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Abstract

Based on the Bell polynomial method, the (3+1)-dimensional variable coefficient Potential-YTSF equation is transformed into
bilinear form, and the double Bell polynomial B a cklund transformation, bilinear B a cklund transformation, Lax pair and
infinite conservation law of this equation are constructed. Firstly, the Lax integrability of the equation is proved by the B
a cklund transformation of double Bell polynomials, and the infinite conservation law is constructed. Secondly, the exact
solution of the equation is obtained by bilinear B a cklund transformation and symbolic computation system Mathematica.

Finally, we illustrate their properties by making some graphs of soliton solutions.
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Backlund Transformation of (34-1)-Dimensional Variable
Coefficient Potential-Y'T'SE Equation and Related Problems
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Abstract:Based on the Bell polynomial method, the (3+1)-dimensional variable coefficien-
t Potential-YTSF equation is transformed into bilinear form, and the double Bell polynomial
Backlund transformation, bilinear Bdcklund transformation, Lax pair and infinite conservation
law of this equation are constructed. Firstly, the Lax integrability of the equation is proved by the
Backlund transformation of double Bell polynomials, and the infinite conservation law is construct-
ed. Secondly, the exact solution of the equation is obtained by bilinear Bdcklund transformation
and symbolic computation system Mathematica. Finally, we illustrate their properties by making

some graphs of soliton solutions.

Keywords:Bell polynomial method;bilinear Béacklund transformation;Lax pair;infinite conser-

vation law

1 Introduction

In nonlinear science, nonlinear partial differential equation is a differential equation whose degree
is higher than one. It is an important branch of modern mathematics. Whether in theory or
in practical applications, nonlinear partial differential equations are used to describe problems in
the fields of mechanics, control engineering, ecological and economic systems, chemical circula-
tion systems, and epidemiology. Nonlinear partial differential equations, also known as nonlinear
mathematical physics equations, nonlinear evolution equations. It is a mathematical model of
nonlinear phenomena in many modern science and engineering fields such as physical chemistry,
biology, atmospheric space science, nonlinear optics and astrophysics. With the development of

symbolic computation, scholars have proposed many methods for solving nonlinear problems, such

*Corresponding author.Taogetusang. E-mail address:tgts@imnu.edu.cn



as Hirota bilinear method [, Bécklund transformation method [2], homogeneous balance method

BBl F-expansion method | inverse scattering method [®! and so on.
Upzws + dUpUzz + 2UsUpy — g + Sty =0 (1)

Equation (1) is often used to describe the dynamics of solitons and nonlinear waves in a domain.In
reference [6],the self-Backlund transformation of equation (1) was constructed by using strong
symmetry, and the separated variable solution of the equation was obtained. In reference [7],a new
multi-periodic soliton solution of the (341)-dimensional Potential-YTSF equation was constructed
by using Hirota bilinear form and generalized three-wave test method. Based on the Bell polynomial
method,this paper will study the (3+1)-dimensional Potential-Yu-Toda-Sasa-Fukuyama (Potential-
YTSF) equation with variable coefficients.

ha () Uggaz + ho(t)ugts, + ha(t)Uztgy + Ra(t)ug + hs(E)uy, =0 (2)

The exact solutions of the double Bell polynomials under Backlund transformation,bilinear Backlund
transformation and bilinear Backlund transformation.Where u = u(x, y, z,t),when hi(t) = 1, ho(t) =
4, hs(t) = 2, ha(t) = —4, hs(t) = 3,equation (2) becomes equation (1).Therefore,it is meaningful to
study equation (2).

2 P-Polynomial and Bilinear Form of (341)-Dimensional
Variable Coefficient Potential YTSF Equation

We introduce the definition of Bell polynomials and related results B~ We use Bell polynomials

to construct the bilinear form of equation (2),and let
U= Ga, (3)
Where ¢ = g(x, y, z,t).Substituting (3) into equation (2) to obtain
h1(t)qzzzez + h2 () e Goaz + M3 (t)qoztiaze + ha(t)doat + hs(t)dayy = 0, (4)
When hao(t) = hs(t) = 3hy(t),integrating equation (4) once for z yields
hi(t)qeaez + 301 () qea ez + ha(t)qur + hs(t)gy, = 0, (5)
Then the equation has the following P-polynomial representation

E(Q) =hy (t)Pxx:cz(Q) + h4(t)Pwt(Q) + h5(t)Pyy(Q) =0. (6)



Let ¢ = 21In f,equation (6) be in bilinear form
(hi()D3D.. + hy(t)Da Dy + hs(t) D) f - f = 0. (7)

Where f is an undetermined function about x, vy, z,t.D3D., D, Dy, Dfl satisfies the D-operator. The

definition of D-operator is:

STPT N I R A
Dr Dz(fg)*(ax al‘/) (az 82/) f(x,z)g(x,z) ‘z:at’,z:z/ (8)

0 0 0 0

D'"Dy(f - g) = (% - %)m(& - %)n

f(:E, t)g(x, t) |$i1’7tit’ (9)

3 Bi-Bell polynomial Backlund transformation, bilinear Backlund
transformation, Lax pair and infinite conservation law for
(341)-dimensional Potential-YTSF equation with variable
coefficients

3.1 Bi-Bell polynomial Bicklund transformation for (3+1)-dimensional
Potential-YTSF equation with variable coefficients

We use Bell polynomials to construct the bilinear Bicklund transformation of the (3+1)-dimensional

Potential-YTSF equation.Let g, ¢’ be the solution of equation (5),then

E(q") = hi()Qa + 301 ()@ Cie + Pa(t)qyy + hs(t)gy, =0, (11)

Subtracting and transforming the two forms

g=w-v,q =w+v, (12)

E(¢")— E(q) = M (t)(d' — @Q)zza= + ghl(t)[(ff — Qo=@+ Dee + (@' + Q2=(d — D] (13)
+ha(t)(q" = Q)ut + hs(t)(q" — @)yy
= 2h1 () Vaazz + 201 (1) [BU22Waa + BWazVea] + 2ha(t)vae + 2h5(t) vy, = 0.

Selecting constraint conditions

y:vz - Myz = >\; (14)



By differentiating both sides of equation (14) with respect to x,we have
Wayz + VgaUsz + VgUsy — Mg, = 0. (15)
Substituting equations (14) and (15) into equation (13),we get

E(q/) - E(Q) = hl(t)v;wcxz + h (t)[3vxzwzx + 3wwszw} + hy (t)th + hs (t)vyy (16)

+ [hs(t)Vy — BY: + ply + 3h1 (£)vpgwys — 3hq (t)vawog. — 3h1(t)v v, = 0.
Therefore,the (341)-dimensional variable coefficient Potential-YTSF equation has a double Bell
polynomial Backlund transformation

ya:z - Mym = /\7

hl(t)yzmm + ayy + 6ym - 07
h4(t)yt —a), — 3h1(t)>\yx = Oa
hs ()Y, — BY. + = 0.

Where A\, a = 3, 1 is an arbitrary constant.

3.2 Bilinear Bicklund Transformation of (3+1)-Dimensional Variable
Coefficient Potential-YTSF Equation

In the transformation
v:lni,w:lnfg (18)
g
After that,we can get the bilinear form of the Bdcklund transformation
(DD, —MD, -\ f-g=0,
(h1(t)D2 + aDy + BD,)f - g =0,
(
(

hy(t)Dy —aD, — 3h1(t)A\Dy)f - g =0, (19)

hs(t)Dy — BD; + p)f - g =0.
3.3 Lax Integrability of (3+1)-dimensional Potential YTSF Equation

Here we consider the following transformation

v=lnp,w=¢g+1Iny (20)



Next,according to the double Bell polynomial Backlund transformation,the linear system of the

equation is obtained
hy (£)zas + 3h1 (E)ugpr + iy + By =0,
Pzz + oz — Mps — Ap =0,
ha(t)pr — ap. + 3h1(t)Ap, = 0,
hs(t)py — Bz + pp = 0.
The corresponding Lax Operator from equation (21)

Li(p) = Moy + quztp + @202 — A,
ha(t) 3hy (1) hs(t)

_ o\ _ —1
LQ(@) = ¥t h4(t> Prxx h4(t) UPg h4(t) 8,2 Pyy-

(22)

It satisfies the compatibility condition @y,, = @..¢.So equation (22) is the Lax pair of the equation.

3.4 The infinite conservation law of (3+1)-dimensional Potential YTSF

equation

Take transformation
20 =q), — qu

Based on equations (23) and (12),we get
Vg =N, Wy = (g +N

Substituting equation (24) into (17) to obtain
Goz + 102 + 105 0, — Mn = X,

0. [ () ww + 3h1 ()1(qw + 1)z + ha (E)0* + a0y 'ny, + an)

+ 0z [ha(t)0y " — @y ', — Bha(t) M) + Oy [hs ()0, "y — a0y 1]

Where o
M=—-e = 52777 =&+ Z‘Fn(uvufvufzv' ’ ')Ein

n=1
Substituting equation (26) into equation (25),we get

-Flzqmzzuzva:fl,z:(bczz:uzz

Jrn+1 = Fn,z + 6;1‘/_'.n,z + Z]:k(fn—k + a;l-/rn—k,z)
k=1

(23)

(25)

(26)



Substituting equation (26) into the second equation in equation (25),the infinite conservation law

of equation (2) can be expressed as
Ln:+Mpe+Gny+Pni=0n=12,3,---) (29)
Ly, My, G, P, can be expressed as

£n = h1<t)(fnm:v + 3~Fn+1,r + 3szf71 + 3Fn+2 + 3Z\kan—k,z

k=1
n+1 (30)
+3Y FuFuni-k+ > FiFiFe)+ 0, Foy+ aF,.
k=1 i+j+k=n

Mn - _3h1(t))\fn - aaglfn,za gn - hS(t)a;I-Fn,y - aaz_lfn,zypn = h4(t)-Fn (31)

4 Soliton Solutions and Properties of (3+1)-dimensional Po-
tential YTSF Equation

In order to obtain the soliton solution of equation (2),we set
f=Ff@,y,2t) =1+ fie+ foe® + fae® + -,
g=9(z,y,2z,t) =14 gie + goc” + g3e® + -, (32)
fi= filz,y,2,t),9; = gi(z,y,2,0)(i=1,2,3,---).

Substituting equation (32) into the bilinear equation (19),and let the coefficient of each power of

€ be 0.The coeflicients of € is
— A1 =291 = M fiz + Mgiz + fizz + G122 = 0,
afiy —agry + afiz — agiz + hi(t) fizes — h1(t)g122: =0,
ha(t) fie — ha(t)g1e — afiz + agis — 3Ah () fiz + 3AR1 () g1 = 0,

wfi + pg1 — afi, + agr. + hs(t) fiy — hs(t)g1y = 0.



The coefficients of 2 is
= M2 =Ag1fr = Ag2 — M1 fie — 912 f1a — M fou + M f1912 — f12912
+ Mgox + g1 f1zz + foxe + 19122 + 9202 = 0,
agi fiy + afay — afigiy — agey + agifiz + afer — afigie — ager — 3h1(t)g1e fres
+3h1(t) fregiza + h1(t)g1 freee + P1(t) fozae — M (t) fig120e — M1 G200a = 0,
ha(t)g1fre + ha(t) fae — ha(t) frgre — ha(t)gae — agi fiz — afe: + afigiz + aga:

— 3)\h1(t)glflz - 3>\h1 (t)f2;1; + 3)\h1(t)flglz + 3>\h1 (t)gzz = 0,

(34)

pfo + pfigr + pge — agifiz — afe. + afigiz + age: + hs(t)g1 fiy + hs(t) fay
— hs(t) frg1y — hs(t)g2y = 0.
The coefficients of 2 is

— A3 = Afagr — AM1g2 — Ags — M g2 fro — 92:f1z — M1 fox — G12fou
= M f3x + M f2912 — f2:012 + M f1922 — f12920 + M g3z + 92 f122 + 91 [222
+ f3wz + [29122 + [19202 + 9322 = 0,

aga fiy + agi fay + afsy — afogry — afigey — agsy + aga fio + agifor + afss
— afegiz — afiges — agse — 3h1(t) g2z frze — 3h1 (1) 912 foze + 3h1(t) fozgron
+ 3h1(t) frzg2ee + P1(t) 92 freee + h1 ()91 fovaa + M1 (t) f3zaa — P1(t) f291000
— hi(t) f192222 — P1(t) 93200 = 0,

ha(t)g2 fre + ha(t)g1 for + ha(t) fae — ha(t) fogre — ha(t) frg2e — ha()gse — g2 frz
—agifa. — afs; +afagi. + afige. + ags. — 3Ahi(t)g2fiz — 3Ah1(t) g1 fou
— 31 () faz + 3AR1(E) fog12 + BAR1(E) f1920 + 3AR1 (L) g3 = O,

pfs + pfegr + pfi192 + pgs — agafiz — agifo. — afs. + afagi: + afige: + ags.

+ hs5(t) g2 fiy + hs(t)g1 foy + hs(t) fay — hs(t) fagiy — hs(t) figay — hs(t)gsy = 0.

First calculate the single solitary wave solution of the equation,we let

J1=m(t)exp(n) + (), 91 = n(t) exp(01) + p(t) (36)

where 1 = kix+ Ly +s1z2+wi(t), 01 = pra+ qry + r12z + w1 (t),substituteing it into equation (33)
to get

_ 1 2 + \3/5052(12/\]11(75) + h5(t)) + @1
2 3h1(t) 3h1(t)@1% 3\3/§h1(t)h5(t)

(37)



203

1] da Y2212\ () + hs(t) 0, B
2\ 3 301 (1)0; 32 (Dhs(t)  ha(B)hs(D)VOs
1] 2a +€/§a2(12)\h1(t)+h5(t)) @3
=5 3hi(t) 3h1(t)®1% 3V/2ha (t)hs(t)
1 4o V2a2(12) () + hs(t) 0, N 20;
T2\ 3h(1) Shy (1O} 3/2h1 ()hs(t)  ha(t)hs(t)v/Oy
oo L aBMatp)  3PAOhs (VO | ?hEOVOs 1 o4 o
1= 0 s + 110! * 5% RYCR
—éhl(t)hs(t)@f + iah5(t)\/@>5 sa’ Ahlygi( )v6s
hsOVOs | L o oy h1 OCH
+ 4\%@3 8 \/7 5(1)03
_ 1 aBMatp)  302Auths (VO  o®h3(vOs | 1 3 o
§1 = a2[ 4 ﬂ@f + 4%®§ + 8\3/5 : f
3 a®Ahy 5 5
OO + als(t) Vs + F fg(’; ;”ﬁ
Oé2h5(t)\/@7 h1 @%
+ 4\3/1@1% S\f 1\/>+ 5(1)0z]
1 3a(Ma—p)  3a2Mhi(t)/O4 a2h5(t)¢§4 1 1
_%hl(t)@f + ia\/@iﬂ— 30‘2?};;%@?
a*hs(t)V/Os 0}
" 1/107 +8\fh5 1\ﬁ+ %!
1 3a(p—Ma)  3a®Mh(t)y/Os  a?hs(t)Vv/O4 1 1
4= g[ 4hs(t) \3/1@% + 4%@% + 8\3/§h5(t) o1 \/(9»4
3a?\hy(t)\/O5
- hl 92 a L w—
Feves VZICH
a’hs(t)v/Os 1 1 g
P viel T svaR 1 VO g9l
, 1 am(t)(3Ma+u) 3 302 Ay (t)hs(t)/Oum(t)
) = Com| 1 + oA OmOVe: + /io;



+a2h§(t)\/®4m(t)+ 1 1 1 3
1§/167 8V2

L a0/t 1 2OV Bamlt) | a?I(0)VBim(0
viey 4107
+8§/§@§ Osm(t) + —hy (H)hs (DO m(t) — aha(tym’(1)]
=40 = g e @m0 B+ Ahl“\l/’;g%)“@_w(”
th\;—\/; an(t) + 8\1@@% Oun(t) — éhl(t)h5(t)@§n(t)
+}Lah5(t)\/@_5n(t)+ 3a®Ahy (t)hs(t)V/Osn(t) n a?h3(t)v/Osn(t)

Jie7 19107
——a)\hl )V O + @ VOsn(t) + < h1 (t)hs(t )@ n(t) — ahga(t)n'(t)]
0, = 2702 (t)hs(t) — 72a3>\h1h§ +20°hE(t) + \/O9,0;3 = Ma? — au (38)

Oy = —4h3(t)[1202Ahy (1) 4+ a2hs (1)) + h2(1)[2702h, (t) — 7203 \hy (t)hs(t) + 203R2(H)]*  (39)

20 YZe2(120h (1) + hs(8)) o;
O1= (D) 31 (10} ” 33/2hy (t)hs(t) 1o
o Ao V202 (12001 (1) + hs(t)) CH N 203 (41)
R0 301 (1)0; 392 (Dhs(t) | Ia(B)hs()V/Ou

Supposing that fo = g2 = 0, f; = g; = 0(i = 3,4,---),the single soliton solution of the variable
coefficient (341)-dimensional Potential-YTSF equation is

1+ fi m(t) exp(m) k1 — exp(61)n(t)(pr — k1)] — pin(

14+¢

u = [In(

e = XP(?l)(l +7(t)) (42)

t)e
(1 +n(t)exp(61))(1 + m(t) exp(m) +(t)




Fig.2hi(t) = arctan(t),n(t) = exp(t)arctan(t),m(t) = t>cos(t),y(t) = sin(t)cosh(t), hs(t) =
ig.2hy(t) = arctan(t),
cos(t),ry = —1,k; =3,

10



(b)t=0.5 (c)t=-0.5

(d) (e) ()
Fig.3hy(t) = t2,n(t) = sin(t) + arctan(t), m(t) = t2 + cos(t),y(t) = t + sin(t), h5(t) = cos(t),r; =
—1, kl - 3,

Next we calculate the double solitary wave solution of the equation,let
Jr =ma(t) exp(m) + ma(t) exp(nz) + (), f2 = maa(t) exp(m + 72) (43)

g1 = n1(t) exp(01) + na(t) exp(b2) + p(t), g2 = nia2(t) exp(6; + 63) (44)

where n; = k;x + Ly + siz + w;i(t),0; = pix + qiy + riz + w; () (i = 1, 2),substituting equation (45)
and (46) into equation (36)

qg1=0,2=0,81 =M,s5 =0,r1 =0,72 =0,ko = 0,p1 = 0,p2 = 0,l2 =0, (45)

ke My (t)ma (t)7(t)
ha(t)[y(£)(m} (t) +ma(t)wi(t)) — ma(t)y' (£)]

MZO,)\ZO,h:—kl—

~(t)p' (t mh(t ~'(t no(t ~'(t
()= 2O a0ty (1)
()@ (t) — ()’ Y(E)ny(t) — na(t)y(t)z1(t) — n2(t)y'(t)
a(t) ma(ma (1) (1m0
ma(t)y(E)m (t) + ma(£)y(E)ms(t) — 2ma (t)ma () (¢)
ha (1) = ( )y () (my () + ma (Hwi () — ma(t)y' (1))
1ma (8)y(8) [k Mm () ha (8)7(t) + ha(t)[O6]]

(
ma (t)wy (t)) — ma(t)y'(1) (46)

Supposing that f3 = g3 = 0,f; = ¢; = 0(i = 4,5,---),e = 1,the double soliton solution of the

~2
—
~~
— =
—~
2
—
~+
~
+ 73

(341)-dimensional variable coefficient Potential-YTSF equation is

w= [ln(1+f1+f2

47
1+g1+ g2 (47)

11



_ Fima () exp(m) + exp(n2)[(k1 + ka)maa(t) exp(m) + kama(t)]
L+ mq (t) exp(n) + maz(t) exp(m + n2) + ma(t) exp(n2) + (t)
p1ny(t) exp(61) + exp(fa)[exp(01) (p1 + p2)na2(t) + pana(t)]

1+ nl( )exp(91) + n12( )exp(91 + 92) + 712( )ex (92) + p(t)

Fig.dw; () = cos(t), h1(t) = sin(t),y(t) = arctan(t), hy(t) = t2,ma(t) = exp(t), m12(t) = cosh(t),m1(t) =
t,Z:O,kl :2,M:4




(d) (e) (f)
Fig.5wq () = tcos(t), hi(t) = sin(t) cosh(t), y(t) = arctan(t), hy(t) = t? arctan(t), ma(t) = exp(t) cos(t), mia(t) =
tcosh(t),mi(t) =t,z=0,k; =2,M =4

(d) (e) (f)
Fig.6w; (t) = t + cos(t), h1(t) = sin(t) + cosh(t),y(t) = arctan(t), hy(t) = t? + arctan(t), ma(t) =

exp(t) + cos(t), mi2(t) =t + cosh(t),mi(t) =t,2 =0
Next,we calculate the three-soliton solution of the equation.We let
J1=my(t) exp(n) + ma(t) exp(nz) + ms(t) exp(ns) + (1),
f2 = maa(t) exp(m + n2) + mas(t) exp(m + n3) + mas(t) exp(nz + n3), (48)
f3 = maas(t) exp(m + n2 +13),
g1 =ni(t) exp(61) + na(t) exp(02) + ns(t) exp(63) + p(t),
g2 = n12(t) exp(61 + 02) + n13(t) exp(b1 + 03) + nas(t) exp(ba + 03), (49)

g3 = n123(t) exp(6y + O + 03)
where n; = k;x + Ly + si2 + wi(t),0; = pix + qiy + riz + @;(t) (i = 1,2, 3),substituting equations
(51) and (52) into equation (38)

kQ:Oyk3:_klapIZOaPZZOap3:Oa (50)

13



ma(t) = — my (t)maz(t)y(t)p(t)mh (1)
—m1 (t)’y( ) ( )mlz( ) + m12(t)[ 2ma (t)P(t)’}//(t) + ’)’(t)(@ﬂ]
ny(t) = n123(t)n13 () (t)p(t)ns(t)
—n123(t)y(t) p(t)n)5(t) + n1s(t)[n123 () p(t)y (t) + v(t)(Os)]
ms(t) = my (t)maz(t)mas (t)ms(t)
maz (t)mas (£)my (t) — ma (E)mas(£)my(t) + ma (t)maa(t)mbs(t)
n(t) = ny(t)nas(t)y()p(t)nk (t)
() (p(t)nf (t) = 2n1 (t)p (1))]

n1(t)y(t)p(t)ny3(t) — naa(t)[na(t)p(t)y' (t) +
n1 (t)n123(t)naz )y (1) p(t)ni(t)

ni2(t) = _—m(t)nlg( )y () p(t)n)a3(t) + nias(t) [na () () p(t)nf5(t) + O]
mas(t) = ma ()maa(t)mas (t)y(t) p(t)m}5 (1)
—my (t)mas (ty(t) p(t)m'o (t) 4+ maz(t)[ma (t)y(t) p(t)mios(t) + O10])
nos(t) = n1(t)n123(t)y(t) p(t)nhs(t)

mia3(t) = my (£)y(t) p(t)mbs (t) — mas(t)[ma () p(t)y' (t) +
3

wh(t) = [p151 + p3s1 — k1(r1 + r3)]ma(t)nas(t)
? (p1s1 — kiri)ma(t)na (t)nis(t)v(t)p

O7 = p(t)m) (t) +mi(t)p'(t), Oz = p(t)n'e3(t) + n123(t)p’ (1)

B9 = n13(t) (= () p()n’ (t) — 2na (£)p(t)Y' () + na () y(£)p'(¢))
O10 = mas(t)(2v(t)p(t)m (t) — 2ma(t)p(t)y'(t) + ma(t)y(t)p' (1))
O11 = 1 (t)[(—prs1 + kar1)ma (8)y(£)p(t)ni5(t) + O1a],
©12 = nz()[[(—k1 + pa)r1 + pi(s1 — 73)|ma(t)p(t)y' (t) + () [O13]]
O13 = p(t)[(—psr1 + prra)m (t) +ma(t)[(—psr1 + pira)wy (t) + (p3sy — kirz)w) (1)]] + O14

O14 = (=p151 — p3s1 + k1(r1 +73))ma ()0’ (1)

(57)

Supposing that f4 = g4 = 0,f; = gi = 0(¢ = 5,6,---),& = 1,the triple soliton solution of the

variable coefficient (3+1)-dimensional Potential-YTSF equation is

1+ fi+fot+ fs
l+g1+g2+g3""

u = [In(

_ Fama(t) exp(m) + kama(t) exp(nz) + ksms(t) exp(ns) + A
1+ fi+ fo+ f3
p1n1(t) exp(01) + pana(t) exp(62) + psns(t) exp(fs) + As
1+g1+g2+g93

+

14

(58)



Ay = (k1 + ka)maa(t) exp(m + n2) + (k1 + ka)maa(t) exp(m + n3) + Ao
Ay = (kg + k3)mas(t) exp(ne + n3) + (k1 + ko + ks)maas(t) exp(n + n2 + n3)

Az = (p1 + p2)niz(t) exp(6y + 02) + (p1 + p3)nas(t) exp(01 + 03) + Ay

Ay = (p2 + p3)nas(t) exp(2 + 03) + (p1 + p2 + p3)ni23(t) exp(61 + 02 + 03)

Fig.7mq(t) = cos(t),

t2,m3(t) = arctan(t),
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(d) (e) ()
Fig.8m1 (t) = cos(t) arctan(t), ws (t) = ttan(t), p(t) = tsin(t), v(t) = cos(t), mi2(t) = t? exp(t), n1(t) =

t2sin(t), mag(t) = t2,m3(t) = arctan(t), 21 (t) = exp(t) cosh(t), ma(t) = texp(t), mi3(t) = sin(t), mia3(t) =
arccos(t)

Fig.9m1(t) = cos(t) + arctan(t), wi(t) = t + tan(t), p(t) = t + sin(t),y(t) = cos(t), mia(t)
t2 + exp(t),n1(t) = t2 + sin(t), mas(t) = t2,m3(t) = arctan(t), w1 (t) = exp(t) + cosh(t), ma(t)
t + exp(t), my3(t) = sin(t), my23(t) = arccos(t)
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5 Conclusion

Ref. [6] obtained the exact solution of equation (1) by using the self-Bdcklund transformation.
In [7], the exact solution of (3+1)-dimensional constant coefficient equation (1) is obtained by
traveling wave transformation method. Reference [13] obtained the exact solution of the constant
coefficient equation (1) by the generalized projective Ricatti method. Reference [14] constructed
a new form of solution of the constant coefficient equation (1) by using the KdV equation and its
various solutions to generate various solutions of the nonlinear evolution equation. In this paper,
based on the Bell polynomial method, the (3+1)-dimensional variable coeflicient Potential-YTSF
equation is transformed into P-polynomial, and the double Bell polynomial Bécklund transfor-
mation and bilinear form Bdcklund transformation, Lax pair and infinite conservation law are
obtained by P-polynomial.The exact solution of the equation is obtained by using the bilinear
Backlund transformation and symbolic computation system Mathematica.By solving different pa-
rameters containing t, a part of the three-dimensional graph and contour map are obtained,and

the physical meaning of the understanding is interpreted through these different graphs.
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