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Abstract

A Coronavirus Disease 2019 (COVID-19) epidemiological model incorporating a boosted infection-acquired immunity and

heterogeneity in infection-acquired immunity among recovered individuals is designed. The model is used to investigate whether

incorporating these two processes can induce new epidemiological insights. Analytical findings reveal co-existence of multiple

endemic equilibria on either regions divided by the fundamental threshold (control reproduction number). Numerical findings

conducted to validate analytical results show that heterogeneity in infection-acquired immunity among recovered individuals

can induce various bifurcation structures such as reversed backward bifurcation, forward bifurcation, backward bifurcation and

reversed hysteresis effect. Moreover, numerical results show that reversed backward bifurcation is annihilated or switches to

the usual forward bifurcation if infection-acquired immunity among recovered individuals with strong immunity is assumed to

be everlasting. However, this is only possible if primary infection is more likely than reinfection. In case reinfection is more

likely to occur than primary infection, reversed backward bifurcation structure switches to a backward bifurcation phenomenon.

Further, longer duration of infection-acquired immunity does lead to COVID-19 decline over time but does not lead to flattening

of the COVID-19 peak.
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Abstract

A Coronavirus Disease 2019 (COVID-19) epidemiological model incorporating a boosted
infection-acquired immunity and heterogeneity in infection-acquired immunity among recov-
ered individuals is designed. The model is used to investigate whether incorporating these two
processes can induce new epidemiological insights. Analytical findings reveal co-existence
of multiple endemic equilibria on either regions divided by the fundamental threshold (con-
trol reproduction number). Numerical findings conducted to validate analytical results show
that heterogeneity in infection-acquired immunity among recovered individuals can induce
various bifurcation structures such as reversed backward bifurcation, forward bifurcation,
backward bifurcation and reversed hysteresis effect. Moreover, numerical results show that
reversed backward bifurcation is annihilated or switches to the usual forward bifurcation if
infection-acquired immunity among recovered individuals with strong immunity is assumed
to be everlasting. However, this is only possible if primary infection is more likely than rein-
fection. In case reinfection is more likely to occur than primary infection, reversed backward
bifurcation structure switches to a backward bifurcation phenomenon. Further, longer dura-
tion of infection-acquired immunity does lead to COVID-19 decline over time but does not
lead to flattening of the COVID-19 peak.

Keywords: , Reexposure, immune boosting, Heterogeneity, reversed hysteresis effect,
Reversed backward bifurcation

1. Introduction

The news about the spread of a novel coronavirus identified as severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) became ubiquitous across the globe in December 2019,
and shortly thereafter the disease associated with the virus was named by World Health Or-
gonization (WHO) as Coronavirus Disease 2019 (or COVID-19) [1]. WHO declared COVID-
19 a global pandemic on March 11, 2020 [2]. Official data from the WHO showed that, as
of July 14, 2020, there were approximately 12,768,307 confirmed cases with 566,654 hav-
ing succumed to COVID-19 related complicaions [3]. Over a period of six months, about
105 million positive cases were confirmed, with 2.29 million deaths as of February 5, 2021.
The pandemic continues to unfold, although at a slower pace in comparison to early onset of

∗Corresponding author:
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COVID-19. Currently, there is a global concern regarding deciphering the extent of protection
against emerging SARS-CoV-2 variants by pre-existing antibodies elicited as a result of nat-
ural infection or vaccination [4]. Consequently, numerous epidemiological modelling studies
have attempted to incorporate infection mechanisms that account for COVID-19 post-infetion
possibilities. One being reinfection with either similar strain or a new variant of COVID-19,
while the other possiblity being COVID-19 reccurence (see [4] and the references therein).

The two most typical epidemiological models used to describe disease transmission dynam-
ics include the SEIS (Susceptible-Exposed-Infection-Susceptible) and SEIR (Susceptible-
Exposed-Infection-Recovered) [5, 6]. These two models are distinguishable from one an-
other due to different assumptions made regarding immunity after infection [7]. For instance,
for SEIR model recuperated individuals are assumed to have acquired infection derived im-
munity that is perfect and lasts throughout individuals life. These individuals are considered
to be fully protected against infection with the same pathogen. On the other hand for SEIS
models recovered individuals are assumed to acquire no immunity and immediately after re-
cuperating remain susceptible to the pathogen they were previously infected with and at the
same risk as before [7]. Infectious diseases with SEIS epidemiological characteristics include
sexually transmitted diseases (STDs). For example, syphilis, gonorrhea, herpes simplex and
chlamydia [8]. Contrary to both SEIS and SEIR infectious disease epidemiological charac-
teristics, some diseases fall in between. That is convalescent immunity is not sufficient to
protect an individual from future infection with a similar pathogen or closely related strain of
the pathogen. This is evidenced by studies done on respiratory syncytial virus (RSV) which
depict that infections render partial immunity and that the likelihood of being reinfected is
decreased by about 70% for a period of six months following initial infection [9, 10, 11].

Similar to RSV, there are clinical studies that show that individuals who have recovered from
COVID-19 can also be reinfected with previous COVID-19 variant or with the emerging
COVID-19 variants (e.g., Delta, Omicron etc). For example [12] showed that overall pro-
tection after first episode of SARS-CoV-2 range between 77% and 83%. Other longitudinal
study on immunological memory to SARS-CoV-2 showed that about 95% of recovered indi-
viduals retained immunity for a period of about eight months as evidenced by the measure-
ments of antibodies, memory B cells and CD4 and CD8 T cells [13].

In the sequel there has been numerous epidemiological models that have attempted to study
the impact of reinfection on overall COVID-19 dynamics. For instance the paper by [14]
analysed COVID-19 transmission dynamics in Malaysia using an SIRS model. In their view
the authors suggested that reinfection mechanism can be considered to be the process where
recovered individuals lose the acquired infection derived immunity and revert to suscepti-
ble population. While this may have its epidemiolgical implications, perhaps they could
have considered a scenario where recovered individuals interact with COVID-19 infectious
individuals who are either infected with the same strain as they previously recovered from
or a different COVID-19 variant. The ommission of such vital infection mechanism prob-
ably hindered some enriching COVID-19 transmission dynamics. Further, the justification
given by [14] that incubation period is not of significant importance in COVID-19 trans-
mission dynmaics and hence can be ommitted is not strong enough given COVID-19 has a
well known and documented intrinsic incubation period (see [1, 3, 15, 16] and the references
therein). Batistela et al. [17] studied COVID-19 transmission dynamics using an SIRS model
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but similarly assumed reinfection to be accounted by the loss of immunity among recovered
individuals and finally returning to a susceptible state. Their mathematical analysis did not
mention any possible dynamical behavior likey to be induced by reinfection mechanism, such
as the phenomenon of backward bifurcation. Saha et al. [18] investigated dynamics of novel
COVID-19 in the presence of co-morbidity with a possibility of reinfection of recovered in-
dividuals and found that reinfection could trigger a bistability phenomena. However, their
paper did not consider a scenario where reinfection may boost an individual natural acquired
immunity.

The paper by Rahman et al. [4] studied COVID-19 reinfection among naturally infected peo-
ple and vaccinated individuals and found that although both cohorts were vulnerable to re-
infection, individuals who naturally recovered from COVID-19 were less likely to be rein-
fected than individuals who were vaccinated. This clinical evidence raises an important ques-
tion whether natural infection acquired-immunity (after recovery from COVID-19) is much
stronger than vaccine induced immunity. Their paper pointed out that reinfected individu-
als (both naturally infected or vaccinated individuals) were less likely to suffer from severe
disease. Their findings also suggested that a remarkable proportion of naturally infected or
vaccinated individuals could be reinfected by the emerging COVID-19 variants.Their study
did not hint a possibility of reinfection boosting an individual naturally acquired immunity
despite the evidence that reinfected individuals were less likely to be hospitalized or experi-
ence high mortality as to individuals who suffer from COVID-19 for the first time.

The concept of immune boosting was initially hinted by Wearing and Rohani [19] in an at-
tempt to estimate the duration of purtussis immunity using epidemiological signatures. How-
ever, their study did not reveal any epidemiological implications likely to be induced by
incorporating boosted immunity infection mechanism in an epidemiolgical model. Recently,
the research done by Le et al. [7] pointed out that re-exposed individuals may experience a
boost to their waning immunity hence completely protecting them from reinfection. Again
the study did not study in detail how boosted immunity may impact disease transmission dy-
namics. In the best of our knowledge no study on COVID-19 transmission dynamics has at-
tempted to understand how boosted naturally acquired-immunity may impact future COVID-
19 dynamics, particulary now COVID-19 prevalence is declining worldwide. Intriguenly,
this decline in COVID-19 prevalence is being witnessed even among those countries that did
not have an elaborate and successful vaccination mitigation strategy.

Reinfection is often if not always considered to be detrimental to the general population, es-
pecially if it leads to an increase in disease prevalence. Nevertheless, the overall dynamics
of COVID-19 in presence of boosted immunity after reinfection with COVID-19 remains an
important knowledge gap that has not been investigated so far using epidemiological mod-
elling approach. In this paper we shall qualitatively and quantitively explore a possibility
where reinfection with COVID-19 is assumed to be multifaced. That is reinfection can ei-
ther lead to an individual acquiring second episode of COVID-19 or can boost an individual
infection-derived immunity such that an individual can transition from being partially im-
mune to the status of temporary complete protection against COVID-19. Pertinent questions
that will form the basis of our investigation include:

(i) What is the epidemiolgical implication of boosted infection-acquired immunity? In
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light of the revelation that reinfection among recovered indviduals who have recuper-
ated from COVID-19 can induce the phenomenon of backward bifurcation [18], we
shall investigate whether incorporation of a boosted infection-acquired immunity mech-
anism can induce new bifurcation structures?

(ii) Is there any epidemiological insights if there is heterogeneity in infection-acquired im-
munity among individuals who have recovered from COVID-19?

(iii) Does duration of the infection-acquired immunity matter as far as COVID-19 transmis-
sion dynamics is concerned?

2. Model formulation

To investigate the stated questions we design a Kermack-McKendrick-type epidemiological
model [20, 21], SEIRi, (i ∈ {1,2}) where the total human population at time, t denoted
by N(t) is partitioned into five mutually exclusive classes. That is susceptible individuals
S(t), individuals who are exposed to COVID-19 but are not yet infectious E(t), infectious
I(t) which consist both symptomatic COVID-19 and asymptomatic COVID-19 infected in-
dividuals, recovered individuals who acquired partial infection-derived immunity R1(t) and
recovered individuals R2(t) with full protection against COVID-19. This leads to

N(t) = S(t)+E(t)+ I(t)+R1(t)+R2(t).

For the sake of mathematical tractability and simplification the following assumptions are
made:

• Exposed individuals are asymptotically infected and cannot transmit COVID-19,

• Infectious individuals consist both symptomatic COVID-19 and asymptomatic COVID-19
infected individuals,

• Previous Covid-19 infection induces an infection-acquired immunity that can either be
partial or strong enough to protect an individual from reinfection.

• Recovered individuals with strong infection-acquired immunity can gradully lose the ac-
quired immunity and revert to a class of recovered individuals with partial immunity who
are prone to reinfection.

Humans are recruited into the susceptible population at a constant rate Λ. Once susceptible
individuals come into contact with infectious individuals in class I(t), they acquire COVID-
19 infection and proceed to exposed class at a rate λ , which is defined as:

λ =
(1−ωκ)β I

N
, (1)

where parameter β represent effective contact rate. 0 < κ ≤ 1 represents proportion of the
entire population that properly and consistently wear face masks while 0 < ω ≤ 1 repre-
sents face masks effectiveness in preventing an individual from acquiring COVID-19 from
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an infectious individual. The mathematical representation that track transmission dynamics
of COVID-19 is defined by a system of nonlinear ordinary differential equations (2):

dS
dt

=Λ− (µ +λ )S,

dE
dt

=λS+(1−φ)δλR1− (µ +θ)E,

dI
dt

=θE− (µ +d +ψ)I, (2)

dR1

dt
=(1− f )ψI +αR2− (µ +δλ )R1,

dR2

dt
= f ψI +φδλR1− (µ +α)R2.

Individuals exposed to COVID-19 transition to the infectious class at a rate θE, ( 1
θ
, is the pe-

riod exposed individuals sojourn in exposed class before becoming infectious, i.e., incubation
period). Infectious individuals recover at a rate ψI. Recovery from COVID-19 is assumed
to unfold into ways in that a proporion f ψI recover with a strong immunity and progress
to R2 class while the complimentary (1− f )ψI recover with partial immunity and progress
to R1 class. Upon re-exposure to COVID-19 recovered individuals with partial immunity
are prone to reinfection at a rate δλR1. 0 < δ < 1 is a modification parameter that account
for reduction of infection among recovered individuals with partial immunity in relation to
susceptible individuals. δ = 1 imply recovered individuals are infected at the same rate as
susceptible individuals while δ = 0 indicate that recovered individuals with partial immunity
are able to stage strong resistance against reinfection. It is assumed that recovered individu-
als with partial immunity respond differently to reinfection. That is a small proportion φ of
individuals with partial infection-acquired immunity, their immunity is boosted upon reinfec-
tion and progress to R2 class at a rate φδλR1 while the remainder follow the natural course of
COVID-19 and progress to the exposed class at a rate (1−φ)δλR1. Strong infection-acquired
immunity among recovered individuals (with strong immunity) is assumed to wane with time
and these individuals join recovered individuals with partial immunity at a rate αR2. Humans
in all classes are assumed to experience natural mortality at a rate µ. Individuals in infectious
class, I experienced COVID-19 induced death at a rate dI. A summary of variables and pa-
rameters description is depicted in Table 1. A schematic diagram representing progression
from one health status to another is shown in Figure (1).

3. Analysis of the model
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Figure 1: A flow diagram representing epidemiological status and the respecive parameters which indicates rates
of transition from one health status to another. The magenta filled compartment represent recovered individuals
whose infection-acquired immunity is partial and these individuals can be reinfected upon re-exposure with
COVID-19. The green filled compartment represents recovered individuals whose infection-acquired immunity
is strong enough to resist reinfection.

3.1. Basic properties of the model
Positivity and boundedness of model trajectories
Given we are considering a human population it is imperative to show that all the variable
states are nonnegative for all time, t. From model equation (2) we can deduce the following:

dS
dt

∣∣∣∣
{S=0,E>0,I>0,R1>0,R2>0}

= Λ > 0,

dE
dt

∣∣∣∣
{S>0,E=0,I>0,R1>0,R2>0}

= λS+(1−φ)δλR1 > 0,

dI
dt

∣∣∣∣
{S>0,E>0,I=0,R1>0,R2>0}

= θE > 0, (3)

dR1

dt

∣∣∣∣
{S>0,E>0,I>0,R1=0,R2>0}

= (1− f )ψI +αR2 > 0,

dR2

dt

∣∣∣∣
{S>0,E>0,I>0,R1>0,R2=0}

= f ψI +φδλR1 > 0.

It is clear that all the rates in equation (3) are nonnegative on the boundary plane of the non-
negative cone of R5. The trajectories directions are inward on the boundary planes, thus if an
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Table 1: Defination of variables and parameters for the COVID-19 model.

Variable Description
S Population of susceptible individuals
E Population of exposed individuals who are not yet infectious
I Population of both asymptomatic COVID-19

and symptomatic COVID-19 individuals
R1 Population of recovered individuals with partial infection-acquired

immunity who are vulnerable to reinfection
R2 Population of recovered individuals with strong infection acquired immunity

able to resist reinfection
Parameter Description
Λ Recruitment rate of humans
β Effective contact rate
κ Proportion of the entire susceptible population

that properly and consistently wear face masks
ω Efficacy of face masks in preventing acquisition of COVID-19 by

susceptible individuals as well as to reduce the transmission of
COVID-19 by infected individuals

θ Transition rate from exposed class to infectious class
ψ Recovery rate from COVID-19
f Proportion of individuals who recover with strong infection acquired immunity
(1− f ) Proportion of individuals who recover with partial infection acquired immunity
δ Modification parameter that account for infection reduction among recovered

individuals with partial immunity in relation to suceptible individuals
α Rate at which recovered individuals lose the strong infection acquired

immunity and revert to a class of recovered individuals with partial immunity
µ Natural death rate
d COVID-19 induced death rate
φ Proportion of individuals who experience immune boosting upon

re-exposure to COVID-19

initial condition within interior part of this cone is chosen, then all trajectories will remain
within this cone for all future time. This proves the positivity of all the populations in the
system (2).

To show boundedness of model solutions it can be noted that the total population is given as
N = S+E + I +R1 +R2. Differentiating this equality yields

dN
dt

= Λ−µN−dI. (4)

From observation that 0 < S ≤ N, 0 < E ≤ N, 0 < I ≤ N, 0 < R1 ≤ N, and 0 < R2 ≤ N, it
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follows that

Λ− (µ +d)N ≤ dN
dt

< Λ−µN, hence, the following inequality: (5)

Λ

µ +d
≤ lim

t→∞
inf N ≤ lim

t→∞
sup N ≤ Λ

µ
.

This implies that lim
t→∞

sup N ≤ Λ

µ
which shows that all model solutions are bounded above by

Λ

µ
.

Theorem 1. Let
⋂
=
{
(S,E, I,R1,R2) ∈ R5

+ : 0≤ S,E, I,R1,R2 ≤ Λ

µ

}
be a set. Then

⋂
is a

positively invariant and global attracting set of the model system (2).

Proof: It follows from (5) that:

dN
dt
≤ Λ−µN.

Since, dN
dt is bounded above by Λ− µN, applying the standard comparison theorem in [22],

it is easy to show that N(t) ≤ N(0)e−µt + Λ

µ
(1− e−µt). Specifically, the inequality holds if

N(0)≤ Λ

µ
. This indicates that all trajectories of the model equation (2) with initial conditions

originating from
⋂

remain in
⋂

for all time t > 0. Hence,
⋂

is a positively invariant and
globally attracting set [23].

4. Local stability of disease-free equilibrium (DFE)

In the absence of COVID-19 infections, the model equation (2) has an intrinsic disease free
equilibrium defined as

C0 = (S̄, Ē, Ī, R̄1, R̄2) =

(
Λ

µ
,0,0,0,0

)
.

Applying the next generation operator method Diekmann et al. [24], Van den Driessche and
Watmough [25] on the model equation (2) it is possible to investigate the linear stability of
the DFE. From model equation (2), the matrices F and V which respectively represent new
infections terms and transition terms are given by:

F =

(
0 (1−ωκ)β
0 0

)
,V =

(
(µ +θ) 0
−θ (µ +d +ψ)

)
.

The basic reproduction number which we shall define by Rc, is obtained from

Rc = σ(FV −1) =
(1−ωκ)βθ

(µ +θ)(µ +d +ψ)

where σ is the spectral radius of the next generation matrix FV −1 (see [23, 25]). Following
Van den Driessche and Watmough [25] we establish the following results

8



Lemma 1. The DFE of the model equation (2) is locally asymptotically stable whenever
Rc < 1 and unstable whenever Rc > 1.

5. Existence of endemic equilibrium point (EEP)

If COVID-19 infections persists in any given community, then the disease becomes endemic
leading to existence of an endemic equilibrium point. To determine the EEP we set all the
expresions appearing at the right side of model equation (2) to zero and evaluate for steady
states. Suppose

E1 = (S∗,E∗, I∗,R∗1,R
∗
2)

is any arbitrary endemic equilibrium point of model equation (2). Thus, equation (1) can be
rewritten as

λ
∗ =

(1−ωκ)β I∗

N∗
(6)

and N∗ can be obtain from (4) as

N∗ =
Λ

µ
− dI∗

µ
.

Hence, from model (2) we can obtain

S∗ =
Λ

µ +λ ∗
,

E∗ =
λ ∗Λ

(µ +λ ∗)(µ +θ)
+

(1−φ)δλ ∗

(µ +θ)
R∗1,

I∗ =
θλ ∗Λ(D1 +λ ∗D2)+θ 2λ ∗2δ (1− f )ψ(1−φ)(µ +α)Λ+θ 2λ ∗2δα f ψ(1−φ)(µ +λ ∗)Λ

(µ +θ)(µ +λ ∗)(µ +d +ψ)(D1 +λ ∗D2)
,

(7)

R∗1 =
(1− f )ψθλ ∗Λ(µ +α)+α f ψθλ ∗Λ(µ +λ ∗)

(D1 +λ ∗D2)(µ +λ ∗)
,

R∗2 =
f ψθλ ∗Λ

(µ +α)(µ +d +ψ)(µ +θ)
+

f ψθ(1−φ)δλ ∗+φδλ ∗(µ +θ)(µ +d +ψ)

(µ +α)(µ +d +ψ)(µ +θ)
R∗1,

where

D1 = µ(µ +α)(µ +θ)(µ +d +ψ)> 0,
D2 = δ (µ +d)(µ +θ)(µ +α(1−φ))+δψµ(µ +φθ)+δ µψ(1−φ)(α + f θ)> 0.

Substituting (7) into (6) and after a tedious algebraic manipulation leads to the following
polynomial expressed in terms of the force of infection λ ∗ :

λ
∗[P3(λ

∗)3 +P2(λ
∗)2 +P1λ

∗+P0] = 0, (8)
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where

P3 =−dθ
2
α f ψ(1−φ)δ ,

P2 = µ(µ +d +ψ)D2 +θ(µ +ψ)D2−dθ
2
δ (1−φ)(1− f )ψ(µ +α)−dθ

2
µδ (1−φ)α f ψ

−µ(1−ωκ)βθ
2
δα f ψ(1−φ),

P1 = µ(µ +θ)(µ +d +ψ)D2 +µ(µ +d +ψ)D1 +θ(µ +ψ)D1− (1−ωκ)µβθD2

−µ(1−ωκ)βθ
2
δ (1− f )ψ(1−φ)(µ +α)−µ

2(1−ωκ)βθ
2
δα f ψ(1−φ),

P0 = µ(µ +θ)(µ +d +ψ)D1[1−Rc].

Note that in polynomial (8), λ ∗ = 0 correspond to the DFE while the nonzero endemic equi-
libria are obtained from the cubic polynomial:

g(λ ∗) = P3(λ
∗)3 +P2(λ

∗)2 +P1λ
∗+P0 = 0. (9)

It is clear that in polynomial (9), P3 is always negative while P0 can be either positive or
negative depending on whether Rc < 1(Rc > 1). The coefficients P1 and P2 can alternate be-
tween positive and negative values depending on the choice of parameter values. Hence, to
determine all the possible number of endemic equilibria for model equation (2) we apply the
Descartes’ rule of signs on the cubic polynomial (9) for two cases. That is Rc < 1 and Rc > 1.

Case I: Rc < 1. Table 2 depict that whenever Rc < 1, model equation (2) can either have
one positive endemic equilibrium point or three positive endemic equilibrium points. The
existence of one or multiple endemic equilibrium points when Rc < 1 signals a possiblity of
bistability phenomenon. This is because for the bistability phenomenon to arise when Rc < 1,
two endemic equilibria (where one is locally stable and the other unstable) need to coexist.

Table 2: Possible number of real positive roots for the case Rc < 1 determined by the signs of P3,P2,P1 and P0.

P3 P2 P1 P0 Number of real positive roots
< 0 < 0 > 0 > 0 1 positive root
< 0 > 0 > 0 > 0 1 positive root
< 0 < 0 < 0 > 0 1 positive root
< 0 > 0 < 0 > 0 3 positive roots

Case II: Rc > 1. In this scenario P0 is negative given Rc > 1 while P3 as mentioned is always

Table 3: Possible number of positive roots for the case Rc > 1 which are determined by the signs of the coeffi-
cients P3,P2,P1 and P0.

P3 P2 P1 P0 number of real positive roots
< 0 < 0 < 0 < 0 no positive root
< 0 < 0 > 0 < 0 2 positive roots
< 0 > 0 < 0 < 0 2 positive roots
< 0 > 0 > 0 < 0 2 positive roots
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negative. Thus, the signs of the coefficients P2 and P1 determine the possible number of en-
demic equilibrium points for model equation (2). From Table 3 it can be seen that when Rc is
greater than one, the model equation (2) have two endemic equilibria occuring concurrently.
The coexistence of two endemic equilibrium points is one of the hallmark of the bistability
phenomenon. Interestingly, the occurence of bistability phenomenon for model equation (2)
is exhibited when the control reproduction number is greater than one. The occurence of
the bistability phenomenon which in this case we shall refer to “reversed backward bifur-
cation” or “reversed bistability phenomeon” raises an important question that need further
exploration. That is can we establish backward bifurcation threshold for a scenario where
backward bifurcation occur when control reproduction number is greater than one?

5.1. Existence of bistability phenomenon
It is clear from Tables 2 and 3 that the model equation (2) exhibits bistability phenomenon
when the control reproduction number is either less than one or greater than one. Hence, the
following theorem follows:

Theorem 2. Define

δc =
θψ[(1− f )µ +α]+µ(µ +α)(µ +d +ψ)+µθ(µ +α)

θψ[(1− f )µ +α]
.

Then the Covid-19 model system (2)

(i) Exhibits a reversed backward bifurcation phenomenon at Rc = 1 whenever 0 < (1−
φ)δ < δc

(ii) Exhibits either a backward bifurcation phenomenon or a reversed hysteresis effect at
Rc = 1 whenever (1−φ)δ > δc.

Proof: Using mathematical modelling insights, particularly center manifold theory Castillo-
Chavez and Song [26] we establish a critical value that determine the type of bifurcation
structures exhibited by model system (2) if crossed. For simplification purpose let S= y1,E =

y2, I = y3,R1 = y4,R2 = y5. Now model (2) in vector form can be written as
dY
dt

= ( f1, f2, f3, f4, f5)

where Y = (y1,y2,y3,y4,y5)T , so that

dy1

dt
= f1 = Λ− (1−ωκ)βy1y3

y1 + y2 + y3 + y4 + y5
−µy1,

dy2

dt
= f2 =

(1−ωκ)βy1y3

y1 + y2 + y3 + y4 + y5
+

(1−φ)δ (1−ωκ)βy3y4

y1 + y2 + y3 + y4 + y5
− (µ +θ)y2,

dy3

dt
= f3 = θy2− (µ +d +ψ)y3, (10)

dy4

dt
= f4 = (1− f )ψy3 +αy5−

δ (1−ωκ)βy3y4

y1 + y2 + y3 + y4 + y5
−µy4,

dy5

dt
= f5 = f ψy3 +

φδ (1−ωκ)βy3y4

y1 + y2 + y3 + y4 + y5
− (µ +α)y5.

Choosing β as the bifurcation parameter so that at Rc = 1, β = β ∗ = (µ+θ)(µ+d+ψ)
(1−ωκ)θ . Now

the linearizarion matrix of model system (10) is computed by obtaining its Jacobian matrix
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evaluated at the DFE E0 and considering that β = β ∗. Hence,

J(E0)|β=β ∗ = Jβ ∗ =


−µ 0 −(1−ωκ)β ∗ 0 0
0 −(µ +θ) (1−ωκ)β ∗ 0 0
0 θ −(µ +d +ψ) 0 0
0 0 (1− f )ψ −µ α

0 0 f ψ 0 −(µ +α)

 .

The eigenvalues of the Jacobian matrix J(E0)|β=β ∗ are easily computed using the Mathemat-
ica software and they include: λ1 =−(µ +α),λ2 =−µ,λ3 =−µ,λ4 =−2(d +θ ++2µ +
ψ) and λ5 = 0. Observe that the Jacobian matrix J(E0)|β=β ∗ has a simple zero eigenvalue
(λ5 = 0) while all other eigenvalues have negative real part. Hence, the model system (10)
has a hyperbolic equilibrium point which implies that we can proceed and apply the center
manifold theory Castillo-Chavez and Song [26] to analyze dynamics of the transformed sys-
tem near β = β ∗. We now compute both right and left eigenvectors of the Jacobian matrix
J(E0)|β=β ∗

Eigenvectors of the J(E0)|β=β ∗ .
The corresponding right and left eigenvectors of the jacobian matrix J(E0)|β=β ∗ associated
with the zero eigenvalue are respectively given as:

Right eigenvectors: v1 =−
(1−ωκ)β ∗

µ
v3,v2 =

(µ +d +ψ)

θ
v3,v3 = v3 > 0,

v4 =
ψ[(1− f )µ +α]

µ(µ +α)
v3,v5 =

f ψv3

(µ +α)
,

Left eigenvectors: w1 = w4 = w5 = 0, w2 =
θ

(µ +θ)
w3, w3 = w3 > 0. Now the associated

bifurcation parameters, a and b (see [26]) are described by:

a =
5

∑
k,i, j=1

wkviv j
∂ 2 fk(0,0)

∂yi∂y j
and b =

5

∑
k,i=1

wkvi
∂ 2 fk(0,0)

∂yi∂β ∗
.

For bifurcation parameter a the associated non-vanishing partial derivatives of the trans-
formed model system (10) evaluated at DFE E0 are given by:

∂ 2 f2(0,0)
∂y2∂y3

=
∂ 2 f2(0,0)

∂y3∂y2
=−2(1−ωκ)β ∗µ

Λ
,

∂ 2 f2(0,0)
∂y3∂y4

=
∂ 2 f2(0,0)

∂y4∂y3
= 2

(
−(1−ωκ)β ∗µ

Λ
+

(1−φ)δ (1−ωκ)β µ

Λ

)
,

∂ 2 f2(0,0)
∂y2

3
=
−2(1−ωκ)β ∗µ

Λ
.

Further,the non-vanishing partial derivatives associated to b are given by

∂ 2 f1(0,0)
∂y3∂β ∗

=−(1−ωκ)µ2

Λ2 ,
∂ 2 f2(0,0)
∂y3∂β ∗

=
(1−ωκ)µ2

Λ2 .
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Thus bifurcation parameters a and b after a tedious algebraic manipulation are given as:

a = 2
θ(1−ωκ)β ∗µψ[(1− f )µ +α]

Λ(µ +θ)µ(µ +α)

×
(
(1−φ)δ − θψ[(1− f )µ +α]+µ(µ +α)(µ +d +ψ)+µθ(µ +α)

θψ[(1− f )µ +α]

)
,

= 2
θ(1−ωκ)β ∗µψ[(1− f )µ +α]

Λ(µ +θ)µ(µ +α)
((1−φ)δ −δc), where (11)

δc =
θψ[(1− f )µ +α]+µ(µ +α)(µ +d +ψ)+µθ(µ +α)

θψ[(1− f )µ +α]

b =
θ

(µ +θ)

(1−ωκ)µ2

Λ2 w3v3 > 0. (12)

From Theorem 4.1 of Castillo-Chavez and Song [26] it follows that the COVID-19 model
(2) will exhibit the phenomenon of a “reversed backward bifurcation” at Rc = 1 whenever
parameter a < 0. That is if 0 < (1−φ)δ ≤ δc.

Remark 1. It is imperative to stress that for a normal backward bifurcation phenomenon to
occur the bifurcation parameter a obtained using Center Manifold theory need to be nonneg-
tive. However, for scenarios where (a) reinfection among recovered individuals with partial
immunity is assumed to strengthen an individual immunity and (b) there is heterogeneity in
immunological response to COVID-19 infection leading to disparity in the level of infection-
acquired immunity then the requirement that bifurcation parameter a need to be nonnegative
is not a requirement as depicted in Figure (2).

Using the baseline parameters shown on Table 4 the condition for a “reversed backward
bifurcation” to occur can be computed as δ (1− φ) = 0.4999 ≈ 0.5 < δc = 1.0004 ≈ 1. It
is apparent that the bifurcation parameter a according to Castillo-Chavez and Song [26] will
be negative yet the emergence of a reversed backward bifurcation is observed as depicted in
Figure 2(a). In Figure 2(a), β ∗ = 0.212 correspond to Rc = 1.

5.2. Nonexistence of a reversed backward bifurcation when φ = 1 or δ = 0
The biological interpretation for φ = 1, in model equation (2), is that re-exposure to COVID-
19 leads to a 100% boosted natural immunity among previously infected individuals who
recovered with partial immunity. Consequently, these individuals progress to a class of recov-
ered individuals who are protected against reinfection due to their strong immunity. Nonexis-
tence of the bistability phenomenon can be shown by noting that if φ is set to one in the cubic
equation (9), the equation reduces to a quadratic equation g(λ ∗)|φ=1 = P̄2λ ∗2+ P̄λ ∗+P0 = 0
where

D2|φ=1 = D̄2 = δ (µ +d)(µ +θ)µ +δψµ(µ +θ)> 0,
P̄2 = µ(µ +d +ψ)D̄2 +θ(µ +ψ)D̄2 > 0, (13)
P̄1 = µ(µ +d +ψ)D1 +θ(µ +ψ)D1 > 0,
P0 = µ(µ +θ)(µ +d +ψ)D1(1−Rc).

Clearly, quadratic equation g(λ ∗)|φ=1 = P̄2λ ∗2 + P̄λ ∗+P0 = 0 has only one change of signs
(according to Descartes’ rule of signs) when Rc > 1 implying existence of one positive root.
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On one hand there is no positive root when Rc < 1 since P0 > 0, (hence no change of signs).
Thus, we have the results:

Theorem 3. The Covid-19 model equation (2) with φ = 1 has:

(i) Exactly one unique endemic equilibrium point when P0 < 0, (i.e., Rc > 1,)

(ii) No endemic equilibrium point when P0 > 0, (i.e., Rc < 1).

Existence of one endemic equilibrium point when Rc > 1 indicates that the model system (2)
will exhibit a forward bifurcation and not backward bifurcation phenomenon as illustrated in
Figure 2(b) (φ = 1 correspond to a solid blue curve) where parameter φ is set to one while
all other parameters are the baseline parameters as shown in Table 4. The epidemiological
implication of nonexistence of bistability phenomenon when φ = 1 is that for a reversed
backward bifurcation phenomenon to occur then boosted infection-acquired immunity as a
result of re-exposure among recovered individuals with partial immunity need not be perfect.
That is for a bistability phenomenon to arise, a fraction of recovered individuals (with partial
immunity) after reinfection has to progress to the exposed class (i.e., follow natural course of
COVID-19). This implies that if parameter φ lie within the interval 0≤ φ < 1 then“reversed
backward bifurcation” phenomenon arises (see Figure 2(a) where φ = 0.001 < 1). This sig-
nals that if the natural-acquired immunity is boosted by re-exposure then complex COVID-19
transmission dynamics may be triggered.

Similarly, when δ = 0 model system (2) cannot exhibit a “reversed backward bifurcation”
since equation (9) reduces to a linear equation. That is

g(λ ∗)|δ=0 = P11λ
∗+P0 = 0,

where P1|δ=0 = P11 = µ(µ +d+ψ)D1+θ(µ +ψ)D1 > 0. This implies λ ∗=−P0/P1. Thus,
λ ∗ remains positive whenever Rc > 1. Consequently, in the absence of reinfection of recov-
ered individuals with partial immunity a unique endemic equilibrium exists whenever Rc > 1
and no positive endemic equilibrium point exist whenever Rc < 1. Figure 2(b) (where δ = 0
correspond to dashed black curve) depict that the model equation (2) will not exhibit a “re-
versed backward bifurcation” but rather a forward bifurcation. Interestingly, the bifurcation
structures for δ = 0 and φ = 1 are topologically equivalent as depicted in Figure 2(b) where
the two curves are superimposed.
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Table 4: Represents model parameter values used in numerical simulations

Parameter Baseline values Range Unit Reference
Λ 5000 [500–5000] day−1 [18]
β 0.35 [0.1–0.86] day−1 [15, 18, 27]
κ 0.5 [0.1 –0.65] day−1 [18, 27]
ω 0.1 [0.1–0.5] day−1 [18, 27]
θ 0.20 [0.11–0.25] day−1 [27, 15]
ψ 0.20 [ 1

30–1
4 ] day−1 [18, 28, 27, 29, 30]

f 0.10 [0.05-0.85] day−1 [15]
δ 0.5 [0–1] day−1 [15, 18]
α

1
2×30 [ 1

3×30– 1
18×30 ] day−1 [12, 31, 28]

µ
1

65×365 −− day−1 [18, 28]
d 0.001 −− day−1 Assumed
φ 0.001 [0–1] day−1 Assumed

5.3. Global stability of the DFE in the presence of perfect boosted immunity i.e., φ = 1
Theorem 4. If boosted immunity is perfect (φ = 1) the DFE E0 is globally asymptotically
stable whenever Rc < 1.

Proof: Consider the Lyapunouv candidate function;

L (S,E, I,R1,R2) =
θ

µ +θ
E + I. (14)

The fact that S,E, I,R1,R2 > 0 implies that L (S,E, I,R1,R2)> 0 and L (S,E, I,R1,R2) = 0
at E = I = 0. Hence, we proceed to show that the time derivative of the Lyapunouv function
(14) along the solutions of system (2) is less or equal to zero (L̇ ≤ 0.)

L̇ =
θ

µ +θ
Ė + İ,

=
θ

µ +θ

[
(1−ωκ)β IS

N
− (µ +θ)E

]
+(θE− (µ +d +ψ)I),

=
(1−ωκ)βθ IS

N(µ +θ)
− (µ +d +ψ)I,

=(µ +d +ψ)I
(

(1−ωκ)βθS
N(µ +θ)(µ +d +ψ)

−1
)

Note that, due to infection S(t) is diminished at any time t ≥ 0. Let S≤ Λ

µ
and N ≤ Λ

µ
then

L̇ ≤(µ +d +ψ)I
(

(1−ωκ)βθ

(µ +θ)(µ +d +ψ)
−1
)
,

=(µ +d +ψ)I(Rc−1).
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It can be observed that L̇ = 0 when E = I = 0 and L̇ ≤ 0 whenever Rc ≤ 1. Hence, by
applying Lassalle’s invariance principle the obtained result show that E0 is globally asymp-
totically stable (g.a.s) in ∩. The epidemiological implication of DFE, E0 being g.a.s is that
COVID-19 will be eliminated from the community if the control reproduction number Rc is
maintained (or decreased) to a value below unity.

5.4. Impact of increasing proportion of individuals whose infection-derived immunity is boosted.
Varying proportion of individuals whose infection-derived immunity is boosted between val-
ues within the range φ ∈ [0,1) has a significant impact on COVID-19 transmission dynamics.
For example increasing parameter φ from φ = 0.001 to φ = 0.001× 50 shifts the reversed
backward bifurcation to the right as well as widens endemic curves (see Figure 2(c)). Sur-
prisingly, when φ is increased to a value exactly equal to 1 the reversed backward bifurcation
switches to the usual forward bifurcation as depicted in Figure 2(b). Thus, disparity in im-
munological response towards reinfection among recovered individuals is vital in emergence
of complex COVID-19 transmission dynamics. Epidemiologically this suggests that as long
as a fraction of reinfected individuals transition to exposed class while the complementary
progress to R2 class (recovered individuals with strong but temporary immunity), then model
system (2) will always exhibit a reversed backward bifurcation.

5.5. Reinfection does not boost infection-acquired immunity among recovered individuals
with partial immunity (φ = 0)

Under the assumption that reinfection with COVID-19 does not boost an individual infection-
acquired immunity, this can be epidemiologically interpreted to imply φ = 0. That is upon
re-exposure with COVID-19 recovered individuals with partial immunity respond negatively
(i.e., individuals experience a second episode of COVID-19-reinfection) and thus follow the
natural course of COVID-19. In this scenario the cubic equation (9) remains a third degree
polynomial and the number of possible endemic equilibria can again be determined by Ta-
bles 2 and 3. Figure 2(f) which is generated by using baseline parameter values in Table
4 except φ = 0 show that the model system (2) exhbits a “reversed backward bifurcation”
phenomenon.

5.6. Impact of varying duration of COVID-19 immunity on reversed backward bifurcation
structure

Figure 2(e) show the impact of increasing duration of tempolary infection-acquired immu-
nity. For a short duration of infection-acquired immunity (about two months (60 days)) the
reversed backward bifurcation occur for a narrow range of β values. Further, increasing du-
ration of infection acquired immunity (from 2 months to six months and then to a year) the
bifurcation structures are shifted to the right meaning reversed backward bifurcation occur
for a wider range of effective contact rate values. Moreover, there is widening of the bifur-
cationn curves implying an increase in the force of infection. This implies that COVID-19
infection-acquired immunity that is not permanent will actually complicate COVID-19 trans-
mission dynamics.
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5.7. Permanent infection acquired immunity among recovered individuals in R2 class (i.e.,
α = 0)

Here we consider a scenario where recovered individuals with strong immunity do not lose
their infection-acquired immunity throughout their life time. Epidemiologically this implies
α = 0. Thus, setting α = 0, the cubic equation (9) reduces to a quadratic equation:

h(λ ∗) =C2λ
∗2 +C1λ

∗+C0 = 0, (15)

where

C2 = P2
∣∣
α=0 =µ(µ +d +ψ)D22 +θ(µ +ψ)[δψµ(µ +φ)θ +δ µψ(1−φ) f θ ]

+θδ µ
2(µ +ψ)(µ +θ)+θ(µ +ψ)δ µ

2d +θ
2
µ

2
δ µd +dθ

2
δψµ > 0,

C1 = P1
∣∣
α=0 =µ

3(µ +d +ψ)2(µ +θ)+θ µ
3(µ +θ)(µ +d +ψ)

+µ(µ +θ)(µ +d +ψ)D22[1−Rc]

+θψµ
2(µ +θ)(µ +d +ψ)[1−δ (1−φ)(1− f )Rc],

C0 = P0
∣∣
α=0 =µ(µ +θ)(µ +d +ψ)D11[1−Rc],and

D11 = D1
∣∣
α=0 =µ

2(µ +θ)(µ +d +ψ)> 0,

D22 = D2
∣∣
α=0 =δ µ(µ +d)(µ +θ)+δψµ(µ +φθ)+δ µψ(1−φ) f θ .

Note that in the quadratic equation (15) the coefficient C2 is always greater than zero. C1
is also positive whenever Rc < 1 and δ is restricted within the interval (0 ≤ δ < 1). This
is because the term δ (1− φ)(1− f )Rc is a product of terms that are less than one. C0 is
positive whenever Rc < 1 and negative when Rc > 1. Thus, under this scenario there is only
one change of signs according to the Descartes rule of signs. Hence, the quadratic equation
(15) will have one positive root. Plotting force of infection at equilbrium, λ ∗ against infective
contact rate β will result to to the well known forward bifurcation.

However, if δ takes values that are larger than one, the term δ (1−φ)(1− f )Rc may become
greater than one even though Rc < 1 hence leading to C1 < 0. Consequently, the quadratic
equation can have two change of signs for values of δ > 1. In this case equation (15) will
have two positive roots whenever Rc < 1. The coexistence of two positive endemic equi-
librium points when the control reproduction number is less than one is the feature of the
phenomenon of backward bifurcation where one endemic equilibrium point is stable and the
other is unstable.

It is observed that if the COVID-19 infection-acquired immunity is everlasting (i.e., α = 0,
shown by a blue solid curve in Figures 2(e) and 3(a)) among recovered individuals with
strong immunity then the reversed backward bifurcation collapses to either a forward bi-
furcation for values of δ restricted within the interval 0 < δ < 1 or a backward bifurcation
phenomenon arises for δ > 1 as indicated in the Figure 3(b). That is the reversed backward
bifurcation structure is annihilated by permenent infection-acquired immunity among recov-
ered individuals with strong immunity. Hence, the gradual loss of infection-acquired immu-
nity among individuals with strong immunity is detrimental to the measures put in place to
combat COVID-19 as this may trigger complex bifurcation structures. This also suggests that
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developing vaccines that render permanent protection against COVID-19 reinfection is vital
in mitigating COVID-19 proliferation. This is because reinfection will be difficult to occur
and if it occurs it will be relatively low such that by reducing the control reproduction number
below one, COVID-19 will not be able to spread (this is the case with the forward bifurcation
). Moreover it is imperative to stress that if reinfection among recovered individuals with par-
tial immunity occur faster than primary infection (i.e., δ > 1), then even in the presence of
permanent immunity among individuals in R2 class, backward bifurcation phenomenon may
arise (see Figure 3(b)). Although it is less likely, this possibility cannot be entirely ruled out
given the current evidence of COVID-19 infection breakthrough among previously recovered
individuals Rahman et al. [4]. In this scenario it will be very difficult to control COVID-19
due to the fact that COVID-19 will spread even when Rc < 1 as can be observed in Figure
3(b).

Given we have investigated the two extreme values of φ (i.e., φ = 0 and φ = 1) we can
now argue that the presence of complex bifurcation structures exhibited by model system (2)
are not entirely triggered by boosted infection-derived immunity among recovered individu-
als but also due to heterogeneity in recovery among COVID-19 infectious individuals. That
is individual immunological response to COVID-19 after infection may lead to unexpected
COVID-19 transmission dynamics. That is the key trigger of the emergence of a reversed
backward bifurcation is due to the differences in the level of infection-acquired immunity
among recovered individuals. However, for the heterogeneity among recovered individuals
to induce complex bifurcation structures (i.e., reversed backward bifurcation and reversed
hysteresis effect) reinfection has to occur among recovered individuals with partial immunity
(i.e., δ 6= 0) and recovered individuals with strong infection-acquired immunity have to grad-
ually lose their immunity (i.e., α 6= 0).

5.8. Impact of presence or absence of heterogeneity in infection-acquired immunity among
recovered individuals

Parameter f which actually determine the proportion of recovered individuals which either go
to R1 or R2 classes, if decreased leads to a pronounced “reversed backward bifurcation” (i.e.,
it is bifurcation structure is shifted to the right) as well as shrinking of the bifurcation curves
(as shown in Figure 2(d)). Further, if f is increased the “reversed backward bifurcation”
shifts to the left (or is being diminished) but the bifurcation curves widen (or endemic curve
shifts upward). Thus, there is an epidemiological advantage if more individuals in the com-
munity recover with weak or partial protective immunity. This is because reversed backward
bifurcation phenomenon will occur for β values that are actually close to β ∗ or will occur
to values of Rc that are close to one. Furthermore, widening of the bifurcation curves imply
an increase in the force of infection and subsequently an increase in COVID-19 prevalence.
We note that for the intermediate values of parameter f (i.e., 0 < f < 1) the phenomonon of
reversed backward bifurcation will always occur.

We now consider whether the reversed backward bifurcation can be annihilated by ommitting
heterogeneity in recovery. That is by assuming that after recovery all individuals progress to
either R1 class or R2 class. This can be epidemiologically interpreted to mean that f = 0
or f = 1, respectively. Figure 4(a) show that by setting f = 0 while all other parameters
remain as shown in the Table 4, the phenomenon of reversed backward bifurcation switches
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to the usual forward bifurcation. Hence, if infected individuals all recover with weak/partial
infection-acquired immunity reversed backward bifurcation does not occur. However, it is
clear from Figure 4(a) that the COVID-19 prevalence will remain high.

On one hand, if parameter f is set to one which imply that all recovered individuals re-
cover with strong temporary infection-acquired immunity, a pronounced reversed backward
bifurcation occur as indicated in Figure 4(b). That is COVID-19 pandemic will unfold in
two different endemic curves whenever Rc > 1, where one is stable (shown by a solid blue
curve in Figure 4(b)) and the other is unstable (shown by a solid red curve in Figure 4(b)).
Thus there is a huge structural change in the bifurcation structure when the heterogeneity in
recovery is ommited.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Illustrate type of bifurcation structures exhibited by the model sytem (2). Parameters used to generate
figures are the baseline parameters depicted in Table 4 except those shown in the figures. In all the figures
β ∗ = 0.212 correspond to Rc = 1. (a) Represents a reversed backward bifrucation phenomenon for δ = 0.5
which correspond to δ (1−φ) = 0.4991 < δc = 1.0004. (b) Show the structural change of reversed backward
bifurcation to the usual foward bifurcation whenever reinfection does not boost an individual infection-acquired
immunity (i.e., φ = 1) and when reinfection does not occur (i.e., δ = 0). (c) Show the impact of increasing
the proportion φ of recovered individuals with partial infection-acquired immunity at intermediate values (0 <
φ < 1). (d) Show effect of increasing parameter f (0 < f < 1). (e) Show the impact of varying the duration of
infection-acquired immunity. (f) Illustrate a reversed backward bifurcation phenomenon can occur even when
φ = 0.
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(a) (b)

Figure 3: Illustrate the typical forward bifurcation and the backward bifurcation structures when the recovered
individuals in R2 class are assumed to acquire an everlasting infection-acquired immunity (i.e., α = 0). The
parameters used are the baseline parameters shown in Table 4. (a) Represents forward bifurcation when δ = 0.5
which correspond to δ (1−φ) = 0.4991 < δc = 1.0004. (b) Represents backward bifurcation for δ = 2 which
corresponds to δ (1−φ) = 1.9980 > δc = 1.0004.

(a) (b)

Figure 4: Illustration of the scenario where there is no heterogeneity in recovery among infected individuals. (a)
Represents bifurcation structure for the case f = 0, i.e., infected individuals who do not succumb to COVID-
19 all recover with partial/weak infection-acquired immunity and therefore progress to R1 which consists of
individuals who are prone to reinfection. Parameters used remain as the baseline parameters shown in Table 4
except f = 0 is shown in the figure. For a better view semi-logarithmic scale is used. (b) Represents bifurcation
structure (pronounced reversed backward bifurcation) for the case f = 1, i.e., infected individuals who do not
succumb due to COVID-19, all recover with strong temporary infection-acquired immunity. Parameters used
remain as shown in the Table 4 except f = 1 is shown in the figure. For a better view a logarithmic scale is used
on both axis.
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5.9. Reinfection being more likely to occur than initial infection
Here we consider two scenarios; (a) a scenario where reinfection occur at the same rate as
primary infection (initial infection) and (b) reinfection of recovered individuals with partial
immunity occur at a higher rate in comparison to infection of susceptible individuals. Thus,
fixing all the other parameters (baseline parameters) as shown in Table 4 while varying pa-
rameter δ we investigate these two cases. Figure 5(a) show that if reinfection occur at the
same rate as infection of susceptible individuals then the phenomenon of a reversed backward
bifurcation is preserved. However, if reinfection rate surpasses the rate of initial infection,
then there is a structural change in the bifurcation structure as the reversed backward bifurca-
tion switches to a reversed hysteresis effect as exhibited in Figures 5(b), 5(c) and 5(d) where
δ values are δ = 2,δ = 3,δ = 4, respectively. The appearance of a reversed hysteresis effect
complicates COVID-19 transmission dynamics as there are multiple endemic equilibria (both
stable and unstable) when Rc < 1 and when Rc > 1.
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(a) δ = 1 (b) δ = 2

(c) δ = 3 (d) δ = 4

Figure 5: Depict the impact of readjusting the modification parameter that account for reinfection among recov-
ered individuals with partial immunity such that δ ≥ 1. Parameter values used to generate the figures remain as
baseline parameters shown in Table 4 except that β is varied within the interval β ∈ [0.001,4]. Blue solid curves
represent stable endemic curves while solid and dotted red curves represent unstable endemic curves. For a bet-
ter view semi-logarithmic scales are used on all figures. (a) Represents the reversed backward bifurcation when
δ = 1. (b) Represents a reversed hysteresis effect which occur when δ = 2 and δ (1−φ)= 1.9980> δc = 1.0004.
(c) Represents a reversed hysteresis effect when δ = 3 and δ (1−φ) = 2.997 > δc = 1.0004. (d) Show a hys-
teresis effect bifurcation structure for δ = 4 and δ (1−φ) = 3.9960 > δc = 1.0004.
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5.10. Impact of non-pharmaceutical mitigation measures and proportion of boosted immu-
nity on COVID-19 burden

Figure 6(a) depict that increasing parameters that account for non-pharmaceutical interven-
tion (NPI) measures does lead to a decline in force of infection. Thus, if the general populace
adhere to the NPI mitigation measures COVID-19 prevalence can be significantly reduced.
Figure 6(a) show that if a larger proportion of recovered individuals with partial immunity
transition to a class of recovered individuals with strong temporary immunity after rein-
fection, then COVID-19 prevalence declines (with λ ∗ being close to zero when parameter
φ → 1).

(a) (b)

Figure 6: (a) Illustrate the contour plots of of face mask efficacy ω versus the face mask coverage κ for the
force of infection (λ ∗) at equilibrium. (b) Represents a 3-D figure showing the impact of varying proportion of
boosted immunity and reinfection coefficient on the force of infection λ ∗. Parameters used in both figures are
the baseline parameters shown in Table 4.

6. Time series solutions

To understand the long-term dynamical behaviour of the formulated COVID-19 model sys-
tem (2) we present several graphical representations to support our theoretical findings. Two
broad scenarios will be considered; that is when the basic reproduction number is either less
or greater than one. Except where mentioned, parameter values used for numerical simula-
tions remain as shown in Table 4 (baseline parameter values) while the initial conditions used
are S(0) = 5000000,E(0) = 100, I(0) = 70,R1(0) = 10,R2(0) = 10. Figure (7) (see Figures
7(a), 7(b), 7(c) and 7(d)) which presents the time evolution of COVID-19 model system (2)
when the fundamental threshold is greater than unity depicts that COVID-19 will be endemic.
Figure 7(d) show that COVID-19 will peak within a period of about 100 days and thereafter
decline and settle at the equilibrium point.

It is important to note that the subpopulation of recovered individuals with weak immunity
increases and stabilizes at equilibrium point (see Figure 7(c)) without decreasing. On one
hand the subpopulation of recovered individuals with strong temporaly infection-acquired
immunity increases then decreases before settling at the equilibrium point as depicted in Fig-
ure 7(d). The epidemiological implication of this decline among recovered individuals with
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(a) (b)

(c) (d)

Figure 7: Illustration of COVID-19 transmission dynamics when the control reproduction number is greater than
one. The parameter values used remain as shown in Table 4 except β = 0.5 which correspond to Rc = 2.36 > 1.
Note that in all figures δ = 0.5 and φ = 0.001 which corresponds to δ (1−φ) = 0.4991 < δc = 1.0004.

strong immunity is because these individuals’ infection-acquired immunity start to wane after
some time (about six months). This is due to the fact that the infection-acquired immunity
is not everlasting. Once they lose the infection-acquired immunity they transistion to recov-
ered individuals with weak/partial immunity. Consequently one would expect the R1 class
to increase, however there is no increase because individuals in R1 class get reinfected and
progress to either E class or revert to R2 class.

Figure 8 show that whenever control reproduction number is below unity and the condition
δ (1− φ) < δc, hold then COVID-19 will not become endemic as the trajectories approach
zero as time elapses (see Figures 8(a) and 8(b)). Intriguenly when the parameters are cho-
sen such that the condition δ (1− φ) < δc is reversed (i.e., δ (1− φ) > δc) and the control
reproduction number is below unity, the dynamical behaviour of the model system 2 yield
a scenario where COVID-19 trajectories are determined by the size of the supplied initial
conditions. This is the signature for the phenomenon of backward bifurcation as exhbited in
Figure 3(b) where there is co-existence of both unstable and stable endemic equilibria when
Rc < 1. In such scenario some supplied initial conditions are attracted to the stable endemic
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equilibrium point while others are attracted to the basin of disease free equilibrium point.
This is the case exhibited by Figures 9(a) and 9(b).

(a) (b)

(c) (d)

Figure 8: Illustration of COVID-19 transmission dynamics when the control reproduction number is less than
one. Parameter values used remain as shown in Table 4 except β = 0.2(< β ∗ = 0.212) which corresponds to
Rc = 0.94 < 1. All figures are generated when δ (1−φ) = 0.4991 < δc = 1.0004.
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(a) (b)

Figure 9: Illustration of the dependence of COVID-19 trajectories on the suplied initial conditions. The pa-
rameters used remain as indicated in Table 4, except β = 0.209 (which correspond to Rc = 0.9874 < 1),
α = 1/(3× 30) and δ = 2 (corresponding to δ (1− φ) = 1.9980 > δc = 1.0004). (a) Represent force of in-
fection time series. (b) Represents infectious cases time series. For a better view a semi-logarithmic scale is
used.
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6.1. Effect of face mask efficacy versus face mask coverage
Figures 10(a) and 10(b), respectively show the impact of increasing face mask efficacy and
face mask coverage on COVID-19 transmission dynamics. Face masks with high efficacy has
a positive impact on curbing COVID-19. This is because there is a significant decline and
delay of COVID-19 peak as face mask efficacy increases. In fact with just face mask efficacy
of about 50% COVID-19 trajectory is attracted to the disease free equilibrium (see Figure
10(a) and also 3-D Figure 10(c)). The delay and decline of COVID-19 peak as a result of in-
creasing mask efficacy suggest that medical practitioners should advice the general populace
to use masks that have been demostrated to render maximum protection against acquisition of
COVID-19 as well as transmission of COVID-19. However, increasing face mask coverage
does not significantly reduce or delay COVID-19 peak and also does not lead to eradication
of COVID-19 (even when face mask coverage is about 100% - see Figure 10(b) and 3-D
Figure 10(d)). The only positive impact of high mask coverage is the reduction of COVID-19
prevalence.

6.2. Impact of varying duration of infection-acquired immunity versus varying proportion of
boosted immunity as a result of reinfection

Increasing duration of infection-acquired immunity does not reduce or delay COVID-19 peak
as exhibited in Figure 10(e). However, longer duration of infection-acquired immunity does
reduce COVID-19 prevalence and if infection-acquired immunity is permanent it may ulti-
mately lead to COVID-19 dying out. This observation is crucial because if countries could
have relied on natural immunity without incorporating pharmaceutical mitigation measures
such as administration of vaccines, it could have been extremely deficult to contain COVID-
19 proliferation. Figure 10(f) depict that if proportion of individuals whose infection-acquired
immunity is boosted as result of reinfection (re-exposure to COVID-19) is increased, then
there is a decline in the COVID-19 peak but it does not lead to flatening of the COVID-19
curve (i.e., delaying the COVID-19 peak). With over 50% of recovered idividuals with par-
tial immunity transitioning to R2 class after reinfection, then COVID-19 endemic could have
been eradicated within a period of approximately 200 days (see Figure 10(f)). However, this
eradication could have been only possible if second episode of COVID-19 strengthens an
individual previoulsy infection-acquired immunity.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Illustrate time series solutions when different parameter values are varied. (a) Represent effect of
high face mask efficacy. (b) Represents impact of increasing face mask coverage on COVID-19 transmission
dynamics. (c) Represent a 3-D figure showing the effecct of face mask efficacy on COVID-19 transmission
dynamics when considering a larger interval of parameter ω values. (d) Represent a 3-D figure showing impact
of mask coverage on a broader range of parameter κ values. (e) Represents impact of duration of infection-
acquired immunity. (f) Represents impact of increasing proportion of recovered individuals whose immunity is
boosted upon reinfection.
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7. Discussion and conclusion

We designed an SEIRi (i ∈ {1,2}) mathematical model with the aim of investigating two key
questions: (a) Whether immunological differences in infection-acquired immunity among
recovered individuals can alter the dynamical behaviour of COVID-19 (b) If reexposure to
COVID-19 boosts previously infection-acquired immunity (natural immunity), are there new
epidemiological insights? The theoretical and numerical findings reveal that heterogene-
ity in infection-acquired immunity among both recovered cohorts (i.e., recovered individuals
with partial immunity and recovered individuals with strong temporary immunity) can induce
complex bistability phenomenon. That is the proposed COVID-19 model, shows that if there
is a gradual loss of infection-acquired immunity among recovered individuals with strong im-
munity a reversed backward bifurcation phenomenon arises. This leads to a scenario where
COVID-19 unfolds into two endemic curves when the control reproduction number is greater
than one. These findings have not been documented in any existing COVID-19 literature.

Both analytical and numerical findings reveal that if the immunity acquired by recovered indi-
viduals with strong immunity is everlasting the reversed backward bifurcation is annihilated
and the usual forward bifurcation emerges. However, under this scenario forward bifrucation
occur only when primary infection is more likely than reinfection (i.e., 0 < δ < 1). Immedi-
ately the reinfection is more likely to occur (δ > 1) than primary infection then, the forward
bifurcation switches to the backward bifurcation phenomena. Under the assumption that
upon reinfection with COVID-19, boosting of infection-acquired immunity among recovered
individuals with partial immunity is perfect the reversed backward bifurcation structure trans-
forms to forward bifurcation. Although, this is unlikey in a real life situation given there has
been documented evidence of breakthrough infections after initial infection (or after vaccina-
tion), especially with new emerging COVID-19 variants Rahman et al. [4]. Further, reversed
backward bifurcation is annihilated and forward bifurcation emerges if all infected individ-
uals recover with partial infection-acquired immunity and reversed backward bifurcation is
preserved if all infected individuals recover with strong infection-acquired immunity. These
results may seem confounding but they are not surprising given recovered individuals with
strong immunity have temporary infection-acquired immunity and over time their strong im-
munity wane. Subsequently reverting to recovered individuals with partial immunity who are
prone to reinfection.

Moreover, a new type of bifurcation structure which we named reversed hysteresis effect
emerges under the conditions that there is waning of infection-acquired immunity among in-
dividuals in R2 class, boosted infection-acquired immunity is imperfect (0 < φ < 1) and the
likelihood of reinfection happening is higher than primary infection. The reversed hysteresis
effect show existence of multiple endemic equilibria on either regions divided by the control
reproduction number. Thus the presence of a reversed hysteresis effect might complicate in-
tervention measurers put in place to control COVID-19 proliferation given reducing control
reproduction number below one will not be sufficient.

Further, we found that, longer duration of natural infection-acquired immunity does lead
to the reduction of COVID-19 prevalence in the long-term (i.e., after about 200 days ≈ 6
months). However, it does not lead to flattening of the COVID-19 epidemic curve. Thus,
natural immunity alone cannot play a key role in alleviating COVID-19 crises especially
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when countries have unlimited resources to cater for COVID-19 surge. However, non-
pharmaceutical interventions (NPIs) measures such as wearing face masks with high ef-
fictiveness can lead to both flatening the COVID-19 curve as well as reducing COVID-19
prevalence. Our numerical results also stress that mask efficacy plays a significant role in
COVID-19 reduction than mask coverage.

The findings in this paper suggests that boosted natural infection-acquired immunity as a
result of reexposure can alter long-term COVID-19 transmission dynamics positively. How-
ever, as researchers across the globe continue to unravel the intricate transmission dynamics
of COVID-19, perhaps there are questions worth noting. For instance, after grim projection
and predictions of COVID-19 in some developing countries where there are inadequate health
facilities, COVID-19 morbidity and mortality was far much below than the initial projections.
And this raises an important question whether previous exposure to closely related subvari-
ants of coronavirus could have played a key role in preventing spiralling of COVID-19 cases
that could have resulted to overburdening of the available medical facilities.

Future direction of this paper could consider callibrating the proposed COVID-19 dataset
to accurately determine the values of proportion that account for boosted immunity among
recovered individuals with partial immunity as well as determinig the value of reinfection co-
efficient. Further, incorporating pharmaceutical mitigation measures such as vaccines can add
insights regarding the interplay between naturally infection-acquired immunity and vaccine-
induced immunity.
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