
P
os
te
d
on

14
D
ec

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
67
10
10
43
.3
38
55
50
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

The characteristic polynomial in calculation of exponential and

elementary functions in Clifford algebras

Arturas Acus1 and Adolfas Dargys2

1Vilniaus Universitetas Teorines fizikos ir astronomijos institutas
2Valstybinis moksliniu tyrimu institutas Fiziniu ir technologijos mokslu centras

December 14, 2022

Abstract

Formulas to calculate multivector exponentials in a basis-free representation and orthonormal basis are presented for an arbitrary

Clifford geometric algebra , . The formulas are based on the analysis of roots of characteristic polynomial of a multivector.

Elaborate examples how to use the formulas in practice are presented. The results are generalised to arbitrary functions of

multivector and may be useful in the quantum circuits or in the problems of analysis of evolution of the entangled quantum

states.

1



Received: 00 Month 0000 Revised: 00 Month 0000 Accepted: 00 Month 0000

DOI: xxx/xxxx

RESEARCH ARTICLE

The characteristic polynomial in calculation of exponential and
elementary functions in Clifford algebras

A. Acus*1 | A. Dargys2

1Institute of Theoretical Physics and
Astronomy, Vilnius University, Saulėtekio
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The formulas are based on the analysis of roots of characteristic polynomial of a mul-
tivector. Elaborate examples how to use the formulas in practice are presented. The
results are generalised to arbitrary functions of multivector and may be useful in the
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1 INTRODUCTION

Mathematical models of physical, economical, biological, etc processes often require computation of matrix functions. Since
in many cases the matrices can be replaced by multivectors (MV), the exponential of MV1,2,3,4 in geometric (Clifford) algebras
has a wide range of applications as well. In this article we will focus on how to compute the exponential of MV, though the final
formula will apply to arbitrary function of MV.

The exponential of matrix can be computed by a number of different ways5,6,7,8,9. The review article10 presents twenty
methods1 related to the approximate (finite precision) methods only. According to10, our approach in the present paper can be
identified as METHOD 8 and falls into the class of polynomial methods, except that here we provide explicit and exact formulas
for the basis expansion coefficients instead of recursive approximation. The polynomial methods10 are known to have 𝑂(𝑑4)
complexity if classical matrix multiplication is used and, therefore, they are prohibitively expensive except for small matrix
dimensions 𝑑. As far as the exact (closed form) formulas for exponentials and other functions are concerned, the most of the
works deal either with low dimensional cases9,7,6 (dimensions 5 and 6 are already causing problems8), with matrices that are
representations of some Lie groups11, or alternatively have some other special symmetries5.

Some modern computer algebra systems have internal commands to compute functions of matrices. For example, Mathe-
matica (version 9 and higher) has12 the function MatrixFunction[ ] (and also more specialized MatrixExp[ ]), that allows to
compute arbitrary function of matrix. For matrices with exact entries it utilizes the decomposition of matrix into Jordan canoni-
cal form. The proof that any square matrix can be brought into this form is rather complicated13(Chs. 5-6), and14(Sec. 4,p. 49-54
and 235). As far as we know, the implementation of the Jordan decomposition relies on iterative algorithm that produces the
required basis step by step.

0Abbreviations: MV, multivector; GA, geometric (Clifford) algebra; 3D, three dimensional vector space
1The article is named "Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later". One more method was added in the revised version of

the original article (published in 1978), however, authors wanted to preserve the article title. The next article update is planned in 2028.
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In the context of geometric algebra (GA) there often is a need to compute a rotor, which is an exponential of GA bivector. The
simplest half-angle rotors are related to trigonometric and hyperbolic functions. The GA exponential of an arbitrary bivector
can be computed using the method of invariant decomposition15, where the bivector is decomposed into commuting orthogonal
2-blades, exponentiation of which are more or less straightforward. For low dimensional cases other decomposition techniques
can be applied as well16,17.

When dealing with exponentials of pure bivector  one should always keep in mind that, strictly speaking, they do not form a
group. For example, there are elements of 𝑆𝑝𝑖𝑛+(2, 2) group that can’t be written in the exponential form ±e. Also 𝑆𝑂+(1, 3)
contains elements, that are not exponentials of bivectors2 (p. 224).

For 𝑛 ≤ 3, explicit formulas for computation of general exponentials18,19,20 and all of square roots21,22 are known. Simple
formulas for low dimensional algebras are faster and easier to implement.

In this paper, explicit formulas that allow to calculate the exponential and any other function of MV argument in an arbitrary
𝐶𝑙𝑝,𝑞 are presented. Though the strict proof is given only in the case of exponential and diagonalizable MV, we have verified
the formula for many other functions and established that it can handle a non-diagonalizable MV as a special limiting case.

In Section 3 the methods to generate characteristic polynomials in 𝐶𝑙𝑝,𝑞 algebras characterized by arbitrary signature {𝑝, 𝑞}
and vector space dimension 𝑛 = 𝑝 + 𝑞 are discussed. The method of calculation of the exponential is presented in Section 4.
In Section 5 we demonstrate that the obtained GA exponentials may be applied to calculate the elementary and special GA
functions.

2 NOTATION

Below, the notation used in the paper is described briefly. For those readers who are unfamiliar with Clifford geometric algebras
we recommend an excellent textbook by Lounesto2.

In the orthonormalized basis used here the geometric product of basis vectors 𝐞𝑖 and 𝐞𝑗 satisfy2 the anti-commutation relation,
𝐞𝑖𝐞𝑗 + 𝐞𝑗𝐞𝑖 = ±2𝛿𝑖𝑗 . The number of subscripts indicates the grade. For a mixed signature 𝐶𝑙𝑝,𝑞 algebra the squares of basis
vectors, correspondingly, are 𝐞2𝑖 = +1 and 𝐞2𝑗 = −1, where 𝑖 = 1, 2,… , 𝑝 and 𝑗 = 𝑝 + 1, 𝑝 + 2,… , 𝑝 + 𝑞. The sum 𝑛 = 𝑝 + 𝑞 is
the dimension of the vector space. The general MV is expressed as

𝖠 = 𝑎0 +
∑

𝑖
𝑎𝑖𝐞𝑖 +

∑

𝑖<𝑗
𝑎𝑖𝑗𝐞𝑖𝑗 +⋯ + 𝑎1⋯𝑛𝐞1⋯𝑛 = 𝑎0 +

2𝑛−1
∑

𝐽
𝑎𝐽 𝐞𝐽 , (1)

where 𝑎𝑖, 𝑎𝑖𝑗⋯ are the real coefficients. The ordered set of indices will be denoted by a single capital letter 𝐽 referred to as a multi-
index. Note, that in the multi-index representation the scalar is deliberately excluded from summation as indicated by the upper
range 2𝑛 − 1 in the sum in the last expression. The convention is useful since the separated scalar term often enables to rewrite
final formulas in a simpler form. The basis elements 𝐞𝑖𝑗⋯ are always assumed to be listed in the reverse degree lexicographic
order. For example, when 𝑝 + 𝑞 = 3 then the basis elements are listed in the order {1, 𝐞1, 𝐞2, 𝐞3, 𝐞12, 𝐞13, 𝐞23, 𝐞123 ≡ 𝐼}, i.e., both
the number of indices and their values always increases from left to right.

There are three well- known main involutions: the reversion (e.g., 𝐞12 = 𝐞21 = −𝐞12), the grade inverse (e.g., 𝐞123 = −𝐞123)
and the Clifford conjugation (̃̂𝐞123 = −𝐞321 = 𝐞123). We shall also take advantage of non-zero grade negation (see Table 1),
which is denoted by overline 𝖠. It is an operation that changes signs of all grades, except the scalar, to opposite, i.e. 𝖠 =
𝑎0 −

∑2𝑛−1
𝐽 𝑎𝐽 𝐞𝐽 . The last involution we shall need is the well known Hermitian conjugation operation denoted as 𝖠†. The MV

Hermitian conjugation expressed for basis elements 𝐞𝐽 in both real and complex GAs can be written as3,23

𝖠† = 𝑎∗0 + 𝑎∗1𝐞
−1
1 +⋯ + 𝑎∗12𝐞

−1
12 +⋯ + 𝑎∗123𝐞

−1
123⋯ = 𝑎∗0 +

∑

𝐽
𝑎∗𝐽 𝐞

−1
𝐽 , (2)

where 𝑎∗𝐽 is the complex conjugated 𝐽 -th coefficient and 𝐞−1𝐽 denotes inverse2 basis element, 𝐞−1𝐽 𝐞𝐽 = 1. For each multi-index
that represents the basis vector with 𝐞2𝐽 = +1 the Hermitian conjugation does nothing and changes signs if 𝐞2𝐽 = −1. Therefore,
the basis elements 𝐞𝐽 and 𝐞†𝐽 can differ by a sign only.

2There is a simple trick to find 𝐞−1𝐽 . Formally raise all indices and then lower them down but now taking into account the considered algebra signature {𝑝, 𝑞}. Finally,
apply the reversion. For example, in 𝐶𝑙0,3 we have 𝐞123 → 𝐞123 → −𝐞123 → −𝐞123 → 𝐞123. Thus, 𝐞†123 = 𝐞123.
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𝐶𝑙𝑝,𝑞 Det(𝖠)

𝑝 + 𝑞 = 1, 2 𝖠𝖠̄

𝑝 + 𝑞 = 3, 4 1
3

(

𝖠𝖠𝖠𝖠 + 2𝖠𝖠̄𝖠̄𝖠̄
)

𝑝 + 𝑞 = 5, 6 1
3

(

𝖧𝖧𝖧𝖧 + 2𝖧𝖧̄𝖧̄𝖧̄
)

with 𝖧 = 𝖠𝖠̃

TABLE 1 Optimized expressions for determinant of MV 𝖠 in low dimensional GAs, 𝑛 ≤ 6. The overbar denotes a negation of
all grades except of the scalar, 𝖠 ∶= 2⟨𝖠⟩0 − 𝖠.

3 MV CHARACTERISTIC POLYNOMIAL AND EQUATION

The algorithm to calculate the exponential and associated functions presented below is based on a characteristic polynomial.
Characteristic polynomial of MV can be computed by a number of ways, such as recursive Faddeev-LeVerrier algorithm, uti-
lizing explicit MV determinant formulas, or the methods related to Bell polynomials24,25,26 to mention few. In this section the
listed methods are briefly summarized.

Every MV 𝖠 ∈ 𝐶𝑙𝑝,𝑞 has a characteristic polynomial 𝜒𝖠(𝜆) of degree 𝑑 in ℝ, where 𝑑 = 2⌈
𝑛
2
⌉ is the integer, 𝑛 = 𝑝 + 𝑞. In

particular, 𝑑 = 2𝑛∕2 if 𝑛 is even and 𝑑 = 2(𝑛+1)∕2 if 𝑛 is odd. The integer 𝑑 may be also interpreted as a dimension of real or
complex matrix representation3 of Clifford algebra in the 8-fold periodicity table2.

The characteristic polynomial27,24,25,26 is defined by

𝜒𝖠(𝜆) = −Det(𝜆 − 𝖠) =
𝑑
∑

𝑘=0
𝐶(𝑑−𝑘)(𝖠) 𝜆𝑘. (3)

The variable in the characteristic polynomial will be denoted by 𝜆 and the roots of the equation 𝜒𝖠(𝜆) = 0 (which is called the
characteristic equation) by 𝜆𝑖, respectively. For real GAs the coefficients 𝐶(𝑘) ≡ 𝐶(𝑘)(𝖠) are real. They depend on a selected GA
and MV 𝖠. The coefficient at the highest power of 𝜆 is always assumed to be 𝐶(0) = −1. The coefficient 𝐶(1)(𝖠) represents MV
trace, 𝐶(1)(𝖠) = Tr(𝖠) = 𝑑 ⟨𝖠⟩0, where ⟨𝖠⟩0 is the scalar part of MV in (1), i.e. ⟨𝖠⟩0 = 𝑎0. The coefficient 𝐶(𝑑)(𝖠) is related to
MV determinant Det 𝖠 = −𝐶(𝑑)(𝖠).

Table 1 shows how the MV determinant (a real number) can be calculated in the low dimensional (𝑛 ≤ 6) GAs. This table
may be used to find the other coefficients 𝐶(𝑘)(𝖠) in the characteristic polynomial (3). For a concrete algebra it is enough to
replace the products of 𝖠’s in the Table 1 by products of (𝜆 − 𝖠).

Example 1. Determinant of quaternion. In case of Hamilton quaternion (algebra 𝐶𝑙0,2) we have 𝖠 = 𝑎0 + 𝑎1𝐞1 + 𝑎2𝐞2 + 𝑎12𝐞12
and 𝖠 = 𝑎0 − 𝑎1𝐞1 − 𝑎2𝐞2 − 𝑎12𝐞12, then from Table 1 we find

𝜒𝖠(𝜆) = −Det(𝜆 − 𝖠) = −(𝜆 − 𝖠)(𝜆 − 𝖠) = −(𝑎20 + 𝑎21 + 𝑎22 + 𝑎212) + 2𝑎0𝜆 − 𝜆2. (4)

Thus, 𝐶(0) = −1, 𝐶(1) = 2𝑎0 = Tr 𝖠 and 𝐶(2) = −(𝑎20 + 𝑎21 + 𝑎22 + 𝑎212) = −Det 𝖠. The latter is in accord with that calculated
from quaternion matrix ℍ ≅ ℂ(2) representation: A=

( 𝑎0+i𝑎1 𝑎2+i𝑎12
−𝑎2+i𝑎12 𝑎0−i𝑎1

)

.

From Example 1 it is easy to notice that Table 1 can be used to find explicit expressions of other coefficients 𝐶(𝑘)(𝖠) of
polynomial (3) as well. To this end it is enough to replace Det(𝖠) in the table by Det(𝜆 − 𝖠) and then recursively differentiate
with respect to 𝜆 a proper number of times,

𝐶(𝑘−1)(𝖠) = − 1
𝑑 − (𝑘 − 1)

𝜕𝐶(𝑘)(𝜆 − 𝖠)
𝜕𝜆

|

|

|

|

|𝜆=0

𝑘 = 𝑑,… , 1 , (5)

which is a straightforward method to obtain the coefficient at 𝜆𝑑−𝑘 of any polynomial.

3The dimensions of matrices given by periodicity table are 𝑑′ =

⎧

⎪

⎨

⎪

⎩

2𝑛∕2 , if 0 ≡ (𝑝 − 𝑞) mod 8 or 2 ≡ (𝑝 − 𝑞) mod 8
2(𝑛−1)∕2 + 2(𝑛−1)∕2 , if 1 ≡ (𝑝 − 𝑞) mod 8
2(𝑛−1)∕2 if 3 ≡ (𝑝 − 𝑞) mod 8 or 7 ≡ (𝑝 − 𝑞) mod 8
2(𝑛−2)∕2 if 4 ≡ (𝑝 − 𝑞) mod 8 or 6 ≡ (𝑝 − 𝑞) mod 8
2(𝑛−3)∕2 + 2(𝑛−3)∕2 if 5 ≡ (𝑝 − 𝑞) mod 8

, where the first two entries represents dimension

of real matrices, the last two represent dimension of quaternionic matrices and the middle one is the dimension of complex matrix. In general 𝑑′ ≠ 𝑑 and, therefore, for
computation purposes we replace quaternionic matrices by complex matrices of double dimension using the isomorphism ℍ ≅ ℂ(2).
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If the explicit formula for the determinant of MV is unknown then the Faddeev-Leverrier method and its modifications24,28,27,29

allow the coefficients 𝐶(𝑘)(𝖠) in the polynomial (3) to be calculated recursively, beginning from 𝐶(1)(𝖠) and ending at 𝐶(𝑑)(𝖠).
The computation starts by setting 𝖠(1) = 𝖠. In the next step the coefficient 𝐶(𝑘)(𝖠) = 𝑑

𝑘
⟨𝖠(𝑘)⟩0 and the new MV 𝖠(𝑘+1) =

𝖠
(

𝖠(𝑘) − 𝐶(𝑘)
)

are computed:
𝖠(1) = 𝖠 → 𝐶(1)(𝖠) =

𝑑
1
⟨𝖠(1)⟩0,

𝖠(2) = 𝖠
(

𝖠(1) − 𝐶(1)
)

→ 𝐶(2)(𝖠) =
𝑑
2
⟨𝖠(2)⟩0,

⋮
𝖠(𝑑) = 𝖠

(

𝖠(𝑑−1) − 𝐶(𝑑−1)
)

→ 𝐶(𝑑)(𝖠) =
𝑑
𝑑
⟨𝖠(𝑑−1)⟩0.

(6)

The determinant of MV then is Det(𝖠) = 𝖠(𝑑) = −𝐶(𝑑) = 𝖠
(

𝖠(𝑑−1) − 𝐶(𝑑−1)
)

. If we extend the computation by one step more
we will find the identity 𝖠(𝑑+1) = 𝖠

(

𝖠(𝑑) − 𝐶(𝑑)
)

= 0 is satisfied. The identity plays a key role in the proof of our main result.
This algorithm if adapted to GA allows to compute characteristic polynomials for MV of arbitrary algebra 𝐶𝑙𝑝,𝑞 .

In alternative recursive method24 instead of4, one starts from 𝐶 ′
(0)(𝖠) = 1 (instead of 𝐶(0)(𝖠) = −1) and initial MV 𝖡0 = 1,

and uses the following iterative procedure,

𝐶 ′
(𝑘) = −Tr(𝖠𝖡𝑘−1)∕𝑘, 𝖡𝑘 = 𝖠𝖡𝑘−1 + 𝐶 ′

(𝑘), 𝑘 = 1, 2,⋯ , 𝑑. (7)

The trace may be calculated after multiplication of MVs and taking the scalar part of the result, Tr(𝖠𝖡𝑘−1) = 𝑑 ⟨𝖠𝖡𝑘−1⟩0, or
using the trace formula for products of MVs25,26.

The coefficients of characteristic polynomial also can be found explicitly from complete Bell polynomials. In this approach a
set of scalars is used25,26,

𝑆(𝑘)(𝖠) ∶= (−1)𝑘−1𝑑(𝑘 − 1)!⟨𝖠𝑘
⟩0, 𝑘 = 1,… , 𝑑, (8)

where ⟨𝖠𝑘
⟩0 is the scalar part of MV raised to 𝑘 power. The needed coefficients are given by

𝐶(0)(𝖠) = −1; 𝐶(𝑘)(𝖠) =
(−1)𝑘+1

𝑘!
𝐵𝑘(𝑆(1)(𝖠), 𝑆(2)(𝖠), 𝑆(3)(𝖠),… , 𝑆(𝑘)(𝖠)), 𝑘 = 1,… , 𝑑, (9)

where 𝐵𝑘(𝑥1,… , 𝑥𝑘) are the complete Bell polynomials. The first Bell polynomials5 are defined by relations

𝐵0 = 1, 𝐵1(𝑥1) = 𝐵0𝑥1 = 𝑥1,
𝐵2(𝑥1, 𝑥2) = 𝐵1𝑥1 + 𝐵0𝑥2 = 𝑥21 + 𝑥2,

𝐵3(𝑥1, 𝑥2, 𝑥3) = 𝐵2𝑥1 +
(2
1

)

𝐵1𝑥2 + 𝐵0𝑥4 = 𝑥31 + 3𝑥1𝑥2 + 𝑥3,

𝐵4(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝐵3𝑥1 +
(3
1

)

𝐵2𝑥2 +
(3
2

)

𝐵1𝑥3 + 𝐵0𝑥1 = 𝑥41 + 6𝑥21𝑥2 + 4𝑥1𝑥3 + 3𝑥22 + 𝑥4,

𝐵5(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝐵4𝑥1 +
(4
1

)

𝐵3𝑥2 +
(4
2

)

𝐵2𝑥3 +
(4
3

)

𝐵1𝑥4 + 𝐵0𝑥5 = 𝑥41 + 6𝑥21𝑥2 + 4𝑥1𝑥3 + 3𝑥22 + 𝑥4,

(10)

where
(𝑛
𝑟

)

is the binomial coefficient. This sequence can be easily extended to higher orders. The complete Bell polynomials
can also be represented in a form of matrix determinant30.

The coefficients of characteristic equation satisfy the following properties
𝜕𝐶(𝑘)(𝑡𝖠)

𝜕𝑡
= 𝑘𝑡𝑘−1𝐶(𝑘)(𝑡𝖠),

𝜕𝐶(1)(𝑡𝖠𝑘)
𝜕𝑡

= 𝑘𝑡𝑘−1𝐶(1)(𝑡𝖠𝑘), (11)

where 𝑡 is a scalar parameter. We will utilize them when proving the exponential formula.

4This means that all characteristic coefficients computed with this formula are of opposite sign compared to (6), i.e. 𝐶 ′
(𝑘) = −𝐶(𝑘).

5Mathematica (v.8 and higher) already has function for partial Bell polynomials BellY[ ]. The Bell Complete Polynomial then can be computed as BellCP[x_List]:=
Sum[BellY[Length[x], k, x], {k,1,Length[x]}], where x_List is a list of variables 𝑥𝑖.
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Since provided below formulas contain the sums over roots of characteristic polynomial, it is worth to remind generalized
Viète’s formulas that relate coefficients of characteristic polynomial to specific sums over the roots 𝑟𝑖:

𝑟1 + 𝑟2 +⋯ + 𝑟𝑑−1 + 𝑟𝑑 = (−1)1
𝐶(1)

𝐶(0)
(12)

(

𝑟1𝑟2 + 𝑟1𝑟3 +⋯ + 𝑟1𝑟𝑑
)

+
(

𝑟2𝑟3 + 𝑟2𝑟4 +⋯ + 𝑟2𝑟𝑑
)

+⋯ + 𝑟𝑑−1𝑟𝑑 = (−1)2
𝐶(2)

𝐶(0)
(13)

⋮

𝑟1𝑟2 … 𝑟𝑑 = (−1)𝑑
𝐶(𝑑)

𝐶(0)
. (14)

The other interesting identity27, which is important for integral representation of functions is

Tr 
(

e𝑡𝖠
)

=
𝜒 ′
𝖠
(𝜆)

𝜒𝖠(𝜆)
, (15)

where  denotes Laplace transform 
(

e𝑡𝖠
)

=
(

𝜆 − 𝖠
)−1 of MV 𝖠 and 𝜒 ′

𝖠
(𝜆) is a derivative of the characteristic polynomial

𝜒𝖠(𝜆) (see (3)) with respect to polynomial variable 𝜆.
In matrix theory very important polynomial is a minimal polynomial 𝜇𝐴(𝜆). It establishes the conditions of diagonalizability

of matrix 𝐴. Similar polynomial 𝜇𝖠(𝜆) may be defined for MV. In particular, it is well-known that matrix is diagonalizable
(aka nondefective) if and only if the minimal polynomial of the matrix does not have multiple (repeated) roots, i.e., when the
minimal polynomial is a product of distinct linear factors. It is also well-known that the minimal polynomial divides characteristic
polynomial. If roots of characteristic equation are all different, then matrix/MV is diagonalizable.

The converse statement is not true. The MV, characteristic polynomial of which has multiple roots, may be diagonalizable.
It is also established31 that almost all matrices over the complex numbers ℂ are diagonalizable, i.e., the set of complex 𝑑 × 𝑑
matrices considered as a subset of ℂ𝑑×𝑑 that are not diagonalizable over ℂ has the Lebesgue measure zero (with respect to the
Zariski topology). An algorithm how to compute minimal polynomial of MV without doing a reference to matrix representation
of the MV is given in Appendix 7.

4 MV EXPONENTIALS IN 𝐶𝑙𝑝,𝑞 ALGEBRA

This section presents main results of the article.

Theorem 1 (MV exponential in basis-free form). The exponential of multivector 𝖠 = 𝑎0 +
∑2𝑛−1

𝐽 𝑎𝐽 𝐞𝐽 in 𝐶𝑙𝑝,𝑞 GA is the
multivector given by

exp(𝖠) =
𝑑
∑

𝑖=1
exp(𝜆𝑖) 𝛽(𝜆𝑖)

𝑑−1
∑

𝑚=0

(𝑑−𝑚−1
∑

𝑘=0
𝜆𝑘𝑖 𝐶(𝑑−𝑘−𝑚−1)(𝖠)

)

𝖠𝑚, with 𝛽(𝜆𝑖) =
1

∑𝑑−1
𝑗=0 (𝑗 + 1)𝐶(𝑑−𝑗−1)(𝖠) 𝜆

𝑗
𝑖

. (16)

Here 𝜆𝑖 and 𝜆𝑗𝑖 denotes, respectively, the root of a characteristic equation and the root raised to power 𝑗. The first sum is over
all roots 𝜆𝑖 of characteristic equation 𝜒𝖠(𝜆) = 0, where 𝜒𝖠(𝜆) =

∑𝑑
𝑖=0 𝐶(𝑑−𝑖)(𝖠) 𝜆𝑖 is the characteristic polynomial of MV 𝖠.

𝐶(𝑑−𝑖)(𝖠) denotes the coefficient at variable 𝜆 raised to power 𝑖.

The formula has some similarity with expression for exponential of a square matrix presented in7.

Proof. We will prove basis-free formula (16) by verifying the defining equation of exponential function
𝜕 exp(𝖠𝑡)

𝜕𝑡
|

|

|

|𝑡=1
= 𝖠 exp(𝖠) = exp(𝖠)𝖠, (17)

where 𝖠 is independent of a scalar parameter 𝑡.
First, using properties of characteristic coefficients in (11) and noting that the replacement 𝖠 → 𝖠𝑡 implies 𝜆𝑖 → 𝜆𝑖𝑡, we

perform differentiation 𝜕 exp(𝖠𝑡)
𝜕𝑡

|

|

|𝑡=1
and obtain that exp(𝜆𝑖) in the right hand side of (16) is replaced by 𝜆𝑖 exp(𝜆𝑖):

𝜕 exp(𝖠𝑡)
𝜕𝑡

|

|

|

|𝑡=1
=

𝑑
∑

𝑖=1
𝜆𝑖 exp(𝜆𝑖)𝛽(𝜆𝑖)

𝑑−1
∑

𝑚=0

(𝑑−𝑚−1
∑

𝑘=0
𝜆𝑘𝑖 𝐶(𝑑−𝑘−𝑚−1)(𝖠)

)

𝖠𝑚. (18)
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The weight factor 𝛽(𝜆𝑖) further plays no role in the proof and will be ignored. Next, we multiply the basis-free formula (16) by 𝖠

𝖠 exp(𝖠) =
𝑑
∑

𝑖=1
exp(𝜆𝑖) 𝛽(𝜆𝑖)

𝑑−1
∑

𝑚=0

(𝑑−𝑚−1
∑

𝑘=0
𝜆𝑘𝑖 𝐶(𝑑−𝑘−𝑚−1)(𝖠)

)

𝖠𝑚+1 , (19)

and subtract the second equation from the first for each fixed root 𝜆𝑖, i.e. temporary ignore the summation over roots,
(

𝜕 exp(𝖠𝑡)
𝜕𝑡

|

|

|

|𝑡=1
− 𝖠 exp(𝖠)

)

|

|

|

|

|𝜆𝑖

= exp(𝜆𝑖) 𝛽(𝜆𝑖)
(

𝑑
∑

𝑘=1
𝜆𝑘𝑖 𝐶(𝑑−𝑘)(𝖠) − 𝖠𝑘𝐶(𝑑−𝑘)(𝖠)

)

= exp(𝜆𝑖) 𝛽(𝜆𝑖)
(

(

𝜆𝑑𝑖 − 𝖠𝑑)𝐶(0)(𝖠) +⋯+
(

𝜆𝑖 − 𝖠
)

𝐶(𝑑−1)(𝖠)
)

. (20)

Using the Cayley-Hamilton relation for 𝖠, which follow from (6),
𝑑
∑

𝑘=0
𝖠𝑘𝐶(𝑑−𝑘)(𝖠) = 𝖠𝑑𝐶(0)(𝖠) + 𝖠𝑑−1𝐶(1)(𝖠) +⋯ + 𝐶(𝑑)(𝖠) =0,

and the same relation for 𝜆𝑑𝑖 , we solve for the highest powers 𝖠𝑑 and 𝜆𝑑𝑖 , and substitute them into the difference formula (20). As
a result, after expansion we obtain zero. Since the identity holds for each of roots 𝜆𝑖, it is true for a sum over roots as well.

Corollary 1. The exponential formula (16) can be rewritten in the form which is more suitable for implementation. In particular,
the scalar part can be summed up in a closed form that yields a sum of exponentials of eigenvalues divided by 𝑑,

exp(𝖠) =
𝑑
∑

𝑖=1
exp(𝜆𝑖)

(

1
𝑑
+ 𝛽(𝜆𝑖)

𝑑−2
∑

𝑚=0

(𝑑−𝑚−2
∑

𝑘=0
𝜆𝑘𝑖 𝐶(𝑑−𝑘−𝑚−2)(𝖠)

)

⟨𝖠𝑚+1
⟩−0

)

=
𝑑
∑

𝑖=1
exp

(

𝜆𝑖
)

( 1
𝑑
+ 𝛽(𝜆𝑖)𝖡(𝜆𝑖)

)

, (21)

where the expression ⟨𝖠𝑚+1
⟩−0 ≡

1
2

(

𝖠𝑚+1−𝖠𝑚+1
)

indicates that all grades of multivector 𝖠𝑚+1 are included except the grade-0.
The proof follows after simple algebraic manipulations.

Since the roots of a characteristic equation in general are complex numbers, the individual terms in the sums, strictly speaking,
are complex. However, the coefficients at basis elements of the final result always simplify to real numbers for real GA (see
subsection 4.1).. Let’s demonstrate how to apply formula (21) to the diagonalizable MV the characteristic polynomial of which
has multiple (repeated) roots.

Example 2. Exponential of MV in𝐶𝑙4,0 for multiple and zero eigenvalues. Let’s compute the exponential of𝖠 = −4−𝐞1−𝐞2−𝐞3−
𝐞4−2

√

3 𝐞1234 by the basis-free formula (21). Using Table 1 one can verify thatDet(𝖠) = 0. For algebra𝐶𝑙4,0 we have 𝑑 = 4. The
characteristic polynomial is 𝜒𝖠(𝜆) = 𝐶(4)(𝖠)+𝐶(3)(𝖠)𝜆+𝐶(2)(𝖠)𝜆2+𝐶(1)(𝖠)𝜆3+𝐶(0)(𝖠)𝜆4 = −64𝜆2−16𝜆3−𝜆4 = −𝜆2(8+𝜆)2.
The roots are 𝜆1 = 0, 𝜆2 = 0, 𝜆3 = −8, 𝜆4 = −8. Because multiple roots appear, we compute the minimal polynomial of MV
𝖠 𝜇𝖠(𝜆) = 𝜆(8 + 𝜆) (see Appendix 7). Since 𝜇𝖠(𝜆) consists of linear factors only, the MV is diagonalizable, and the formula
for 𝜇𝖠(𝜆) can be applied without modification. It is also easy to verify that the minimal polynomial divides the characteristic
polynomial: 𝜒𝖠(𝜆)∕𝜇𝖠(𝜆) = −𝜆2(8+𝜆)2

𝜆(8+𝜆)
= −𝜆(8 + 𝜆). This confirms the property that non-repeating roots of a characteristic

polynomial are sufficient criterion of MV diagonalizability. Then, we have

𝛽(𝜆𝑖)𝖡(𝜆𝑖) =
1

∑𝑑−1
𝑗=0 (𝑗 + 1)𝐶(𝑑−𝑗−1)(𝖠) 𝜆

𝑗
𝑖

𝑑−2
∑

𝑚=0

𝑑−𝑚−2
∑

𝑘=0
𝜆𝑘𝑖 𝐶(𝑑−𝑘−𝑚−2)(𝖠) ⟨𝖠𝑚+1

⟩−0

=
8 + 𝜆𝑖

4𝜆𝑖(4 + 𝜆𝑖)
⟨𝖠⟩−0 +

16 + 𝜆𝑖
4𝜆𝑖(4 + 𝜆𝑖)(8 + 𝜆𝑖)

⟨𝖠2
⟩−0 +

1
4𝜆𝑖(4 + 𝜆𝑖)(8 + 𝜆𝑖)

⟨𝖠3
⟩−0

= − 1
𝜆𝑖 + 4

− 1
4(𝜆𝑖 + 4)

𝐞1 −
1

4(𝜆𝑖 + 4)
𝐞2 −

1
4(𝜆𝑖 + 4)

𝐞3 −
1

4(𝜆𝑖 + 4)
𝐞4 −

√

3
2𝜆𝑖 + 8

𝐞1234.

(22)

From the middle line in Eq. (22) one may suppose that the sum over roots would yield division by zero due to zero denominators.
The last line, however, demonstrates that this is not the case, since after collecting terms at basis elements we see that all
potential zeroes in the denominators cancelled out. Unfortunately, this would not occur if the MV were non-diagonalizable.
Lastly, after performing summation

∑𝑑
𝑖=1 exp(𝜆𝑖)

( 1
𝑑
+𝛽(𝜆𝑖)𝖡(𝜆𝑖)

)

over the complete set of roots {𝜆1, 𝜆2, 𝜆3, 𝜆4} = {0, 0,−8,−8}
with exponent weight factor exp(𝜆𝑖), which can be replaced by any other function or transformation (see Section 5) we obtain

exp(𝖠) =1 + e8

2e8
+ 1 − e8

8e8
(

𝐞1 + 𝐞2 + 𝐞3 + 𝐞4 − 2
√

3𝐞1234
)

.



7

The main formula (16) can be rewritten in coordinate form as well.

Corollary 2 (Exponential in the coordinate form). The exponential of the multivector 𝖠 = 𝑎0 +
∑2𝑛−1

𝐽 𝑎𝐽 𝐞𝐽 is the MV

exp(𝖠) = 1
𝑑

𝑑
∑

𝑖=1
exp(𝜆𝑖)

(

1 +
2𝑛−1
∑

𝐽
𝐞𝐽

∑𝑑−2
𝑚=0 𝜆

𝑚
𝑖
∑𝑑−𝑚−2

𝑘=0 𝐶(𝑘)(𝖠)𝐶(1)(𝐞
†
𝐽𝖠

𝑑−𝑘−𝑚−1)
∑𝑑−1

𝑘=0(𝑘 + 1)𝐶(𝑑−𝑘−1)(𝖠) 𝜆𝑘𝑖

)

= 1
𝑑

𝑑
∑

𝑖=1
exp

(

𝜆𝑖
)

(

1 +
2𝑛−1
∑

𝐽
𝐞𝐽 𝑏𝐽 (𝜆𝑖)

)

. (23)

Here 𝜆𝑖 and 𝜆𝑗𝑖 denotes, respectively, the root of a characteristic equation and the root raised to power 𝑗.𝐶(𝑑−𝑖)(𝖠) is the coefficient
at 𝜆𝑖. The symbol 𝐶(1)(𝐞

†
𝐽𝖠

𝑘) = 𝑑 ⟨𝐞†𝐽𝖠
𝑘
⟩0 denotes the first coefficient (the coefficient at 𝜆𝑑−1) in the characteristic polynomial

that consists of geometric product of the hermitian conjugate basis element 𝐞†𝐽 and 𝑘-th power of initial MV: 𝐞†𝐽𝖠
𝑘 = 𝐞†𝐽 𝖠𝖠⋯𝖠

⏟⏟⏟
𝑘 terms

.

Proof. The coordinate formula is easy to prove by noting that projection coefficient onto basis element 𝐞𝐽 can be written as
Tr
(

𝐞†𝐽𝖠
𝑟) = 𝐶(1)(𝐞

†
𝐽𝖠

𝑟).

Example 3. Exponential of generic MV in 𝐶𝑙0,3 with all different roots. Let’s compute the exponential of 𝖠 = 8 − 6𝐞2 −
9𝐞3 + 5𝐞12 − 5𝐞13 + 6𝐞23 − 4𝐞123 in coordinate form, Eq. (23). Computation of coefficients of the characteristic polynomial
𝜒𝖠(𝜆) = 𝐶(4)(𝖠) + 𝐶(3)(𝖠)𝜆 + 𝐶(2)(𝖠)𝜆2 + 𝐶(1)(𝖠)𝜆3 + 𝐶(0)(𝖠)𝜆4 for MV 𝖠 when 𝑑 = 4. yields 𝐶(0)(𝖠) = −1, 𝐶(1)(𝖠) = 32,
𝐶(2)(𝖠) = −758, 𝐶(3)(𝖠) = 10432, 𝐶(4)(𝖠) = −72693. The characteristic equation 𝜒𝖠(𝜆) = 0 then becomes −72693+10432𝜆−
758𝜆2 + 32𝜆3 − 𝜆4 = 0, which has four different roots 𝜆1 = 12− i

√

53, 𝜆2 = 12+ i
√

53, 𝜆3 = 4− i
√

353, 𝜆4 = 4+ i
√

353. For
every multi-index 𝐽 and each root 𝜆𝑖 we have to compute the coefficients

𝑏𝐽 (𝜆𝑖) =
−𝜆2𝑖𝐶(1)(𝐞

†
𝐽𝖠) + 𝜆𝑖

(

32𝐶(1)(𝐞
†
𝐽𝖠) − 𝐶(1)(𝐞

†
𝐽𝖠

2)
)

− 758𝐶(1)(𝐞
†
𝐽𝖠) + 32𝐶(1)(𝐞

†
𝐽𝖠

2) − 𝐶(1)(𝐞
†
𝐽𝖠

3)

−4𝜆3𝑖 + 96𝜆2𝑖 − 1516𝜆𝑖 + 10432
,

where we still have to substitute the coefficients, different for each multi-index 𝐽 :. 𝐶(1)(𝐞
†
𝐽𝖠

𝑘)

𝐶(1)(𝐞
†
𝐽𝖠

𝑘) 𝐞†1 𝐞†2 𝐞†3 𝐞†12 𝐞†13 𝐞†23 𝐞†123
𝑘 = 1 0 −24 −36 20 −20 24 −16
𝑘 = 2 192 −224 −416 32 −128 384 −856
𝑘 = 3 8208 5952 5508 −11572 7468 888 −7984

,

The Hermite conjugate elements are 𝐞†𝐽 = {−𝐞1,−𝐞2,−𝐞3,−𝐞12,−𝐞13,−𝐞23, 𝐞123}. After substituting all computed quantities into
(23) we finally get, where 𝛼 =

√

53 and 𝛽 =
√

353,

exp(𝖠) =1
2
e4

(

e8
(

cos(𝛼) + cos
(

𝛽
))

+
(

3
𝛼
e12 sin

(

𝛼
)

− 3
𝛽
e4 sin

(

𝛽
)

)

𝐞1

+
(

−1
2𝛼

e12 sin
(

𝛼
)

− 11
2𝛽

e4 sin
(

𝛽
)

)

𝐞2 +
(

−2
𝛼
e12 sin

(

𝛼
)

− 7
𝛽
e4 sin

(

𝛽
)

)

𝐞3

+
(

−2
𝛼
e12 sin

(

𝛼
)

+ 7
𝛽
e4 sin

(

𝛽
)

)

𝐞12 +
(

1
2𝛼

e12 sin
(

𝛼
)

− 11
2𝛽

e4 sin
(

𝛽
)

)

𝐞13 (24)

+
(

3
𝛼
e12 sin

(

𝛼
)

+ 3
𝛽
e4 sin

(

𝛽
)

)

𝐞23 +
1
2
e4

(

cos
(

𝛽
)

− e8 cos
(

𝛼
))

𝐞123.

which after simplification coincides with our earlier result18.

Example 4. Exponential of generic MV in𝐶𝑙4,2 with different roots. Let’s compute the exponential of𝖠 = 2+3𝐞4+3𝐞26+𝐞1345−
2𝐞12456 + 3𝐞123456 using formula (23). In this case 𝑑 = 8 and 𝜒𝖠(𝜆) = 𝐶(8)(𝖠) +𝐶(7)(𝖠)𝜆+𝐶(6)(𝖠)𝜆2 +𝐶(5)(𝖠)𝜆3 +𝐶(4)(𝖠)𝜆4 +
𝐶(3)(𝖠)𝜆5+𝐶(2)(𝖠)𝜆6+𝐶(1)(𝖠)𝜆7+𝐶(0)(𝖠)𝜆8. The coefficients of characteristic polynomial𝜒𝖠(𝜆) are𝐶(0)(𝖠) = −1,𝐶(1)(𝖠) = 16,
𝐶(2)(𝖠) = −64, 𝐶(3)(𝖠) = 16, 𝐶(4)(𝖠) = 32, 𝐶(5)(𝖠) = −1280, 𝐶(6)(𝖠) = 20672, 𝐶(7)(𝖠) = −42752, 𝐶(8)(𝖠) = 14336. The
characteristic equation 𝜒𝖠(𝜆) = 0 is 14336 − 42752𝜆 + 20672𝜆2 − 1280𝜆3 + 32𝜆4 + 16𝜆5 − 64𝜆6 + 16𝜆7 − 𝜆8 = 0. It has eight
different roots 𝜆1 = −4, 𝜆2 = 2, 𝜆3 = 5− i

√

3, 𝜆4 = 5+ i
√

3, 𝜆5 = −1− i
√

15, 𝜆6 = −1+ i
√

15, 𝜆7 = 5−
√

21, 𝜆8 = 5+
√

21.
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Then, for every multi-index 𝐽 and each root 𝜆𝑖 we have to compute the coefficients

𝑏𝐽 (𝜆𝑖) =
(

𝐶0(𝐴)𝐶1(𝐞
†
𝐽𝐴

1)𝜆6𝑖 +
(

𝐶1(𝐴)𝐶1(𝐞
†
𝐽𝐴

1) + 𝐶0(𝐴)𝐶1(𝐞
†
𝐽𝐴

2)
)

𝜆5𝑖 +
(

𝐶2(𝐴)𝐶1(𝐞
†
𝐽𝐴

1) + 𝐶1(𝐴)𝐶1(𝐞
†
𝐽𝐴

2) + 𝐶0(𝐴)𝐶1(𝐞
†
𝐽𝐴

3)
)

𝜆4𝑖
+
(

𝐶3(𝐴)𝐶1(𝐞
†
𝐽𝐴

1) + 𝐶2(𝐴)𝐶1(𝐞
†
𝐽𝐴

2) + 𝐶1(𝐴)𝐶1(𝐞
†
𝐽𝐴

3) + 𝐶0(𝐴)𝐶1(𝐞
†
𝐽𝐴

4)
)

𝜆3𝑖
+
(

𝐶4(𝐴)𝐶1(𝐞
†
𝐽𝐴

1) + 𝐶3(𝐴)𝐶1(𝐞
†
𝐽𝐴

2) + 𝐶2(𝐴)𝐶1(𝐞
†
𝐽𝐴

3) + 𝐶1(𝐴)𝐶1(𝐞
†
𝐽𝐴

4) + 𝐶0(𝐴)𝐶1(𝐞
†
𝐽𝐴

5)
)

𝜆2𝑖
+
(

𝐶5(𝐴)𝐶1(𝐞
†
𝐽𝐴

1) + 𝐶4(𝐴)𝐶1(𝐞
†
𝐽𝐴

2) + 𝐶3(𝐴)𝐶1(𝐞
†
𝐽𝐴

3) + 𝐶2(𝐴)𝐶1(𝐞
†
𝐽𝐴

4) + 𝐶1(𝐴)𝐶1(𝐞
†
𝐽𝐴

5) + 𝐶0(𝐴)𝐶1(𝐞
†
𝐽𝐴

6)
)

𝜆𝑖
+ 𝐶6(𝐴)𝐶1(𝐞

†
𝐽𝐴

1) + 𝐶5(𝐴)𝐶1(𝐞
†
𝐽𝐴

2) + 𝐶4(𝐴)𝐶1(𝐞
†
𝐽𝐴

3) + 𝐶3(𝐴)𝐶1(𝐞
†
𝐽𝐴

4) + 𝐶2(𝐴)𝐶1(𝐞
†
𝐽𝐴

5) + 𝐶1(𝐴)𝐶1(𝐞
†
𝐽𝐴

6)

+ 𝐶0(𝐴)𝐶1(𝐞
†
𝐽𝐴

7)
)/(

8𝜆7𝑖𝐶0(𝐴) + 7𝜆6𝑖𝐶1(𝐴) + 6𝜆5𝑖𝐶2(𝐴) + 5𝜆4𝑖𝐶3(𝐴) + 4𝜆3𝑖𝐶4(𝐴) + 3𝜆2𝑖𝐶5(𝐴) + 2𝜆𝑖𝐶6(𝐴) + 𝐶7(𝐴)
)

.

Here the coefficients 𝐶(1)(𝐞
†
𝐽𝖠

𝑘) have the following values

𝑘 𝐞†4 𝐞†15 𝐞†26 𝐞†34 𝐞†145 𝐞†246 𝐞†1256 𝐞†1345 𝐞†2346 𝐞†12456 𝐞†123456
1 24 0 24 0 0 0 0 8 0 −16 24
2 96 0 144 0 −96 −144 −96 −112 0 −64 48
3 1200 864 1008 −288 −672 −1008 −576 −672 96 −960 672
4 9792 8064 8256 −1152 −8832 −10368 −8064 −5312 −2688 −7808 5568
5 94848 80640 82944 −26496 −81792 −91008 −82560 −42752 −24960 −84992 46848
6 859008 787968 752256 −294912 −826368 −876672 −797184 −397824 −288768 −817152 370176
7 8221440 7628544 7243008 −3059712 −7972608 −8163072 −7531776 −3403264 −3028992 −8024320 3460608

In the Table, coefficients that are not listed must be equated to zero. The Hermitian conjugate basis elements in the inverse
degree lexicographical ordering are
{𝐞1, 𝐞2, 𝐞3, 𝐞4,−𝐞5,−𝐞6,−𝐞12,−𝐞13,−𝐞14, 𝐞15, 𝐞16,−𝐞23,−𝐞24, 𝐞25, 𝐞26,−𝐞34, 𝐞35, 𝐞36, 𝐞45, 𝐞46,−𝐞56,−𝐞123,−𝐞124, 𝐞125, 𝐞126,−𝐞134,
𝐞135, 𝐞136, 𝐞145, 𝐞146,−𝐞156,−𝐞234, 𝐞235, 𝐞236, 𝐞245, 𝐞246,−𝐞256, 𝐞345, 𝐞346,−𝐞356,−𝐞456, 𝐞1234,−𝐞1235,−𝐞1236,−𝐞1245,−𝐞1246, 𝐞1256,
− 𝐞1345,−𝐞1346, 𝐞1356, 𝐞1456,−𝐞2345,−𝐞2346, 𝐞2356, 𝐞2456, 𝐞3456,−𝐞12345,−𝐞12346, 𝐞12356, 𝐞12456, 𝐞13456, 𝐞23456,−𝐞123456}.

Substituting all quantities into (23) after simplification we get

exp(𝖠) =
1+e6+2e3 cos

√

15+2e9
(

cos
√

3+cosh
√

21
)

8e4
+

−175+175e6+14
√

15e3 sin
√

15+10
√

3e9
(

7 sin
√

3+5
√

7 sinh
√

21
)

840e4
𝐞4

−
1+e6−2e3 cos

√

15+2e9
(

cos
√

3−cosh
√

21
)

8e4
𝐞15 −

1+e6+2e3 cos
√

15−2e9
(

cos
√

3+cosh
√

21
)

8e4
𝐞26

+
35−35e6+14

√

15e3 sin
√

15+5
√

3e9
(

7 sin
√

3−
√

7 sinh
√

21
)

210e4
𝐞34 +

−175+175e6−14
√

15e3 sin
√

15+10
√

3e9
(

7 sin
√

3−5
√

7 sinh
√

21
)

840e4
𝐞145

+
−175+175e6+14

√

15e3 sin
√

15−10
√

3e9
(

7 sin
√

3+5
√

7 sinh
√

21
)

840e4
𝐞246 −

1+e6−2e3 cos
√

15+2e9
(

cosh
√

21−cos
√

3
)

8e4
𝐞1256

+
−35+35e6+14

√

15e3 sin
√

15−5
√

3e9
(

7 sin
√

3+
√

7 sinh
√

21
)

210e4
𝐞1345 +

−35+35e6−14
√

15e3 sin
√

15+5
√

3e9
(

7 sin
√

3−
√

7 sinh
√

21
)

210e4
𝐞2346

+
175−175e6+14

√

15e3 sin
√

15+10
√

3e9
(

7 sin
√

3−5
√

7 sinh
√

21
)

840e4
𝐞12456 +

−35+35𝑒6+14
√

15e3 sin
√

15+5
√

3e9
(

7 sin
√

3+
√

7 sinh
√

21
)

210e4
𝐞123456 .

Note that the coefficients at basis elements include trigonometric and hyperbolic functions.

All previous examples illustrated that both coordinate and basis-free formulas allow to compute exponential for diagonalizable
MV. Below, the last example is intended to demonstrate that the formula yields a correct limiting case for non-diagonalizsble
MVs as well.

Example 5. Exponential of non-diagonalizable MV in 𝐶𝑙3,0. Let’s find the exponential of 𝖠 = −1 + 2𝐞1 + 𝐞2 + 2𝐞3 − 2𝐞12 −
2𝐞13 + 𝐞23 − 𝐞123 with the help of base-free formula (21). For algebra 𝐶𝑙3,0 we have 𝑑 = 4. The minimal polynomial is 𝜇𝖠(𝜆) =
−(2 + 2𝜆 + 𝜆2)2 which coincides with characteristic polynomial 𝜒𝖠(𝜆) = −Det(𝜆 − 𝖠) and has multiple roots {−(1 + i),−(1 +
i),−(1 − i),−(1 − i)}. Now, if we proceed as in Example 2 then for some basis elements we will get division by zero. To
avoid this, we will add a small element to MV, 𝖠 + 𝜀𝐞1 = 𝖠′, and after exponentiation and simplification will compute a
limiting value when 𝜀 → 0. The infinitesimal element 𝜀𝐞1 may be replaced by any other, provided that it does not belong to
algebra center. We find that 𝜒𝖠′(𝜆) = −𝜆4 − 4𝜆3 + (2(𝜀 − 4)𝜀 − 8)𝜆2 + (4(𝜀 − 6)𝜀 − 8)𝜆 − 𝜀(𝜀((𝜀 − 8)𝜀 + 20) + 8) − 4, the
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limit of which is lim𝜀→0 𝜒𝖠′(𝜆) = 𝜒𝖠(𝜆). If 𝜀 is included it has four (now different) roots 𝜆1 = −(1 + 𝑖) −
√

𝜀2 − (4 + 2𝑖)𝜀,
𝜆2 = −(1+𝑖)+

√

𝜀2 − (4 + 2𝑖)𝜀, 𝜆3 = −(1−𝑖)−
√

𝜀2 − (4 − 2𝑖)𝜀, 𝜆4 = −(1−𝑖)+
√

𝜀2 − (4 − 2𝑖)𝜀which in the limit 𝜀 → 0 return
back to multiple roots. Since the roots with 𝜀 included are different in calculation of 𝛽(𝜆𝑖)𝖡(𝜆𝑖) the division by zero disappears,

𝛽(𝜆𝑖)𝖡(𝜆𝑖) =

(

−2𝜀2 − 8𝜀 + 𝜆2𝑖 + 4𝜆𝑖 + 8
)

⟨𝖠′
⟩−0

4
(

−𝜀2𝜆𝑖 − 𝜀2 − 4𝜀𝜆𝑖 − 6𝜀 + 𝜆3𝑖 + 3𝜆2𝑖 + 4𝜆𝑖 + 2
) +

(𝜆𝑖 + 4)⟨𝖠′2
⟩−0

4
(

−𝜀2𝜆𝑖 − 𝜀2 − 4𝜀𝜆𝑖 − 6𝜀 + 𝜆3𝑖 + 3𝜆2𝑖 + 4𝜆𝑖 + 2
)

+
⟨𝖠′3

⟩−0

4
(

−𝜀2𝜆𝑖 − 𝜀2 − 4𝜀𝜆𝑖 − 6𝜀 + 𝜆3𝑖 + 3𝜆2𝑖 + 4𝜆𝑖 + 2
)

= 1
4

(

1 + 1
𝜆3𝑖 + 3𝜆2𝑖 +

(

4 − 𝜀(𝜀 + 4)
)

𝜆𝑖 + 2 − 𝜀(𝜀 + 6)

(

(

(𝜀 + 2)𝜆2𝑖 + 2(𝜀 + 3)𝜆𝑖 − 𝜀(10 + 𝜀(𝜀 + 6)) + 2
)

𝐞1

+
(

𝜆2𝑖 + 6𝜆𝑖 − 𝜀(𝜀 + 8) + 4
)

𝐞2 + 2
(

𝜆2𝑖 − 𝜀(𝜀 + 2) − 2
)

𝐞3 + 2
(

−𝜆2𝑖 − 4𝜆𝑖 + 𝜀(𝜀 + 6) − 2
)

𝐞12
+ 2

(

−𝜆2𝑖 − 𝜆𝑖 + 𝜀(𝜀 + 3) + 1
)

𝐞13 +
(

𝜆2𝑖 − 2(𝜀 + 1)𝜆𝑖 + (𝜀 − 2)𝜀 − 4
)

𝐞23

−
(

𝜆2𝑖 − 2(𝜀 − 1)𝜆𝑖 + 𝜀(𝜀 + 2) + 2
)

𝐞123
)

)

.

After summation over all roots {𝜆1, 𝜆2, 𝜆3, 𝜆4} in
∑4

𝑖=1 exp
(

𝜆𝑖
)

(

1
4
+ 𝖡(𝜆𝑖)

)

, we collect terms at basis elements and finally
compute the limit 𝜀 → 0 for each of coefficients. Then, after simplification we get the following answer,

exp(𝖠) =1
e
(

cos(1) + (sin(1) + 2 cos(1))𝐞1 + (2 sin(1) + cos(1))𝐞2 + 2(cos(1) − sin(1))𝐞3 − 2(sin(1) + cos(1))𝐞12
+ (sin(1) − 2 cos(1))𝐞13 + (cos(1) − 2 sin(1))𝐞23 − sin(1)𝐞123

)

.

It should be noted that computation of the limit is highly nontrivial task, especially when dealing with the roots of high degree
polynomial equations. The primary purpose of Example 5 is to show that non-diagonalizable matrices/MVs represent some
limiting case and the (symbolic) formula is able to take into account this case. To illustrate how complicated computation of
exponential of non-diagonalizable matrix for higher dimensional Clifford algebras could be we have tested internal Mathematica
command MatrixExp[ ] using 𝐶𝑙4,2 algebra and non-diagonalizable MV 𝖠′′ = −1−𝐞3+𝐞6−𝐞12−𝐞13+𝐞15−𝐞24−𝐞25+𝐞26−𝐞34−
𝐞35+𝐞36−𝐞45+𝐞56+𝐞123+𝐞124+𝐞126+𝐞134+𝐞135+𝐞136+𝐞146+𝐞234−𝐞235−𝐞236−𝐞245−𝐞246−𝐞256+𝐞456−𝐞1236+𝐞1245−𝐞1246+𝐞1256−
𝐞1345−𝐞1346−𝐞1356+𝐞1456−𝐞2346−𝐞2356+𝐞2456+𝐞3456+𝐞12345−𝐞12346+𝐞12356 that was converted to 8×8 real matrix representa-
tion. The respective MV has minimal polynomial (𝜆 − 1)2

(

𝜆6 + 10𝜆5 + 39𝜆4 + 124𝜆3 + 543𝜆2 − 198𝜆 − 4743
)

. Mathematica
(version 13.0) has crashed after almost 48 hours of computation after all 96 GB of RAM was exhausted. This strongly contrasts
with the exponentiation of diagonalizable matrix of the same 𝐶𝑙4,2 algebra, where it took only a fraction of a second to complete
the task.

4.1 Making the answer real
Formulas (16) and (23) include summation over (in general complex valued) roots of characteristic polynomial, therefore, for-
mally the result is a complex number. Here we are dealing with real Clifford algebras, consequently, a pure imaginary part in
the final result must vanish. Below we will describe a procedure which enables to get rid of the imaginary part.

First we remind, that if the characteristic polynomial is made up of real coefficients, then the roots of the polynomial always
come in complex conjugate pairs. Thus, for real valued function the summation over each of a complex root pair should produce
real answer. Indeed, assuming that symbols 𝑎, 𝑏, 𝑐, 𝑑, 𝑔, ℎ take values from the real numbers and computing the sum over a single
complex conjugate root pair we come to the following relation for exponential function

exp(𝑎 + i𝑏) 𝑐 + i𝑑
𝑔 + iℎ

+ exp(𝑎 − i𝑏) 𝑐 − i𝑑
𝑔 − iℎ

=
2e𝑎

(

(𝑐𝑔 + 𝑑ℎ) cos 𝑏 + (𝑐ℎ − 𝑑𝑔) sin 𝑏
)

𝑔2 + ℎ2
.

The right hand side of the identity now formally represents a real number as expected. The left hand side contains the terms
which appear in (16) and (23) expressions after a pair of complex conjugate roots has been substituted. However, from symbolic
computational point of view the issue is not so simple. In general, the roots of high degree (𝑑 ≥ 5) polynomial equations cannot
be solved in radicals and, therefore, in the symbolic packages they are represented as enumerated formal functions/algorithms
of some irreducible polynomials. In Mathematica the formal solution is represented as Root[𝑃 , 𝑘], where index 𝑘 ≤ 𝑑 simply
enumerates the roots of polynomial 𝑃 in a specific way. In order to obtain a real-valued answer, we have to know how to
manipulate these formal objects algebraically. To that end there exist the algorithms which allow to rewrite the coefficients of
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irreducible polynomials 𝑃 after they have been algebraically manipulated. The operation, however, appears to be nontrivial and
time consuming. In Mathematica it is implemented by RootReduce[ ] command, which produces another Root[𝑃 ′, k′] object.
Such a root reduction typically raises the order of the polynomial. From pure numerical point of view, of course, we may safely
remove spurious complex part in the final answer to get real numerical value.

5 ARBITRARY FUNCTION OF MV

The exponential formulas (16) and (23) appeared to be more universal than we have expected. In fact, they allow to compute any
well-behaved function or transformation of MV if one replaces the exponential weight exp(𝜆𝑖) by any other arbitrary function
𝑓 and allows to use complex numbers.

Conjecture 1 (Arbitrary function of MV, basis free form). Arbitrary function 𝑓 (𝖠) of multivector 𝖠 = 𝑎0+
∑2𝑛−1

𝐽 𝑎𝐽 𝐞𝐽 in 𝐶𝑙𝑝,𝑞
can be explicitly computed by

𝑓 (𝖠) =
𝑑
∑

𝑖=1
𝑓 (𝜆𝑖) 𝛽(𝜆𝑖)

𝑑−1
∑

𝑚=0

(𝑑−𝑚−1
∑

𝑘=0
𝜆𝑘𝑖 𝐶(𝑑−𝑘−𝑚−1)(𝖠)

)

𝖠𝑚, with 𝛽(𝜆𝑖) =
1

∑𝑑−1
𝑗=0 (𝑗 + 1)𝐶(𝑑−𝑗−1)(𝖠) 𝜆

𝑗
𝑖

, (25)

where 𝜆𝑖 and 𝐶𝑘(𝖠), respectively, denotes roots and coefficients of characteristic polynomial 𝜒𝖠(𝜆) already discussed in
Theorem 1.

A more simple variant of (25) can be written for a power of MV,

𝖠𝑠 =
𝑑
∑

𝑖=1
𝜆𝑠𝑖 𝛽(𝜆𝑖)

𝑑−1
∑

𝑚=0

(𝑑−𝑚−1
∑

𝑘=0
𝜆𝑘𝑖 𝐶(𝑑−𝑘−𝑚−1)(𝖠)

)

𝖠𝑚, (26)

where 𝖠𝑠 denotes the MV raised to the natural power 𝑠 ∈ ℕ, which we make an effort to understand deeper.6 Therefore, below
we restrict ourselves by demonstrating how the formula (25) can be used to compute values of various functions of MV argument
(𝖠).

Example 6. We shall compute log(𝖠), sinh(𝖠), arcsinh(𝖠), (𝖠)−1,
√

𝖠 and Bessel 𝐽0(𝖠) GA functions for 𝐶𝑙4,0 diagonalizable
MV 𝖠 = 1 + 𝐞1 + 3𝐞23 − 𝐞24. This MV ensures that the computed answers are of manageable size. Its characteristic polynomial
is 𝜒𝖠(𝜆) = −(10 + 𝜆2)(14 − 4𝜆 + 𝜆2), which is also minimal polynomial. The roots of characteristic polynomial are 𝜆1 =
−i
√

10, 𝜆2 = i
√

10, 𝜆3 = 2 − i
√

10, 𝜆4 = 2 + i
√

10.
Replacement of 𝑓 by log in (25) and summation over all roots (after slight rearrangement of Mathematica output) gives

log𝖠 =1
4
log 140 + 1

4
log (7∕5) 𝐞1 +

3

4
√

10

(

𝜋 + 2 arctan
√

5∕2
)

𝐞23 −
1

4
√

10

(

𝜋 + 2 arctan
√

5∕2
)

𝐞24

− 3

4
√

10

(

𝜋 − 2 arctan
√

5∕2
)

𝐞123 +
1

4
√

10

(

𝜋 − 2 arctan
√

5∕2
)

𝐞124
(27)

It is easy to check that the exponentiation of log𝖠 yields exp(log(𝖠)) = 𝖠, i.e., the natural logarithm of log function in Eq. (27)
is formal inverse of exp.

Computation of hyperbolic and trigonometric functions and their inverses7 is also straightforward. Since characteristic
coefficients have been already found, the computation of remaining functions requires very little effort.

6Of course, since the square root and logarithm functions can be computed by (25), it is obvious that 𝑠 is not restricted to ℕ only. We carefully verified the identity by
testing 𝑠 ∈ ℤ and 𝑠 ∈ ℚ cases. For example, after insertion of 𝑠 = −1 we checked the formula for inverse 𝐴−1, and after insertion of 𝑠 = 1∕2 we compared the result for a
square root of MV (when it exist in real GA) with the known one. In particular, computation of the square root 21 with this formula produces a single root of MV, i.e. the
root, which is connected to unity. When 𝑠 ∈ ℝ or 𝑠 ∈ ℂ the verification itself becomes a problem.

7It looks as if the complex numbers are inevitable in computing trigonometric functions in most of real Clifford algebras, except 𝐶𝑙3,0 as well as few others 32.
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Indeed, the computation of sinh(𝖠), arcsinh(𝖠), (𝖠)−1,
√

𝖠 and Bessel function 𝐽0(𝖠) using (25) and subsequent simplification
yields, respectively,

arcsinh𝖠 =1
4

(

arcsinh
(

2 − i
√

10
)

+ arcsinh
(

2 + i
√

10
)

)

+ 1
4

(

arcsinh
(

2 − i
√

10
)

+ arcsinh
(

2 + i
√

10
)

)

𝐞1

+ 3

4
√

10

(

𝜋 + 2 arcsin
√

10 − arcsin
(

2
√

7
√

185 − 95
)

)

𝐞23

− 1

4
√

10

(

2 arcsin
√

10 + i
(

arcsinh
(

2 − i
√

10
)

− arcsinh
(

2 + i
√

10
)

))

𝐞24

+ 3

4
√

10

(

2 arccos
√

10 − arcsin
(

2
√

7
√

185 − 95
)

)

𝐞123

+ 1

4
√

10

(

arcsin
(

2
√

7
√

185 − 95
)

− 2 arccos
√

10
)

𝐞124 .

(28)

sinh𝖠 =1
2
sinh 2 cos

√

10 + 1
2
sinh 2 cos

√

10𝐞1 +
3

4
√

10e2
sin

√

10
(

1 + e2
)2𝐞23 −

1

4
√

10e2
sin

√

10
(

1 + e2
)2𝐞24

+ 3

4
√

10e2
sin

√

10
(

e2 − 1
)2𝐞123 −

1

4
√

10e2
sin

√

10
(

e2 − 1
)2𝐞124 .

(29)

It is easy to check that the identity sinh
(

arcsinh(𝖠)
)

= 𝖠 is satisfied. Also, series expansion of the GA functions with respect
to MV may be used. The computation of inverse yields a simple output, and it is easy to check that 𝖠−1𝖠 = 𝖠𝖠−1 = 1,

𝖠−1 = 1
14

+ 1
14

𝐞1 −
9
35

𝐞23 +
3
35

𝐞24 +
3
70

𝐞123 −
1
70

𝐞124 . (30)

The computation of square root gives more complex answer
√

𝖠 = 1

2
√

2

(

4
√

10 +
√

2 +
√

14
)

− 1

2
√

2

(

4
√

10 −
√

2 +
√

14
)

𝐞1 +
3

2 23∕4
√

5

(

4
√

5 +
4
√

9 − 2
√

14
)

𝐞23
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√
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√
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𝐞124 .

(31)

Again, one readily tests that
(

√

𝖠
)2 = 𝖠. One can also check the following property. If the initial MV is replaced by 𝖠′ =

1 + 𝜀𝐞1 + 3𝜀𝐞23 − 𝜀𝐞24 then the limit lim𝜀→0

√

𝖠′ is 1, i.e., the formula yields the root which is connected to unity. As a last
example we compute Bessel 𝐽0(𝖠) function,

𝐽0(𝖠) =
1
4
𝐽0
(

2 + i
√

10
)

+ 1
4
𝐽0
(

2 − i
√

10
)

+ 1
2
𝐼0
(

√

10
)

+
(1
4
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(

2 − i
√

10
)

+ 1
4
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(

2 + i
√

10
)
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(

√

10
)

)
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(
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)
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(

2 + i
√

10
)

)

𝐞23 +
i
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√

10

(
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(

2 + i
√
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)

− 𝐽0
(

2 − i
√

10
)

)
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+ 3i

4
√

10

(
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(
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√

10
)

− 𝐽0
(

2 + i
√

10
)

)

𝐞123 +
i

4
√

10

(

𝐽0
(

2 + i
√

10
)

− 𝐽0
(

2 − i
√

10
)

)

𝐞124 ,

(32)

where 𝐼0(𝑥) denotes modified Bessel function. Here we do not question where special functions of MV argument may find
application in a practice.

6 CONCLUSIONS AND PERSPECTIVE

The paper shows that in Clifford geometric algebras (GA) the exponential (or any other function) of a general multivector is
associated with the characteristic polynomial of the multivector and may be expressed in terms of roots of respective charac-
teristic equation. The main results of this paper are the formulas (16), (23) and (25), where real GA function or exponential are
presented in an expanded basis-free form or in orthonormal coordinates. In higher dimensional algebras the coefficients at basis
elements of the exponential function, in agreement with18,19, include a mixture of trigonometric and hyperbolic functions. We
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implemented the general formula (25) in the Mathematica package33. Apart from explicit examples of GA functions presented
in the article, we also were able to compute fractional powers of MV, many special functions available in Mathematica34, in par-
ticular, HermiteH[ ], LaguerreL[ ] (also with rational parameters), hypergeometric and many others, which are implemented
in Mathematica for scalar argument.

Recently we made a some progress on how to compute the functions of non-diagonalizable MVs, which do not require
perturbation and evaluation of a limit. Implementation of this program, however, is rather involved and at the moment of writing
is not yet complete. Moreover, to test properly how it works we had to learn how to generate non-diagonalizable MVs, which are
rather rare (see Sec. 3), especially in GAs of higher dimension. Unfortunately, at the moment, we don’t know how to perform this
task completely in GA and we have to refer to matrix representations. In particular, we can generate a nontrivial Jordan form,
which then is transformed by random non-singular matrix of 8-periodicity table. It should be noticed that for non-diagonalizable
MV we cannot use the mentioned isomorphism ℍ ≅ ℂ(2) to double the dimension of the matrix, since in doing so the minimal
polynomial gets spoiled. Also conversion to and from matrix representations for real GAs have some subtle points that have to be
taken into account. In the end we would like to find a simpler and more straightforward criterion that would allow to determine
whether the provided MV is nondefective, without involving costly and purely algorithmic computation of minimal polynomial.
And, of course, our Conjecture 1 needs a full proof which, due to its general shape, looks (at least to us) like a highly nontrivial
task.

7 APPENDIX: MINIMAL POLYNOMIAL OF MV

A simple algorithm for computation of matrix minimal polynomial is given in35. It starts by constructing 𝑑×𝑑 matrix 𝑀 and its
powers {1,𝑀,𝑀2,…} and then converting each of matrix into vector of length 𝑑 ×𝑑. The algorithm then checks consequently
the sublists {1}, {1,𝑀}, {1,𝑀,𝑀2} etc until the vectors in a particular sublist are detected to be linearly dependent. Once
linear dependence is established the algorithm returns the polynomial, where coefficients of linear combination are multiplied
by corresponding variable 𝜆𝑖.

In GA, the orthonormal basis elements 𝐞𝐽 are already linearly independent, therefore it is enough to construct vectors made
from coefficients of MV. Then, the algorithm starts searching when these coefficient vectors become linearly dependent.

A vector constructed of matrix representation of MV has 𝑑2 =
(

2⌈
𝑛
2
⌉

)2 components. This is exactly the number of coefficients
(2𝑛) in MV for Clifford algebras of even 𝑛 and twice less than number of matrix elements 𝑑×𝑑 for odd 𝑛. The latter can be easily
understood if one remembers that for odd 𝑛 the matrix representation of Clifford algebra has block diagonal form. Therefore only
a single block should suffice for the matrix algorithm. Below the Algorithm 1 describes how to compute minimal polynomial
of MV without employing a matrix representation.

Algorithm 1 Minimal polynomial of MV

1: procedure MINIMALPOLY(𝖠, 𝑥) ⊳ Input is multivector 𝖠 = 𝑎0 +
∑2𝑛−1

𝐽 𝑎𝐽 𝐞𝐽 and polynomial variable 𝑥
2: nullSpace={}; lastProduct=1; vectorList={} ⊳ Initialization
3: while nullSpace==={} do ⊳ keep adding MV coefficient vectors to vectorList until null space becomes nonempty
4: lastProduct← 𝖠◦lastProduct
5: vectorList←AppendTo[vectorList, ToCoefficientList[lastProduct]]
6: nullSpace←NullSpace[Transpose[vectorList]];
7: end while
8: return First[nullSpace] ⋅ {𝑥0, 𝑥1, 𝑥2,… , 𝑥Length[nullSpace]−1} ⊳ Construct minimal polynomial from nullspace

coefficients and powers of input variable
9: end procedure

All functions in the Algorithm 1 code are internal Mathematica functions, except the symbol ◦ (geometric product) and
ToCoefficientList[ ] function which is very simple. It takes a multivector 𝖠 and construct a vector (list) from its coefficients, i.e.
ToCoefficientList[𝑎0 + 𝑎1𝐞1 + 𝑎2𝐞2 +⋯+ 𝑎𝐼𝐼]→ {𝑎0, 𝑎1, 𝑎2,… , 𝑎𝐼}. A real job is done by Mathematica function NullSpace[ ],
which searches for linear dependency in the inserted list of vectors. The NullSpace[ ] function is a standard function of linear
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algebra library. If the list of vectors is found to be linearly dependent it outputs a set of weight factors of the linear combination
for which the sum of vectors turns to zero, or an empty list otherwise. The AppendTo[vectorList, newVector] appends the
newVector to the list of already checked vectors in vectorList.
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