|max ≈ 11 m/s.
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in the latter case, the edge weights are larger for the particle pairs with
differing velocities. This expression can be used to detect the boundaries
between the areas with different character of motion, e.g., the shear zones
between the streams with different velocities;

� velocity dot product:
wdot

ij = vi · vj , (3)

� normalized velocity dot product:

wdot,v
ij =

vi · vj

max (|vi| , |vj |)
, (4)

� cosine of the angle ϕij between the velocity vectors vi, vj :

wcos
ij =

1

2
(1 + cosϕij) , (5)

� normalised cosine of the angle between the velocity vectors:

wcos,v
ij =

1

2
(1 + cosϕij) ·

1

2
(|vi|+ |vj |) . (6)

The expression (5) is based on the assumption that the particles moving
in a coordinated manner will move in similar directions, therefore, the cosine
of the angle between their velocity vectors would have higher values than that
for particles moving in different directions. For convenience of calculations, the
expression (5) is normalised to the range [0, 1]. This definition does not take into
account the speeds of the particle pairs, therefore, it would not discern slower
and faster particle groups. To enhance detection of faster particle groups, the
expression (6) includes multiplication by the average of the respective particle
speeds. Similarly, the pairs of velocity vectors of particles moving in similar
directions would produce higher values of the scalar product. On the other hand,
dot product of velocities of faster particles moving at more different directions
would still produce a larger value of the dot product than that of slow particles
moving in less different directions. This effect can be avoided by normalisation
to the particle speed (Eq. 4).

As seen above, the time at around t = 0.7 s is convenient for analysis be-
cause a single rather well- defined structure appears in the velocity field that
allows also for visual estimation of the graph structure. The resulting graphs
constructed using the expressions (1)–(6) for the time moment t = 0.7 s are
shown in Fig. 4a–f. In all the graphs, the edge weights wij were normalised to
fit to the range 0 ≤ wij ≤ 1.

The depictions of graphs shown in Fig. 4 are not very revealing visually due
to abundance of graph edges, most of which have rather small weights in the area
where the particles are not yet put to motion. It is therefore more illustrative
to show only the edges having weights exceeding a certain threshold. Fig. 5
shows the edges of the graph, built from the particle velocities at t = 0.7 s
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using the expression (6), exceeding the values of 0.05wmax (a) and 0.15wmax

(b), where wmax is the maximum edge weight value for this graph. At the low
value of threshold 0.05wmax, a localised structure is already visible that can be
estimated as similar to the velocity wave seen in the velocity field (Fig. 2). At
higher values of the threshold, this structure is gradually eroded; however, most
of the low-weight graph edges corresponding to largely immobile particles can
be filtered out.

In comparison, the edge weight expression (Eq. 5) leads to a rather uniform
edge weight distribution (Fig. 6). Even at a larger threshold of 0.6wmax, distri-
bution of the included edges (with wij ≥ 0.6wmax) does not reveal any localised
structures. This result can be expected, because only the angles between the
motion (even slow) directions of nearby particles are taken into account, there-
fore, the fast moving particles do not stand out in the overall distribution.

On the contrary, the edge weight calculation based on the dot product of
the velocity vectors allows for domination of the fastest particle groups (Fig. 7).
In comparison to the case of graph edge weights defined using Eq. 6, a rather
small particle group emerges. Normalisation to the maximum velocities of the
respective particle pairs (Eq. 4) decreases this contrast and the edges distributed
throughout the bulk of the particle bed remain present even at a larger threshold
of 0.6wmax (Fig. 8).

4 RESULTS AND DISCUSSION

Having built the appropriate graph, the standard community detection algo-
rithms known from the graph analysis can be applied [2, 3]. A notable differ-
ence between the general community detection approach and that applicable
to the graphs built specifically for analysis of granular systems is the choice of
null-model: the general algorithms assume that every vertex in the graph has
an equal probability to be connected to any other vertex in the null-model. In
the granular interaction graphs, where the vertices represent granular particles,
this assumption does not hold: only the nearest particles can be in contact, and
this constraint should hold also for the representative graph. For this purpose,
a “geographic” null model was proposed accounting for this constraint [19, 6].
We used the Louvain algorithm [20] for community detection. The implemen-
tation was based on publicly available MATLAB script [21], but we modified
it to use the “geographic” null model and to work with GNU Octave. The
exhaustive analysis of all the edge weight expressions for building the velocity
graph and the resulting community detection results is outside the scope of the
present contribution; rather, we focused on the edge weight expression defined
by Eq. 6, because it was expected to give the best results based on the above
considerations, and this was confirmed by the initial trials.

The community detected in this velocity graph at the time moment t = 0.7 s
is shown in Fig. 9 as a green outline; the contour of this particle group is ob-
tained by connecting the centers of the outermost particles in the group. For
comparison, the outline is superimposed on the velocity fields shown at the
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a) b) c)

d) e) f)

0.000 0.250 0.500 0.750 1.000
w

Figure 4: Edges of graphs of velocity relations during the intruder passage at
t = 0.7 s using the different expressions for graph edge weights: a) wsim

ij =

1 − |vi − vj |
max

(i,j)∈[1,Np]
|vi − vj |

b) wdiff
ij =

|vi − vj |
max

(i,j)∈[1,Np]
|vi − vj |

, c) wdot
ij = vi · vj , d)

wdot,v
ij =

vi · vj

max (|vi| , |vj |)
, e) wcos

ij =
1

2
(1 + cosϕ), f) wcos,v

ij =
1

2
(1 + cosϕ) ·

1

2
(|vi|+ |vj |). The graph edges are colored according to edge weights.
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a) w ≥ 0.05wmax b) w ≥ 0.15wmax

0.000 0.250 0.500 0.750 1.000
w

Figure 5: Velocity relations graph built using the expression wcos,v
ij =

1

2
(1 + cosϕ) · 1

2
(|vi|+ |vj |) (Eq. 6) for edge weight, with only the edges ex-

ceeding the weight threshold shown: at edge weight 0.05 (a) and 0.15 (b) from
the maximum edge weight value.
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a) w ≥ 0.05wmax b) w ≥ 0.60wmax

0.000 0.250 0.500 0.750 1.000
w

Figure 6: Velocity relations graph built using the expression wcos,v
ij =

1

2
(1 + cosϕ) (Eq. 5) for edge weight, with only the edges exceeding the weight

threshold shown: at edge weight 0.05 (a) and 0.60 (b) from the maximum edge
weight value.
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Figure 7: Velocity relations graph built using the expression wdot
ij = v i � v j ,

(Eq. 3) for edge weight, with only the edges exceeding the weight threshold
shown: at edge weight 0.05 (a) and 0.15 (b) from the maximum edge weight
value.
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Figure 9: Communities detected from the graph with the edge weight de�ned

as wcos;v
ij =

1
2

(1 + cos � ) �
1
2

(jv i j + jv j j) (Eq. 6), shown as green outlines, su-

perimposed on the velocity �elds at di�erent speed thresholds at t = 0 :7 s (cf.
Fig. 2).
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5 CONCLUSIONS

We have presented an approach for identification of structures in the granular
velocity fields consisting of groups of particles moving in a coordinated matter,
based on the graph community detection algorithm. For this purpose, a graph
is built with edge weights calculated based on velocity relationships between
the adjacent particle pairs. The choice of a particular expression for calculation
of the graph edge weights has a considerable influence to the resulting graph
structure and consequently influences the results of the community detection. In
the presented case, an expression for the graph edge weight based on the cosine
of the angle between the velocity vectors of the respective particle pairs, taking
into account their velocities, turned out to be best suited for our purposes. In
many cases, it enables to identify the velocity field structures with high precision.
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