Global Existence of Large Solutions for the 3D incompressible
Navier—Stokes—Poisson— Nernst—Planck Equations

Jihong Zhao! and Ying Lit

'Baoji University of Arts and Sciences

November 21, 2022

Abstract

This work is concerned with the global existence of large solutions to the three-dimensional dissipative fluid-
dynamical model, which is a strongly coupled nonlinear nonlocal system characterized by the incompressible
Navier—Stokes—Poisson—Nernst—Planck equations. Making full use of the algebraic structure of the system, we
obtain the global existence of solutions without smallness assumptions imposed on the third component of the
initial velocity field and the summation of initial densities of charged species. More precisely, we prove that
there exist two positive constants ¢ 0, C 0 such that if the initial data satisfies ([?] uOh[?] B_p,1-1+3p+ [7]
NO-PO[?]B_q,1-243q)exp{CO([?Ju03[?]B_p,1-14+3p2+([?]NO+PO[?]B_r,1-2+3r+1)exp{
CO0[?u03[?B_p,1-14+3p}+1)}[? c0,then the incompressible Navier—Stokes—Poisson—Nernst—Planck

equations admits a unique global solution.
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Global Existence of Large Solutions for the
3D incompressible Navier—Stokes—Poisson—
Nernst—Planck Equations'

Jihong Zhao, Ying Li

This work is concerned with the global existence of large solutions to the three-dimensional dissipative fluid-dynamical
model, which is a strongly coupled nonlinear nonlocal system characterized by the incompressible Navier—Stokes—Poisson—
Nernst—Planck equations. Making full use of the algebraic structure of the system, we obtain the global existence of
solutions without smallness assumptions imposed on the third component of the initial velocity field and the summation
of initial densities of charged species. More precisely, we prove that there exist two positive constants ¢y, Co such that if
the initial data satisfies

(Bl _vy3+ N0 = Poll_s.3) e { ol uyz +(INo+ Rl oz + Do {Collidll 13} +1)} < e
q,1 p.1 rl p.1

p.1l

then the incompressible Navier—Stokes—Poisson—Nernst—Planck equations admits a unique global solution. Copyright ©
2022 John Wiley & Sons, Ltd.

Keywords: Navier—Stokes equtions; Poisson—Nernst—Planck equations; global existence; large solution; Besov
spaces

1. Introduction

In this paper, we study the Cauchy problem of three-dimensional (3D) incompressible Navier—Stokes—Poisson—Nernst—Planck
equations:

Otu~+u-Vu—Au+ VT =ApV,
V-u=0,

N+ u-VN=V- (VN - NVe),
OP+u-VP=V-(VP+ PV¢),
Ap=N-—P,

(u, N, P)|t=0 = (uo, No, Rp),

(1.1)

where (x,t) € R®* x Ry, u= (u'(x, t), u’(x, t), ’(x, t)) and m = m(x, t) stand for the velocity field and the pressure of the
incompressible fluid, respectively, N = N(x, t) and P = P(x, t) stand for the densities of a negatively and positively charged
species, respectively, and ¢ = ¢(x, t) is the electrostatic potential caused by the charged species. For the sake of simplicity of
presentation, we have assumed that the fluid density, viscosity, charge mobility and dielectric constant are unity.

The first two equations of (1.1) are the momentum conservation and the mass conservation equations of the incompressible
flow, and the right-hand side term in the momentum equations is the Lorentz force, which exhibits A¢pV¢p =V - o, and the
electric stress o is a rank one tensor plus a pressure, for i,j =1, 2,3,

[ols = (V6. Vo~ 2|VOL1),, = 8,00, — 5V615;, (12)
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where [ is 3 x 3 identity matrix, d;; is the Kronecker symbol, and ® denotes the tensor product. The electric stress o stems from
the balance of kinetic energy with electrostatic energy via the least action principle (cf. [23]). The third and fourth equations of
(1.1) model the balance between diffusion and convective transport of the charged species by the flow and the electric fields,
and the fifth equation of (1.1) is the Poisson equation for the electrostatic potential ¢, where the right-hand side is the net
charge density.

The system (1.1) was first introduced by Rubinstein [21], which is capable of describing electro-chemical and fluid-mechanical
transport throughout the cellular environment. At the present time, modeling of electro-diffusion in electrolytes is a problem of
major scientific interest, it finds that such model has a wide applications in biology (ion channels), chemistry (electro-osmosis)
and pharmacology (transdermal iontophoresis), we refer the readers to see [2, 8, 9, 25] for more detailed applications of the
system (1.1) in electro-hydrodynamics, and [15, 16, 17] for the computational simulations.

The mathematical analysis of the system (1.1) was initiated by Jerome [12], where the author established a local existence—
uniqueness theory of the system (1.1) in the Kato's analytical semigroup framework. Since the right-hand side term A¢V¢
has a nice algebraic structure (1.2), it can be regarded that V¢ plays the same role as the velocity field u. Based on

this observation, by using the Hardy—Littlewood—Sobolev inequality and the Sobolev embeddings Wl’%(ﬂ@) — L3(R?) and

3 3
B;TE(I[@) — B;TE(H@) with 1 < g < p < oo, Zhao-Deng—Cui [28, 29] established local well-posedness and global well-
posedness with small initial data of the system (1.1) in critical Lebesgue spaces and Besov spaces under the heat semigroup
framework. For more analytical results concerning about the global existence of (large) weak solutions and (small) mild solutions,
convergence rate estimates to stationary solutions of time-dependent solutions and other related topics we refer the readers to
see [5, 10, 13, 14, 22, 24, 26, 27, 30] and references therein.
In order to give a better explanation of our main results, we let v := N — P, w := N + P, and the system (1.1) turns into

Otu+u-Vu—Au+Vr=—vV(-A)lv,

V-u=0,

Ov+u-Vv=V-(Vv+wV(-A)1tv), (1.3)
Oew+u-Vw=V-(Vw+vV(-A)1v),

(u, v, w)|t=0 = (uo, vo, wo),

where vo = No — Py and wo = No + Po. Moreover, let u:= (u", u®), where u":= (u*, v?) and u® denote the horizontal
components and vertical component of the velocity field u, respectively. Using the divergence free condition V-u =0, it is
easy to verify that the vertical component u® satisfies the following equation:

or® — AP = —divy(u"u®) + 20 divy, u" — B3 — vBs(—A) v, (1.4)

which reveals that the equation on the vertical component u® is actually a linear equation with coefficients depending on the
horizontal components 1" and the density function v. Based on this observation, the authors in [32] proved that under the
conditions 1 < g < p < 6 and % + % > % there exist two positive constants ¢y and Cy such that if the initial data (uo, vo, wo)
satisfies

(Bl v+l sez + ol 3) e { ol 13 + 1)} <, (L5)

p.1 q.1 q.1 p.1

then system (1.3) admits a unique global solution. On the other hand, observing that the fourth equation of (1.3) is a linear
equation for w with coefficients depending on the velocity field u and the density function v, which may suggest us that we do
not need to impose any smallness condition on initial data wy to ensure global existence of solutions. Indeed, Ma [18] showed
that under the conditions 1 < p < 00, 1 < g < 6, g < 2p and % - % <3< % + %, there exist two positive constants co and Co
such that if the initial data (uo, vo, wo) satisfies

(lull 13 + 1ol vz) exp { Collwall .3 } < o (16)
Bp.l qul qul

then system (1.3) still has a unique global solution.

Motivated by the above global existence results in [18, 32], in this paper, we aim at relaxing the smallness conditions imposed
on the vertical component of initial velocity field and the summation of the initial densities of charged species such that system
(1.3) still has a unique global solution. Considering the algebraic structures of the nonlinear terms in (1.3), by [11], the nonlinear
term vV(—A)"!v has a nice symmetric structure as

1

8,8, (—1) v =20, (~B){((—8) V)3, (~8) ')}
+0,V - {((=0)")(Vo (—=0) "v)}
1 _
+ 565/{((—A) vl (1.7)
Copyright (©) 2022 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2022, 00 1-15
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This enables us to treat the equation of w in a weaker Besov space BZIH’ with 1 < r < co. However, the nonlinear coupled term
wV(—A)"'v has lack of such a symmetric structure, which can not exhibit such a good expression as (1.7) and prevents us to
obtain good estimates for the equation v in a weaker Besov spaces. These observations essentially indicate that the difference of
charged densities v plays more important role than the summation of charged densities w in mathematical analysis of the system
(1.3). Based on these careful observations, by using analytical methods in [18, 32], we intend to prove the global existence of
solutions under the assumptions that the horizontal components of the velocity field and the difference of initial densities are
small while the vertical component of the velocity field and the total initial densities could be chosen suitable large. Moreover,
we consider the functional space of solutions of the system (1.3) with initial data vo and wo belonging to the different low
regularity Besov spaces with different regularity and integral indices, which can indicate more specific coupling relations between
the difference and the summation of negatively and positively charged densities.
Now we state our main results as follows.

Theorem 1.1 Let p, q, r be three positive numbers such that 1 < p, q,r < oo, and satisfy the following conditions:

1 1 o101 1 11 1 1 1 11 11 1
——=>-min{z, =}, max{=—-=,=—=}<=<mn{=+=, -+, =+-}
qa P {32p} {q rer q}3 {p ap rq 2
143 9.3 o413
Then for any uy € BPVT"(Rg’) with V - o =0, vo € qu§+" (R®) and wo € Br,12+’ (R?), there exists T > 0 such that the system
(1.3) admits a unique solution (u, v, w) on [0, T] satisfying

B = U - - P ] B = I

ueC([0,T] B,y P(R*))NL20,T;B,, *(R*)NL0,T;B,:" (%),
243 o1 3 .3

veC(0,T]. By, “(R¥)NL=(0,T; B, *(R*) N L0, T; B, (R%), (1.8)
043 o043

weC(0.T]LB,; "(R))NL0,T;B,, "(R*)NL0,T; Bfl(R3)).

Besides, there exists a positive constant € such that if the initial data satisfies

7

H(UO,VO,WO)HB«% 23 53 S6

p.1 ><Bq.1 x rl

then the above assertion holds for T = oo, i.e., the solution (u, v, w) is global.

Theorem 1.2 Let p, q,r be three positive numbers such that 1 < p < 6, 1 < q,r < oo, and satisfy the following conditions:

1 1 101 1 11 1 1 111 11 1

——=2>-min{z, —}, max{-—-—=-,-—=}<<min{=4+=-, -+ -+ -}

qa P {32p} {q rer q}3 {p ap rq 2

ho3 L - S . 243 4 s—243 3 . .
Then for any uo = (ug, ug) € B,, *(R*) with V-uo=0, v € B,; “(R*) and wo € B,; "(R”), there exist two positive
constants ¢y and Co such that if the initial data (uo, vo, wo) satisfies

(Bl v+ ll az) exp {ColludI® 1,3 + (Iwoll s, + D exp {Collegll .3} +1)} < (1.9)
B, P By, q B, P B, T B, P

then the system (1.3) admits a unique global solution (u, v, w) satisfying (1.8)

Remark 1.1 The initial condition (1.9) exhibits that the initial data ug and wo can be taken large as long as we take the initial
data uf and v small enough compared with the size of u§ and wo, which we can still get the global existence of solutions to
the system (1.3). Back to the original system (1.1), the condition (1.9) is equivalent to the following condition:

(681 vz + 1IN0 = Roll__o.3) exp { Coll o3 + (N0 + Roll a3 + Dep {Collgl 3} +1D)} < (110)
Bp,l P Bq,l i Bp.l P Bﬂl " Bp,l P

thus Theorem 1.2 implies global existence of solutions for the system (1.1) with only requiring the horizontal components of
the initial velocity field and the difference of initial negatively and positively charged densities are small enough.

Remark 1.2 The specific coupled relation between v and w was indicated by the condition max{t —+, + -t} <1 <141,
which tells us that the regularity of solution v or w can be taken beyond the regularity index fg, but one can not take both
of them less than —% at the same time. Indeed, the regularity of v can be taken much weaker as long as the regularity of
w is not that much weaker, i.e., g can be taken large enough as long as we take r closing to 3 such that the condition
max{g — +,7 — 2} <3 < ¢+ holds. Hence, Theorem 1.2 can be regarded as an extension of global existence results in
[28, 32, 18], where the global existence of solutions with small initial data was proved in critical Besov spaces with the same
regularity and integral indices for v and w, and the regularity index must less than —%.

This paper is organized as follows. In section 2, we first introduce definitions of the homogeneous Besov spaces and the
Chemin—Lerner mixed time-space spaces based on the Littlewood—Paley dyadic decomposition theory, then review some known
bilinear estimates which used frequently in the proofs of Theorems 1.1 and 1.2. In Section 3, we first establish two crucial
nonlinear estimates of the pressure 7, then derive the desired estimates of u” and u® by using the weighted Chemin—Lerner type
norm; while in Section 4, we derive the desired estimates of v and w. Finally in the last section, we complete the proofs of

Theorems 1.1 and 1.2.
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2. Preliminaries

Throughout this paper, C and C; (i =1,2,---) stand for the generic harmless constants. For brevity, we shall use the notation
f < ginstead of f < Cg, and f & g means that f < g and g < f. For any Banach spaces X and Y, f € X and g € ), we write
[(F, Dllaxy == |Ifllx + |lglly. Forall T > 0 and p € [1, oo], we denote by C([0, T], X') the set of continuous functions on [0, T]
with values in X, and denote by L?(0, T; X) the set of measurable functions on [0, T] with values in X such that t — ||f(t)|lx
belongs to L°(0, T).

2.1. Littlewood—Paley dyadic decomposition and Besov spaces

Let us briefly recall the Littlewood—Paley dyadic decomposition theory and the stationary/time dependent Besov spaces for
convenience. More details may be found in Chap. 2 and Chap. 3 in the book [1]. Let S(R3) be the Schwartz class of rapidly
decreasing functions, and S'(R®) the space of tempered distributions. Choose a smooth radial non-increasing funciton x with
Suppx C B(0,%) and x =1 on B(0, 2). Set (&) = x(5) — x(€). It is not difficult to check that ¢ is supported in the shell
{¢eR? 3 <[¢] <5} and

D> e(27¢) =1 for ¢ €R\{0}.

=

Let h = F . Then for any f € S'(R?), the homogeneous dyadic blocks A; (j € Z) are defined by
8F() 1= 027D () =2¥ [ h@y)Fx = )dy.
R3

Let S, (R®) be the space of tempered distribution f € S’(R®) such that

lim S;f(x) =0,
Jj——o00

where S;f (j € Z) stands for the low frequency cut-off defined by S;f := x(27/D)f. Then one has the unit decomposition for
any tempered distribution f € Sj(R?):

f=> Af. (2.1)
JEZ

The above homogeneous dyadic block A; and the partial summation operator S; satisfy the following quasi-orthogonal properties:
for any f,g € S'(R?), one has

ANAF=0 if |i—jl>2 and A(S,1fAjg)=0 if |i—j|>5. (2.2)

Moreover, using Bony's homogeneous paraproduct decomposition (cf. [3]), one can formally split the product of two temperate
distributions f and g as follows:
fg=Trg+ Tof + R(f, g), (2.3)

where the paraproduct between f and g is defined by

Trg:=Y SiafDg=>»_ > Afhg,

JEZ JET k<j—2

and the remaining term is defined by

R(f.g):=> AfAjg and Aj:=Aj 1+ Aj+ Ay,

JEz
Based on those dyadic blocks, the homogeneous Besov spaces can be defined as follows:

Definition 2.1 Foranys € R, 1 < p,r < co and f € S'(R?), we set

fll . N (Zjezzsrj”Aijzp)
1Fllss, =

supjez 2% || A || e for r = oo,

Sie

for 1 <r < oo,

and the homogeneous Besov space B; . (R?) is defined by

o Fors< 2 (ors=2ifr=1), we define

By (R) = {F € SR [IFllgs, < oo}

Copyright (©) 2022 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2022, 00 1-15
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e ffkeNand2+k<s<3+k+1(ors=2+k+1ifr=1) then B; (R*) is defined as the subset of distributions
f € S'(R?) such that 8°f € By ,*(R®) whenever |8 = k.

Remark 2.1 Let s€ R, 1 < p,r < oo, and f € S,(R?). Then u € B;,(R?) if and only if there exists {d}}jez such that d;, > 0,
ldjrller =1 and
Ajullee S djr2|lullgs, forall j € Z.

The fundamental idea in the proofs of Theorems 1.1 and 1.2 is to localize system (1.3) through the Littlewood—Paley dyadic
decomposition, so we need the following definition of the Chemin—Lerner mixed time-space spaces, which was first introduced
by Chemin—Lerner [4].

Definition 2.2 For0 < T <oo,s € Rand1 < p,r, p < co. We define the mixed time-space L*(0, T; Bj,,(R?)) as the completion
of C([0, T]; S(R®)) by the norm

1

T A7
1Fllee 85,0 = (ZZS” (/0 IAJf(nt)ll‘zpdt)> < oo

JEZL
and with the standard modification for p = oo or r = co.

Remark 2.2 According to the Minkowski inequality, it holds that

||f||U;(B;,) < HfHU;(B;,) if p<r; |\f|‘u;(5;,) < Hf”gf;(sg,,) if r<p.
In particular, for p=r =1, one has
||f||clT(B;1) ~ ||f||L1T(B;1)-

In order to prove Theorem 1.2, we need to introduce the following important weighted Chemin—Lerner type norm (see [19, 20]).

Definition 2.3 Let f(t) € L},.(Ry), f(t) > 0. For 1 < p,r,p < oo, we define

loc

1

T AN
Wl = (52 ([ ronsacotar)’) <o

JEZ
and with the standard modification for p = oo or r = co.

2.2. Analytical tools in Besov spaces

Let us recall the classical Bernstein inequality (see Lemma 2.1 in [1]).

Lemma 2.4 Let B be a ball, and C a ring in R3. There exists a constant C such that for any positive real number X, any
nonnegative integer k and any couple of real numbers (a, b) with 1 < a < b < oo, we have

supp F(F) C AB = sup ||8%F|l,o < CKFING8)| £, (2.4)
lar|=k
supp F(F) CAC = C U AM|Fle < sup [|8%F||le < CHENK|F]] 5. (2.5)
la|=k

More generally, for any smooth homogeneous function o of degree m on R®/{0} and 1 < a < oo, it holds that
supp F(f) CAC = [|o(D)f[la S NI |es. (2.6)

An obvious consequence of (2.5) and (2.6) is that |\6°‘f|\3§ ~ |||l gs+x with multi-index |a| = k and k € N. Moreover, the
. p.r

following lower bound for the integral involving the Laplacian —A, which can be regarded as a nonlinear generalization of (2.5),

will also be used, for details, see Lemma 8 in [7].

Lemma 2.5 Suppose that supp F(f) C {€ € R®: K12/ < |€] < Ko} for some Ky, K» >0 and j € Z. Then there exists a
constant k so that for all 1 < p < oo, we have

—/ AF|FIP 2 fdx = (p — 1)/ [VFI?|FIP2dx > k2%||F||P,, (2.7)
R3 R3

where K is a constant depending only on p, K1 and K.

Math. Meth. Appl. Sci. 2022, 00 1-15 Copyright © 2022 John Wiley & Sons, Ltd.
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The following basic properties of Besov spaces are often used (see [1]).

Lemma 2.6 The following properties hold:

i) Completeness: Bj ,(R*) is a Banach space whenever |s| < 2 ors =2 and r = 1.

P
ii) Derivatives: There exists a universal constant C such that
-1
lullgs, < IVullgz-s < Cllullss,

iii) Fractional derivative: Let N = +/=A and o € R. Then the operator \° is an isomorphism from Bj . (R?) to BS,” (R?).

Ls—3(L -1
iv) Imbedding: For1 < p; < p» < oo and1 < r; < r, < oo, we have the continuous imbedding B3, ,, (R*) < B,;,z nR(R3)).

v) Interpolation: For si1, s> € R such that s1 < s, and 6 € (0, 1), there exists a constant C such that
0 1-6
HUHB;#’*SQ(P@) < CHUHB;erUHB‘S)zr

The following crucial estimates for the product of two functions in the homogeneous Besov spaces are also used frequently
throughout this paper (see Lemma 5.3 in [30]).

Lemma 2.7 Let 1 < py,p» <00, 51 < o, 52 <min{2, 23}, and s1 + 52 > 3max{0, ;- + - — 1}. Assume that f € B}, | (R®),

L) sits— P1 3
ge szl( 3). Then we have fg € Bp2 ] (R®), and the following inequality holds:
< s s
||ng821+152% HfIIBP;IHgHBél. (2.8)
2,

2.3. Bilinear estimates

In this subsection, we recall the following bilinear estimates which are crucial steps to the proof of Theorem 1.1, for the detailed
proofs of these bilinear estimates, we refer the readers to see [30, 31, 32]. Here and in the sequel we denote (d})jcz a generic
element of /*(Z) such that d; > 0 and 3., d; = 1.

Lemma 2.8 Let 1 < p < oo. Then we have

18 - )30y S 20185(0 ® 0)llp30m) S 203 ] s ol e
L2(B,, ) L3(B,, )
which implies that
. = . <
-Vl i) =09 @O, g STl gl g (2.9)
Lemma 2.9 Let1<p, g< o and% — % > —min{3, 2%}. Then we have
18;(vV (=8) V)l 1wy S G2l s vl s
1(3(71) Eoo(qu+Q)
which implies that
[(vV(=2)" V)II 143 Shvil s vl s (2.10)
B,1 ") Ly(B] 1) £EB,, 1)
Lemma 2.10 Let 1< p,q < oo and ; + ¢ > 3. Then we have
Ai(u-Vv d2(2"” u % + ||u v ,
18- VD)l S (ol e Ty g+l g VI )
which implies that
lu-Vvll - oos SHull - i HVH Fllull ez VIl ors (2.11)
; .q.i+q T(BpiJr ql) plp) ‘Cx(qu+q)
Lemma 2.11 Let1 < gq, r<ooand——— < < = +— Then we have
A(wV(=D)"ty < 423 (||w +
1AWV (=) W)z ey S (llwl ool 72+7)H HL%(B;I) lwll T<B/1)” H 2+q))
which implies that
wV(=A) "ty < |lw w 2.12
G R I L N (e LN L (2.12)
E Copyright (©) 2022 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2022, 00 1-15
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Lemma 2.12 Let 1 < p,r < oo and 3+ + > 5. Then we have

185 VW)l £ 2% P (ull g Wl s Iy s, M0 28

i L2+
7' D.l L (Brl) pl ‘C?C(Br,l r)

which implies that

u-Vv < |lu w 2.13
Y SR 7 NN R T et (213)
Lemma 2.13 Let 1 < q,r < oo and ; — ¢ < 3. Then we have
3
Aj(vV(=A)"ty o < d2 Ty v
I8, P8 gy £ 2P, M
which implies that
vW(=A) "ty < 2.14
TRl g SV, 3 M oed) (2.14)

3. Estimates of the velocity field v

The purpose of this section is to derive the desired estimates for the horizontal components u” = (u', u?) and the vertical
component 1 of the velocity field in the framework of weighted Chemin—Lerner type spaces. The main idea is that we introduce
some weighted functions and weighted norms to eliminate the difficulties caused by the nonlinear terms involving u® and w.
Thus we set

A(t) =l C o)l g3 Pt = ||u3(~,t)|\;% o B(E) = lwC ol - (3.1)

pl

For three positive real numbers A1, Ao and A3, we denote X = (A1, X2, A3), and introduce the following three weighted functions:

t t t
ug = uexp{ 7}\1/ ﬂ(T)dT*}\Q/ f2(7')d7'*>\3/ f3(1)dT},
0 0 0
t t t
5 = mexp { —>\1/ ﬂ(T)dT—)xz/ fz(’l')d’l'—>\3/ fa(T)dT},
0 0 0
t t t
vi = vexp { 7}\1/ ﬂ(T)dT*}\Q/ f2(7')d7'*>\3/ f3(T)dT}.
0 0 0

3.1. Estimates of the pressure m

Notice that, using the divergence free condition V - u =0, the term V - (u- Vu) has a nice structure:
V- (u-Vu) = divy divy(u" @ u") + 2085 div (P u”) + 83(u?)?,

where for a vector field u = (u*, u?, u®) = (u", 1®), we denote div, u”" = 8;u* + 8,u?. Thus, by taking the divergence div to the
first equations of (1.3) yields that

— A7 = divy divp(u" @ u™) + 285 diva(Pu") + 83 (1®)> + V - (vW(=A) V). (3.2)

Multiplying (3.2) by the weighted function exp{ - 2,3:1 A fot f,(T)dT} and applying the divergence free condition dsu® =
—div, u", we arrive at

Vs = V(=A)" | divi diva(u" ® uf) + 205 diva(u’ ul) — 205(u” divi uf) + V- (vV(=4) "vy) | (3.3)

Applying the dyadic operator A; to (3.3), then taking Li(L”)-norm and using the Hélder inequality and Bernstein inequality (2.4)
yield that

185 (VT 3oy S 2 (1185 (0" @ )1 oy + 1185(67 U5 ] 1 1oy)
+ HAJ(U divp UX)HL}(LP) +114;(vV(=4A)" VX)HL}(LP)- (3.4)
The first three terms on the right-hand side of (3.4) have been estimated in [19, 20], and the last term has been bounded in
Lemma 2.9, thus we obtain

180" @ u)llaeoy S 452 s I llugll 1+p) (3.5)

(8 ’“5) LIB
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3 h -y 3 3
185w v ey < 4277 # (1) i HUAII2 s PGS o3 ). (3.6)
L ") Py Lir (B, )
pl f p.1 1
1-3 1 1
1856 v ) geny < 520 DI HuAHz S (3.7)
(Bpl o1 Py thl )
1-32))
18,V (-8 )y € 2P s sl (38)
2B, 1) L (B, 1)
Taking the above estimates (3.5)-(3.8) into (3.4), we get
IN% < 2D [|ul)? ’
18, (Vas)laeey S llusl e llusl 4l +H oyl 5103
( 1) f o1 tq( )
h h
N 17 (I (7 L - ] 3.9
14 g 81 1o 0 g I 3 (3.9)
which clearly implies that
1 1
||V7Tx|| TR RS HUAII2 i IIUAII2 143 +HUAH o
p.1 B,,") tfz ) tfl
h
A — Huxnl_Hg IV sl (3.10)
(t)o p.1 t p.1 t ql ) L (B l)

On the other hand, in order to deal with the vertical component w3, we also need the following two estimates from [20]:

Aj(u’u 1 < di2” u 3 h 3 3.11
H ( )HL (LP) (H H t ;TFF)H | % Bitﬁ H HLI( plp)H HLDO(B—IJrP)) ( )
A U3diV Llh d2’(1 _) u 3 + Llh 3 ||U 3.12
H J( h )”Ll(LP) ~ (” Hﬁt o (5 71+p H HL%(B;IT’) H ”L%(B;IE)” HE B 1+p)) ( )

Based on the above two estimates, we can exactly follow the same lines as derivation of (3.10) by taking A1 = Ao = X3 =0 to
obtain that the pressure 7 satisfies the following estimate:

v .3 <C u” 3 u” 3 + o 3
[ IILI(B;D)f (1"l ?O(B;p)(ll ”LI(B;?) [ ||4(5;jp))
+ [l s 1P s vl vl (3.13)
LEP) oE By, P 08,249 Ll(B"p)

3.2. Estimate of the horizontal components u"

Considering the first equations of (1.3), it is clear that the horizontal components u satisfies the following equations:

3
atug + (Z A,f,(t))ug - Aug = —u- Vug — Vpms — vVh(fA)fle. (3.14)

=1

Applying the operator A; to (3.14), then taking L2 inner product of the resulting equations with |A; u P= 2A ua we obtain
J
1d >
S el Aulite + QoA I, - / DB - 1R P A ugdx
=— /}R3 Aj(u- VUl + Vs + vVa(—=0) " vg) [Ajuf] A utdx. (3.15)
Thanks to Lemma 2.5, there exists a positive constant k such that
- /]R3 AAJ'UQ . |Aju§|p72Aju§dX > /-@22]||Aju§|\’zp

whence a similar argument as that in [6] gives rise to

3
d ,
EHAJUQHU’ + (Z Arﬁ(t))HAJU;HU’ + ’{ZZJHAJU;HU’
i=1

<A (u - Vud)llee + 1A Vamsllee + 18, (vVa(=A) " vg) o
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Integrating the above inequality on [0, t] yields that

3
h h j h j h h
||AJUX||L‘§°(LP) + (Z A/ﬁ(t))HAJUXHL}(LD) + ’{ZZJHAJUXHL}(LD) < 2J(||AJ(U ® UX)HL}(LD)

=1

(D3 ) + 185z oy + 185 (v n (=) v0) 3 (1r)- (3.16)

The right-hand side of (3.16) has been estimated in (3.5), (3.6), (3.8) and (3.9), thus there exists a positive constant C; such
that

181, o3, +ZA s, B;r) Sl o)
1 I LN (L BN 7 e
i U e L RN (3.17)
3.3. Estimate of the vertical component u®
Observing that the vertical component u* satisfies the following equation:
O’ — AP = —u- VU — 83w — vAs(—A) v (3.18)

As the derivation of (3.16), and using the following identity:
u-Vu? = div(uu®) = divy(u"v®) — 20° divy, U,
one has
HAJU3HL?°(LP) + K22j|‘AJu3|‘L1 (Lpy = HUOHL" + C(HA (u- vi® )HLl (LP)
+ ||Aja37rHL}(Lp) +[14,(vOs(—4)~ V)HL}(LD))
< HUSHL" + C(szAJ(uhua‘)HL%(LP) + ||AJ(U3dth uh)HL%(LP)
+ ||AJ637THL}(LD) + HAJ'(V63(_A)71V)HL%(LP))- (3.19)

The right-hand side of (3.19) has been estimated in (3.11), (3.12), (3.13) and (2.10), and substituting these estimates into
(3.19), we obtain that there exists a positive constant C, such that

3 3 3 h h
<
I g, Sy gy S I8 g+ Gy P, g 40, )
P, P, P, P,
3
+ ||lu 3 ||u .3 v .3 ||V 3 ). 3.20
L T S e 17 %(_:1)) (320)

4. Estimates of the densities v and w

In this section, we intend to derive the estimates for the charged densities v and w. As we pointed out before, the crucial
ingredient is to introduce the proper weighted functions to eliminate the difficulties caused by the nonlinear terms of the third
and fourth equations of system (1.3), and we shall use different weighted functions to tackle with v and w.

4.1. Estimate of density v

To deal with v, we mainly use fi(t) to eliminate the difficulties caused the term u- Vv, and the weighted function f3(t) to
eliminate the difficulties caused the term V - (wV(—A)"'v). It follows the third equation of (1.3) that

3
Brvs + O NAi(D)vg — Avg = —u- Vg + V- (wV(=A) vg). (4.1)
i=1
Applying the dyadic operator A, to (4.1), then taking L? inner product of the resulting equation with |A, vx|q’2AJ v and applying

Lemma 2.5, we see that

3
1d
EEHAJVXHZZ + QN4 sl o + k27118, v3]1

i=1
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< f/ (Bj(u-Vvg) + 0,V - (WV(=D) " vg) 8|72 Ajvsdx. (4.2)
R3

Moreover, applying Bony's paraproduct decomposition (2.3), one has
u-Vvg =TuVvs + Ty u+ R(u, Vvg),

which combining the standard commutator’s argument gives us to

/AJ(TUVVX)|AJVX|G*2AJVXdX: > /[AJ;sj,,lu]AﬂvVﬂAjvx|qf2Ajvxdx
R3 R3

/' =jl<5

+ Z /R3(5/,1U — SJ;1U)AJ'AJ/VVX|AJ'Vx|q72AJ'deX

lj'—jI<5

*%/ SJ71(diVU)AjAerﬂAjVx|q72AJVXdX. (43)
R3

Hence, taking the above estimate (4.3) into (4.2), and using the divergence free condition V - u = 0 and the argument for the
L9 energy estimate in [6], we obtain

t 3 oot
||A1Vx||w+/ (ZA’ﬁ(T))HAJVX(T)HLQdT+K‘22J/ [14jvx(T)l[LadT < [|Ajv0llLa
0 0

=1
+ C( Z (H[Aﬁ Sj’*lu]AJ'VVXHL%(LG) + 1(Sy-1u — ijlu)AJAj'VVXHL%(L‘?))
I/’ —=jl<5

12 (Tow Wz eay + 18R, Vvs)) iz wey + 18V - (WY (=2) " v)ll i 1)) - (4.4)

In the following we estimate the terms on the right-hand side of (4.4) one by one. Applying Lemma 2.4 and Definition 2.1, the
first two terms can be estimated as

Z 4; Sy—1u] By Vvsllia ey

/' —=jl<5

t
Y (||5uNuhHL%(Loo)I\AJ/Vxl\mLa)+/ 181 VU (7)o 180 v (7)o dT)
0

L' —jI<5

0
t

< o' @=3) b ;
S 2 @2, g s,

—il<5 «(Bp1

t
3
+/ IO s 185w (7) ledT)
By 1) 0 B,,"

SA2@ D s vl s F vl s ) (4.5)
Ly (B 0

P ) q
t p.1 ) t q,1 ) t,fl( q,1 )

Z [(Sy_1u—Sj-1 U)AJAJ’VVXHL}(L")

/=<5

h h
S S (IS Ve = SVl 1A vslls o

I/ —il<5

t
+/ 1(Sy 1V = S Vi) () i | Ay va (7)o I T)
0

t
j(2—2 h 3
SEZE DN s sl s+ / I 3 185Dl cod
LY(B £ (B, kD) 0 prl"

t p,lp) t
2-3 h
A2V s vl s sl ). (4.6)
Li(Byy & (Bg1 Lig(Bgr )

For the term involving Twy, u, we consider the following two cases: in the case 1 < g < p < 6, one can choose g (1< g<o)

such that % = % + %, then applying Lemma 2.4 yields that

h
HAJ(TW;U)HL}(L(:) S Z (HS/—1VhVXHL§C(L5)HAJ’“ HL}(LP)

|/ —j|<5
t
+ / 1Sy 185v5 () 211y (7)o )

k(1+3-2 h
< Z PA ")||AkVX||L‘§°(Lq)HAJ’U ||L}(LD)
K< —2
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4 o) YT ka3 )/ ()l 1+3||Akvx( ) LadT

' —jl<5 k<j' =2

k(3
< Z d 2G5~ >||vx|\£ ) s A" ll1(ee

kg/’ t q.1

4 20+ Z Z ok(3+3~ )dkHV“” 2+q)

' —jl<5 k<j' =2

SO DN | g vl s il (4.7)
( (1+ VX t(qu+q) AL ( 2+q))

p.1
while in the case 1 < p < g, one can directly estimate that

h
HAJ(TVVXU)HU(LQ) ~ 2( Z (Hsj’flthXHL?C‘(L“)HAJ’U HL}(LD)

' —jI<5

t
+ / 1S5 18sv5 (Tl 1Ay *(7) [r 7

33y 14+ 3k h
$26a N " 20N A vl ooy 1Ay u ()

k<j'—2
+d270+d) S>> 2ttt >k/ |l ()l 1+3||Akv>\('r)||qu’r
L' —j|<5 k<j! =2

B K
< 2G-3) ST a2yl e 126"l 3 1oy

kg’ 2 t q.1

400+ Z Z 23kdk||v~|| *2+q)

[j'—j|<5 k<j/—2

ARV, o Il g I, ) e

pl t q,1 ( q,1 q>
For the remaining term [|A;(R(u, Vvg))ll 1.0y, we split the estimate into the following two parts: In the case i<i + <1,

we get

1 h x
1A (R(u, V)3 py S 2075 Z 185 6" |3 oy 1B vl oo ey

>j—Ng

Yy Py /nAIu )l 185 v5(PlleodT

1 1-3-
< 2043 Z . N
% 1) M .79
D VR / 67l 18 5ot
< d2’(27 N Vs + [lvs 4.9
” H (B,ig (” A”Kt .;?%) I AHL%J( 72+q)) (4.9)

while in the case % + % > 1, we choose ¢’ (1 < ¢’ < o0) such that % + % =1, then applying Lemma 2.4 again yields that

3-32 h x
[14;(R(u, VVA))HU(LG) <2679 Z 1A u ||L}(La’)||A/thXHL?“(L")

'>j—No

t
. N
42D 3 / 1By (7)o 185 v (7)o T

(3—2 3 (5-%) h x
SZJ( a) Z >¥ 57y 1A u HL%(LP)HAJ-,thXHL?o(Lq)

>j—No
t
. 3 el 1 ~
#2079 50 G [ B () |y () s
5N 0
<203 dy2 (||u” H o H | s+l 2 )
S 3 |IVx o432 x —2+3
,>ZN0 37 X (B ) Lin (B al+q)
27_
S A2, g sl g sl g (4.10)
p1 ?c q.1 ( q.1 )
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Putting all above estimates together, we conclude that

18;vs o + Zx / F(T)18v (T) || adT + K22f/ 18;vs (T) |l LadT < [|Ajvo|1a
0

=1

FCG2ED( N s vl r eq) +CISY - W) )l

Bplp) L£P(Bgr 1) s f (Bga

which directly implies that

1% N + i v: i + Kl vy 3 < [|lwll .3
451 g3 Z e U AL EI
c(lu” 5 |lvg es F g s WV Tl s ). 4.11
(I ”4<s;;n)” Aanim) I, oed, FIWTER 8, ) (3.11)
According to the Minkowski's inequality, it is readily to see that
1 ! 1
W98l g~ [ V8 ] dr
£y(B,, 7) 0 B,, !
Then we can apply Lemma 2.7 by setting s; = % S =—-1+ %, p1 = r and p» = g to obtain that
WV (=2) vzl iz S HWH 2 IIV( D)7l ez Sz sl oz
B, ¢ B, ¢ B/, B, ¢
which yields that
[wv(=4)" VAII g /IIW(T)II s (Il 2.3 d7 < llvsll 52y (4.12)
£(8,; 51 B, By D)
Taking (4.12) into (4.11), we obtain that there exists a positive constant Cs such that
sl ovz F 2 MMl g Rl e < lwll -
Mo, Z Mo e Bar
+Cs(||u” 3 n3 vy op3 t 5.3 ). 4.13
1 e e L e (4.13)
4.2. Estimate of density w
For any positive real number \;, recall that f(t) = ||u*(t)]] RYER and we denote
B,
t t
Wy, = WGXD(*)Q/ A(r)dT), w = vexp(fkl/ fi(7T)dT).
0 0
It follows the fourth equation of (1.1) that
athl +>\1f1(f)W)\1 - AW>\1 = —U- VW)\1 + V- (VV(*A)71V)\1). (4.14)
Arguing like the derivation of (4.1) yields that
Wa _,3+>\1A 2i3 tK|w 3 Swoll 5.3
T L e L WIS [ e
+ C(||u Wi 73+WA 73+VV—A71VA .3 ). 4.15
("l (B;tp)ll 1”500( SERb 1||L%ﬁ( 214 [vV(=2)" vl s rlH,)) (4.15)
Applying Lemma 2.13, one has
vV(-A Vi 143 < Vi v 043
L R N O B e
which back to (4.15), we conclude that there exists a positive constant Cs such that
Wy 2:3 Tt A1]wa o3 T K|lwa 3 < wo
l 1”5?0 vt [[wa, s [, wed) lIwoll - 5o
+ Ca(||u Wi P (177N o3 v _ A . 4.16
1y g3 0 g, Iy IV g )|| Dyl (4.16)
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5. Proofs of Theorems 1.1 and 1.2

The proof of Theorem 1.1 is simple. Once one gets the above desired bilinear estimates (2.9)—(2.14), one can follow exactly
the same procedure as [32] to prove that there exists T > 0 such that the system (1.3) admits a unique solution (u, v, w) on
[0, T] satisfying (1.8). Moreover, if the initial data is sufficiently small, then the above local solution is actually a global one, for
details, please see [32].

Now we present the proof of Theorem 1.2. Let us denote by T, the maximal existence time of local solution (u, v, w) satisfying
(1.8). Then to prove Theorem 1.2, it suffices to prove T. = oo under the initial condition (1.9). We prove it by contradiction.
Assume that T, < oo, based on the estimates (3.17), (3.20), (4.13) and (4.16), let m be a small enough positive constant which
the exact value will be determined later, we define T, by

h
T = max{te[o,m: I s k] e e e <n}. (5.1)
?o(Bp,l P) plp l:t q,1 q L%(qufl)

Taking A1 > 2C1, X2 > 2C; and n < 7%, we can derive from (3.17) to get that

h Ky h
g B,H%)+§Huxn oty <18l g + 3

t p.1

HV)\H N (5.2)
a,

On the other hand, taking A1 > 2C3, A3 > 2Cs in (4.13), and 1 < 5% one obtains that

lvsll ez H 2600, 2 < 2voll oz (5.3)
t q,1 t q.l q,1
As a consequence, we obtain from (5.2)—(5.3) that for all t < T,, it holds that
h
u _ + K B v
190 gy + I g+ VI g+l
(168l _vs + 0l _aus) X exp{/ (fi() + () + Ao (7)) }
Bp.l qul 0
t
h
= 2016l 1o + 0l _ao3) x @0 { [ Oula (D] oy + 2D 5 + Xalw(nl; o). (5.4)
B B 0 B P Bl
p,1 q,1 p.1 p.1 ]
Thanks to (3.20), by choosing n < 3%, it holds that for all t < Ty,
[ R I < 2wl 3 +2n. (5.5)
t p.1 ( pl Bpl
Back to (4.16), by taking Ay > 2C4 and n < 2—’2.4 one gets
HW>\1|| U i +K’HW>\1||L1 3 SZHWOHBQJF% +n,
t rl t rl r,
which using (5.5) yields that
t
3
g 25, ol 5 < @l ) e { [ Pl o}
< (@loll s, +m) Xexp{—(lluOll L) (56)
rl
Besides, it follows the interpolation inequality in Lemma 2.6 that
1212 5 <Clle®l s )]
% .pv1 t 1+p L( 1+p)
<Cll?
<cll,, :+,3)|\ e,
< C 3 2
< —=lwll vz +m)° (5.7)
K prl P

Taking above estimates (5.5)—(5.7) into (5.4), we obtain that there exists a positive constant Cs which depends on k and 1
such that for all t < T, it holds that

h
Il s + k" || vl s RV s
t p.1 pl t q,1 L (B 1)
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t
h
<201l 1.y + 0l _ag) x o0 { [ Ol g + della* ()]
B Bq.l 0 BD.l

p.1

2
3+ Iw )}

h
<2016l vy +lwll az) x exp {Ca(II? 1,3 + (oll oz + D exp {Colludll o3} +1)}. (5.8)
B By, B, P B.1 B, P

p.1

Finally we conclude that if we take Co large enough and ¢y small enough in (1.9), then it follows from (5.8) that

N3

h h
T P 17 PR 7 NP
?c p.1 t p.1 ?c q,1 Lt(Bq,l)

for all t < T,,, which contradicts with the maximality of T, thus T* = co. We complete the proof of Theorem 1.2.
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