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Abstract

We present a framework to model and provide numerical evidence for compartmentalization in the yeast endoplasmic reticulum.

Measurement data is collected and an optimal control problem is formulated as a regularized inverse problem. To our knowledge,

this is the first attempt in the literature to introduce a PDE-constrained optimization formulation to study the kinetics of

fluorescently labeled molecules in budding yeast. Optimality conditions are derived and a gradient descent algorithm allows

accurate estimation of unknown key parameters in different cellular compartments. For the first time, the numerical results

support the barrier index theory suggesting the presence of a physical diffusion barrier that compartmentalizes the endoplasmic

reticulum by limiting protein exchange between the mother and its growing bud. We report several numerical experiments on

real data and geometry, with the aim of illustrating the accuracy and efficiency of the method. Furthermore, a relationship

between the size ratio of mother and bud compartments and the barrier index ratio is provided.
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Summary

We present a framework to model and provide numerical evidence for compartmen-

talization in the yeast endoplasmic reticulum. Measurement data is collected and

an optimal control problem is formulated as a regularized inverse problem. To our

knowledge, this is the �rst attempt in the literature to introduce a PDE-constrained

optimization formulation to study the kinetics of �uorescently labeled molecules in

budding yeast. Optimality conditions are derived and a gradient descent algorithm

allows accurate estimation of unknown key parameters in di�erent cellular compart-

ments. For the �rst time, the numerical results support the empirical barrier index

theory suggesting the presence of a physical di�usion barrier that compartmentalizes

the endoplasmic reticulum by limiting protein exchange between the mother and its

growing bud. We report several numerical experiments on real data and geometry,

with the aim of illustrating the accuracy and e�ciency of the method. Furthermore,

a relationship between the size ratio of mother and bud compartments and the barrier

index ratio is provided.

KEYWORDS:
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1 INTRODUCTION

In budding yeast cells, a small daughter cell emerges from themother cell, which can produce nearly 20-50 rejuvenated daughters

before it dies. The endoplasmic reticulum, referred to as ER, of the budding yeast cell is made up of membranous tubules and

sheet-like cisterns. The principles underlying the anisotropic protein exchange in budding yeast have been the subject of several

experimental studies showing that this is not due to the geometric organization of the ER, see1,2,3,4. The membrane of the

endoplasmic reticulum is composed of morphologically and functionally diverse domains, such as rough ER, smooth ER and

nuclear envelope, whose distinction is based on the contribution of several proteins5. It can be divided into large compartments

roughly corresponding to the future daughter cells covering the mother compartment �m which includes the nuclear envelope

and is larger than the bud region �b; The bud neck zone �r, however, has a sheet morphology instead of tubules
5, see Fig.1. In

budding yeast cells as well as in a broad spectrum of eukaryotes6, experimental studies have established that the ERmembrane is

physically continuous throughout the cell but that a lateral di�usion barrier may exist at the bud neck and compartmentalizes the

membrane into an anterior domain and a posterior domain by limiting the exchange of ER proteins between these two domains.

See e.g.1,7. From a biological perspective, biologists have suggested that the barrier might represent a specialized lipid domain

in the bud neck featuring a di�erent composition from the rest of the ER membrane.

0
Abbreviations: PDE, partial di�erential equation; ER, endoplasmic reticulum; FLIP, Fluorescence Loss in Photobleaching
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1 INTRODUCTION

Figure 1Confocal images of FLIP experiments in themother (top) or bud (bottom) expressing themembranemarker Sec61-GFP.

Gray bars indicate the �rst pre-bleached images, while black bars indicate snapshots at speci�c instants of repeated bleaching in

the remainder of the experiment. Photobleached areas indicated by white rectangles. (Right) Segmented geometries showing:

�m (green), �b (yellow), �r (red), and the photobleached areas �1 Ë �m (top, blue) or �2 Ë �b (bottom, blue).

Studying the mobility of �uorescently tagged molecules in the ER membrane can provide biologists with important insights

into the cellular function and organization. The Fluorescence Loss In Photobleaching technique, referred to as FLIP, is used in

the laboratory to measure the mobility and molecular dynamics of proteins in living cells. It consists of repeatedly exposing

mobile �uorescent molecules in a de�ned area to an intense light pulse over time by a high-intensity laser beam, thus inducing

irreversible photochemical bleaching of this area, see8,4. Due to molecular mobility, a fairly uniform decrease in �uorescence

signal is observed over time throughout the membrane and is proportional to ER protein concentration; Areas disconnected from

the photobleached area should however continue to �uoresce. The rate at which �uorescence intensity changes after bleaching

can provide experimenters with information about the movement of bleached molecules and the surface di�usion properties in a

particular region of a living cell. We notice that the amount of �uorescence measured after bleaching in each cell compartment

is always normalized to the amount before bleaching.

Intriguingly, several experimental studies have shown that the kinetics of membrane proteins are very slow between the

mother and bud compartments compared to the kinetics within each region where the rates of �uorescence loss are comparable.

Indeed, applying FLIP in �m results in rapid depletion of �uorescence signal in �m, while �uorescence is lost only slowly in

�b; Conversely, applying FLIP in �b leads to rapid photobleaching of the marker in �b but not in �m
8. Accordingly, biologists

rationalize that although the ER is physically continuous, its membrane is compartmentalized, suggesting the presence of a

barrier between the di�erent domains of the ER where the di�usion of proteins in the membrane is restricted somewhere9; If

con�rmed, this theory will have a major role in maintaining and possibly optimizing the life expectancy of nascent cells. Indeed,

daughter cells are born with a full life expectancy, while mothers age after each division. It has now been shown in the literature

that ER stress triggers mechanisms that age yeast cells. Interestingly, compartmentalization may play a key role in retaining

damage and aging factors between mothers and renewing cells by preventing the stresses that cause aging from entering the

daughter cells10,11,6. This remains a very thorny area of research where several elements remain unclear. To date, it remains

challenging to prove and elucidate the biological relevance of such barriers. To numerically study the properties of molecular

di�usion and compartmentalization on the ER membrane, we �rst perform several FLIP experiments in the laboratory using

confocal microscopy8. In each FLIP experiment, we collected pointwise measurement data of the total amount of �uorescence

separately in each cell compartment after photobleaching and at speci�c time points. These data will be used in the mathematical

modeling framework detailed thereafter.

Numerical simulation tools based on mathematical modeling using optimal control have the potential to further investigate

the aforementioned empirical di�usion barrier theory. The optimal control problems governed by convection or convection-

di�usion equations play an important role in many biomedical and engineering applications, see e.g12,13,14,15,16,17,18,19,20. Data

assimilation formalism represents an appropriate framework for estimating model parameters, where the problem should be
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2 MATHEMATICAL SETTING

formulated as a PDE constrained optimization so that the key parameters maximize a performance criterion subject to an ap-

propriate set of constraints. We shall minimize a cost functional measuring the discrepancy between the numerical solutions

and the data measurements, while the model parameters represent the control variables that allow the observations to be "better

approximated" in some sense21,22. The �rst-order necessary conditions for optimality, called Karush-Kuhn-Tucker conditions,

enable to derive an optimality system composed by "the state problem", "the adjoint problem" and "the inversion equations". In

the existing literature, Lagrange �nite element discretizations of optimal control problems have been widely used in numerical

approximations of such problems. There have been several theoretical analyzes and contributions to numerical strategies and

algorithms for various applications of optimal control, see e.g23,24,25,26,27,28,29,30,31,14,32. Moreover, an extensive literature on the

topic of numerical methods for the optimal control of PDE can be found in33,34,35.

The aim of this paper is to present a numerical method for estimating the model parameters using the optimal control theory

and to explore the barrier theory, without approaching the theoretical aspects of the problem. This is part of a larger ongoing

work to understand the kinetics of ER proteins in di�erent biological cells, while considering in the future both more accurate

mathematical models and the uncertainty quanti�cation in solution. The outline of this article is as follows. We introduce in

section 2 the mathematical model and the optimal control formulation for the current biological problem. In the section 3, we

present the numerical method and the iterative algorithm implemented. Section 4 is devoted to the results of some numerical

experiments, and to the numerical exploration of the di�usion barrier theory.
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Figure 2Experimental data showing the �uorescence signal decay over time inmother and bud compartments after an average of

twenty FLIP experiments. Photobleaching is applied to �1 (left) and �2 (right). Original �uorescence intensity before bleaching

is set to 100~ in each compartment. Mean , SD.

2 MATHEMATICAL SETTING

In this section, we describe the mathematical setting for the data-driven model describing the dynamics of �uorescently labeled

molecules on the yeast ER membrane. The acquisition of experimental data is brie�y described.

2.1 Data acquisition

We proceed with a series of FLIP experiments in budding yeast using time-lapse laser-scanning confocal microscopy expressing

the ER membrane marker Sec61-GFP. All experiments were done at room temperature of 23 degrees Celsius.

The FLIP experiments were performed as described in the previous study8 with some changes as shown in the following.

The cells were imaged on LSM 780 confocal microscope (Carl Zeiss, Jena, Germany) confocal microscope. The ZEN 2011

software (Carl Zeiss) was used to control the microscope. Bleaching was applied with 100 iterations at a laser power of 100~.

3



2.2 Direct problem 2 MATHEMATICAL SETTING

All cells were pooled and transferred to Prism 6.05 (GraphPad Software, La Jolla, California), in which a one-phase decay curve

constraining the �rst bleaching point to 100~ was �tted. All intensity values were normalized against the total cell intensity

and set to the value of 100~ at the start of each experiment. In each FLIP experiment, we collected pointwise measurement

data of the total amount of �uorescence separately in each cell compartment after photobleaching and at speci�c time points.

Mean and standard deviations (SD) values were calculated from replicated experiments. Fig 1 (left) shows a budding yeast cell

expressing the marker GFP-HDEL through serial optical sections, in which images were processed using the software ImageJ

1.49g (National Institutes of Health).

To investigate the di�usion barrier theory, measurements of the �uorescence signal from two series of FLIP experiments were

collected. In the �rst series of experiments, photobleaching is applied in the mother cortex on �1 Ï �m, while it is applied to the

bud compartment on �2 Ï �b in the second series of experiments, see Fig 1. Fig 2 reports the decay the amount of �uorescence

signal over time in the two membrane compartments. Each experiment was repeated an average of twenty times and error bars

indicate the standard deviations (SD) in the collected data.

For the numerical computations, a realistic geometry of the ER membrane, referred to as �, is segmented based on serial

optical sections through a yeast cell. Let Th be partition of � consisting of geometrically conforming open simplicial elements

K (triangles), such that � = ä
KËTh

. Several mesh tools are used to build, improve mesh quality and avoid badly stretched mesh

elements K . The initially segmented surface mesh in STL format is locally repaired and smoothed using MeshLab1 and the

modules for mesh optimization in Netfabb2. We also rely on Autodesk Maya3 for mesh quality improvement. The unstructured

triangular mesh is �nally remeshed and optimized using the Frontal algorithm of Gmsh4, see further details in36,37.We evaluate

the mesh quality as the ratio of the longest edge to the shortest edge of each mesh element K . In particular, the built mesh

depicted in Fig 1 has 110¨760 triangles, with an element edges ratio larger than 0.3 for all elements.

2.2 Direct problem

The timescale of a FLIP experiment is minutes, so that the most relevant dynamic process is �uorescence drain due to pho-

tobleaching. In addition, we assume, as in so many biological situations, that the �uorescently tagged molecules are free.

Consequently, we suppose that the FLIP recovery of the reporter protein re�ects a time-resolved pure surface di�usion dominant

scenario.

Consider a su�ciently smooth, orientable and closed surface � Ï R
3, with an outward facing normal n. Let .0; T / be a

speci�ed time interval corresponding to the period of the experiment and denote �T := .0; T / � � for i Ë ^1;2}. We introduce

u1 and u2 as protein concentrations on the ER membrane at time t Ë .0; T / for the aforementioned series of FLIP experiments,

i.e. when photobleaching is applied to G1 and �2, respectively.

The model contains parameters of unknown value which will be identi�ed by means of optimal control. Therefore, we in-

troduce the set of control variables �m , �b and �r which respectively represent the di�usion parameters of the reporter protein

in the mother, the bud and the bud neck area. We denote by �i the characteristic function which serves as an indicator of the

surface �i, with i Ë ^1; 2; m; r; b`. The total di�usion is then given by �tot = �m�m + �b�b + �r�r.

Essential boundary conditions must be prescribed on )�1 in the �rst set of experiments and on )�2 when photobleaching

is applied to the bud. To allow the use of the same �nite element mesh in both sets of FLIP experiments and avoid further

mesh manipulations on the boundaries, we consider a penalty method such as a penalty parameter 1_" helps maintain zero

concentration in bleached areas, see e.g.38,39,37,40 for other applications of penalty methods. The adjustment of the penalty

parameter can be problematic in certain problems because a too large penalty parameter can deteriorate the conditioning of the

resulting linear system and induce instabilities, see for example36.

In addition, we assume pointwise bounds on the key parameters to avoid non-physical values during optimization iterations.

We consider the admissible set of parameters

Uad =
��
�m; �b; �r

�
Ë R3 : 0 < �m Í A; 0 < �b Í B; 0 < �r Í C



;

whereA;B andC are �xed values. Let I represent the identity tensor. For an arbitrary function� and vector v in suitable function

spaces, we introduce the surface gradient, the surface divergence and the Laplace-Beltrami operators as follows:

1MeshLab - http://meshlab.sourceforge.net
2Netfabb - http://www.netfabb.com
3Maya - http://www.autodesk.com/products/maya
4Gmsh - http://www.geuz.org/gmsh
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2 MATHEMATICAL SETTING 2.3 Inverse problem and parameter identi�cation

(�� = .I * nä n/(� = (� * .n:(�/ n;

div�v = .I * nä n/ : (v = div v * ..(v/n/:n;

��� = div�
�
(��

�
;

where the tensorial product of two vectors is denoted ä, and the two times contracted product between tensors is denoted by

the semicolon. They correspond to the two-dimensional operators evaluated in the tangent plane to the ER membrane �. The

projector tensor I * nä n has zero eigenvalue, that is .I * nä n/n = 0, leading to non-di�usion in the direction normal to the

surface. Equipped with initial conditions u1;0 and u2;0, the forward problem reads

SP.u1; u2/ : For given �m, �b, �r belonging to Uad , �nd u1 and u2 satisfying

)u1

dt
* div�

��
�m�m + �b�b + �r�r

�
(�u1

�
+
1

"
u1�1 = 0 in .0; T / � �; (2.1)

)u2

dt
* div�

��
�m�m + �b�b + �r�r

�
(�u2

�
+
1

"
u2�2 = 0 in .0; T / � �; (2.2)

u1.t = 0; �/ = u1;0.�/ in �; (2.3)

u2.t = 0; �/ = u2;0.�/ in �: (2.4)

We use the so-called optimize then discretize approach rather than the discretize then optimize approach, ie the optimality

conditions are derived and then discretized after writing the variational formulation.

2.3 Inverse problem and parameter identi�cation

The experimental framework of FLIP provides measurements of �uorescence loss kinetics in each cell cortex at discrete time

points over the interval .0; T /, so that the average protein concentration in each compartment is normalized to the concentration

before the bleaching process. However, the spatio-temporal evolution of the �uorescence decay cannot be provided by the

experimental setting. We �rst proceed with a nonlinear least-squares curve �tting of the experimental data of the total amount of

�uorescence over time, as depicted in Fig. 2. Indeed, let Fm;1.:/ and Fb;1.:/ be the time evolution functions of �uorescence loss in

�m and �b, respectively, obtained by �tting after averaging twenty FLIP experiments in which photobleaching is applied to the

mother at �1. Similarly, Fm;2.�/ and Fb;2.�/ denote the time evolution functions of �uorescence decay in �m and �b, respectively,

obtained by �tting after averaging twenty FLIP experiments in which photobleaching is applied at �2.

The inverse problem consists in �nding the optimal parameters �?
m
, �?

b
, and �?

r
such that the averaging solutions of the direct

problem SP.u?
1
; u?

2
/ match as closely as possible the target averaging concentrations in each compartment. For t Ë .0; T /; l Ë

^m; b` and i Ë ^1; 2`, and given the curve �tting functions Fl;i.t/, the optimization problem is formulated as:

Find optimal parameters
�
�?
m
; �?

b
; �?

r

�
= arg inf

�jË^m;b;r`ËUad

J �u1; u2 ; �m; �b; �r�;
subject to the forward problem SP (2.1-2.4) as a constraint. (2.5)

The cost functional J is constructed by matching the temporal evolution of the average concentration predicted by the model

in each cell compartment with the corresponding target experimental measurements. It depends on both the state variables and

the controls and is expressed as:

J �
u1; u2;�m; �b; �r

�
=
É
i=1;2

�m;i

2

� T

Ê
0

Ê
�m

ui *

T

Ê
0

Fm;i.t/Ê
�m

u1;0

�2
+
�b;i

2

� T

Ê
0

Ê
�b

ui *

T

Ê
0

Fb;i.t/Ê
�b

u2;0

�2
+
É
i=1;2


m;i

2

�
Ê
�m

ui.T ; �/ * Fm;i.T /Ê
�m

u1;0

�2
+

b;i

2

�
Ê
�b

ui * Fb;i.T /Ê
�b

u2;0

�2
+
�

2

óóó�m * �bóóó2 + É
jË^m;b;r`

�j

2
�2
j
: (2.6)
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2.3 Inverse problem and parameter identi�cation 2 MATHEMATICAL SETTING

The terms weighted by �l;i, with l Ë ^m; b` and i Ë ^1; 2`, measure the mismatch between the numerical solution and targets

throughout the time interval .0; T /, whereas the terms weighted by 
l;i, with l Ë ^m; b` and i Ë ^1; 2`, measure this discrepancy

at �xed time t = T . The latter corresponds to an optimal control with desired states only at the �nal instant. An appropriate choice

of these weights, possibly zero, allows more emphasis to be placed on the solutions matching the targets throughout the duration

of the experiment or at the end time; The latter can be replaced by any particular time in .0; T /. The �-weighted term helps

account for the expectation of biologists that similar protein di�usion rates are expected in the mother and bud compartments.

Finally, the terms weighted with �j , with j Ë ^m; b; r`, are the so called Tykhonov regularization used to circumvent the possibly

ill-posed character of the inverse problem and thwart the tendency of controls to become locally unlimited41,42. A more in-depth

discussion on the choice of the regularization parameter is available in43 but is outside the scope of this work. Remark that the

weights in the objective functional helps to put more emphasis on some components with respect to the other components. In

practice, we can choose either �1 = �2 = 0 or 
1 = 
2 = 0.

To derive the Karush-Kuhn-Tucker optimality conditions, we introduce the adjoint variables v1.t;x/ and v2.t;x/ of the

corresponding state variables u1.t;x/ and u2.t;x/, respectively. The associated Lagrangian functional is expressed by

L �uiË^1;2`; viË^1;2`;�jË^m;b;r`� = J �
uiË^1;2`;�jË^m;b;r`

�
*

É
iË^1;2`

�
Ê
�T

)ui

dt
vi + Ê

�T

�
�m�m + �b�b + �r�r

�
(�ui � (�vi + Ê

�T

1

"
�iuivi

�
: (2.7)

The �rst-order optimality conditions are found by imposing the stationarity of the Lagrangian functional with respect to the

adjoint, state, and inversion variables, respectively. Let DL
�
� 
�
be the �rst variation of L with respect to a variable  . The

stationarity of the Lagrangian with respect to the adjoint variables DL ��v1;v2� = 0 provides the forward problem SP (2.1-2.2).

The adjoint system is obtained by requiring the stationarity of the Lagrangian functional with respect to the state variables, that

is DL ��u1;u2� = 0. The adjoint equations are given by:

AP
�
v1; v2

�
: Given the state variables u1 and u2 and the control variables �jË^m;b;r` Ë Uad , �nd v1 and v2 such that

*
)v1

dt
* div�

��
�m�m + �b�b + �r�r

�
(�v1

�
+
1

"
v1�1 =

É
k=m;b

É
j=1;2

�k;j

� T

Ê
0

Ê
�k

u1 *

T

Ê
0

Ê
�k

Fk;ju1;0

�
�k in .0; T / � �; (2.8)

*
)v2

dt
* div�

��
�m�m + �b�b + �r�r

�
(�v2

�
+
1

"
v2�2 =

É
k=m;b

É
j=1;2

�k;j

� T

Ê
0

Ê
�k

u2 *

T

Ê
0

Ê
�k

Fk;ju2;0

�
�k in .0; T / � �; (2.9)

v1.t = T ; �/ =
É
k=m;b

É
j=1;2


k;j

�
Ê
�k

u1.T ; �/ * Fk;j.T /Ê
�k

u1;0

�
�k in �; (2.10)

v2.t = T ; �/ =
É
k=m;b

É
j=1;2


k;j

�
Ê
�k

u2.T ; �/ * Fk;j.T /Ê
�k

u2;0

�
�k in �; (2.11)

Notice that the adjoint equations (2.8) and (2.9) are solved backwards in time, which therefore requires terminal conditions

(2.10) and (2.11) instead of initial conditions.

For given a; b; x Ë R, let �[a;b]^x` = max
�
min .x; b/ ; a

�
be the projection of x on the interval [a; b]. By imposing the

stationarity of the Lagrangian with respect to the inversion parameters, i.e. DL[��m;�b;�r] = 0, the inversion equations provide

an explicit characterization of the the optimal controls as follows.

Given the state variables u1 and u2 and the adjoint variables v1 and v2, the optimal control variables read:

�?
m
= �[0;A]

$ �b

��m + �b.� + �m/

É
i=1;2

T

Ê
0

Ê
�m

(�ui � (�vi +
�

��m + �b.� + �m/

É
k=m;b

É
i=1;2

T

Ê
0

Ê
�k

(�ui � (�vi

%
; (2.12)

�?
b
= �[0;B]

$� + �m
�

�?
m
*
1

�

É
i=1;2

T

Ê
0

Ê
�m

(�ui � (�vi

%
; (2.13)
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3 NUMERICAL APPROXIMATION

�?
r
= �[0;C]

$
1

�r

É
i=1;2

T

Ê
0

Ê
�r

(�ui � (�vi

%
: (2.14)

From a numerical point of view, we have rather opted for the use of a gradient-based optimization algorithm instead of an

exact evaluation of the control parameters. This turned out to be more stable and it requires the evaluation of the Lagrangian

gradient against the control variables as detailed afterwards.

3 NUMERICAL APPROXIMATION

In this section, we describe the solution method based on a second-order time discretization and the numerical algorithm. Let us

divide [0; T ] intoN +1 subintervals [tn; tn+1/, with n = 0;5 ; N of constant step �t. For any n Î 1, we denote by un
1
, un

2
, vn

1
and

vn
2
the approximations of u1, u2, v1 and v2 at time step n , respectively. We apply a gradient descent algorithm with an adapted

step length yielding a sequence of approximations to the optimal solutions and optimal key parameters. For each iteration k Î 0

of the gradient method, we solve forward and inverse problems SP and AP using a fully implicit scheme.

For any n Ë [1; N + 1] and k > 0, the approximations of the state unknowns u
k;n

1
and u

k;n

2
are computed by induction, using

values at previous time steps. Similarly, for any n Ë [0; N], the adjoint unknowns v
k;n

1
and v

k;n

2
are computed by induction, using

values at next time steps. For i Ë ^1; 2`, the scheme is bootstrapped by initial conditions (2.3-2.4) u*1
i

= u0
i
= ui;0 and terminal

conditions (2.10-2.11) vN+2
i

= vN+1
i

= vi.T /, where u
*1
i

and vN+2
i

only stand for convenient notations.

For each iteration k of the gradient method, the backward di�erentiation scheme of second order, referred to as BDF2, is used

for the time derivative terms. For any n Ë [0; N] and k > 0, and given the control variables �k
j
with j Ë ^m; b; r`, the state

unknowns u
k;n+1

1
and u

k;n+1

2
are computed and the semi-discrete approximation in time of the forward problem reads

Ê
�

3u
k;n+1
i

* 4u
k;n

i
+ u

k;n*1
i

2�t
� + Ê

�

�
�k
m
�m + �

k
b
�b + �

k
r
�r
�
(�u

k;n+1
i

� (�� + Ê
�

1

"
�iu

k;n+1
i

� = 0; Å� Ë H1.�/:

The numerical solution of the adjoint problem is computed backward in time starting from the �nal time t = T . By change of

variable � � T * t Ë .0; T /, we obtain
)

)�
= *

)

)t
and the terminal condition becomes an initial condition. A similar numerical

scheme is used in the semi-discrete time approximation of the adjoint system. For any n Ë [1; N + 1] and given u
k;m

1
, u

k;m

2
, �k

m
,

�k
b
and �k

r
, with m Ë [1; N + 1], the semi-discrete adjoint problem consists in �nding v

k;n*1

1
and v

k;n*1

2
such that

Ê
�

3v
k;n*1
i

* 4v
k;n

i
+ v

k;n+1
i

2�t
� + Ê

�

�
�k
m
�m +�k

b
�b + �

k
r
�r
�
(�v

k;n*1
i

� (�� + Ê
�

1

"
�iv

k;n*1
i

� =

É
l=m;b

É
j=1;2

�l;j

H T

Ê
0

Ê
�l

uk
i
*

T

Ê
0

Ê
�l

Fl;jui;0

I
�l�; Å� Ë H1.�/:

Regarding the �nite element space discretization, a high-order �nite element approximation using P�.K/, with � Î 1 and

K Ë Th is used for the state and adjoint variables .

At the computational level, some stability issues are encountered when using an exact evaluation of the optimal controls

(2.12-2.13-2.14) at each optimization iteration. Therefore, we have rather used a gradient-based optimization algorithm. That

requires the evaluation of the gradient of the Lagrangian with respect to the control variables. Provided with an initial guess

for the controls �0
m
, �0

b
, and �0

r
and a starting value for the descent length, the control variables are updated along the gradient

direction using an adapted step length �k as follows (3.1-3.2-3.3).

GU
�
�k
m
; �k

b
; �k

r

�
: For k > 0, given

�
uk*1
i
; vk*1
i

�
with i Ë ^1; 2` and �k*1

j
with j Ë ^m; b; r`, compute:

�k
m
= �[0;A]

<
�k*1
m

* �k
�
�m�

k*1
m

+ �
�
�k*1
m

* �k*1
b

�
*
É
i=1;2

T

Ê
0

Ê
�m

(�u
k*1
i

� (�v
k*1
i

�=
; (3.1)
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3 NUMERICAL APPROXIMATION

�k
b
= �[0;B]

<
�k*1
b

* �k
�
�b�

k*1
b

+ �
�
�k*1
b

* �k*1
m

�
*
É
i=1;2

T

Ê
0

Ê
�b

(�u
k*1
i

� (�v
k*1
i

�=
; (3.2)

�k
r
= �[0;C]

<
�k*1
r

* �k
�
�r�

k*1
r

*
É
i=1;2

T

Ê
0

Ê
�r

(�u
k*1
i

� (�v
k*1
i

�=
: (3.3)

We proceed with an adaptation strategy for the step length �k to ensure the decrease of the cost functional. Indeed, the step

length is rejected and therefore decreased in the case where the cost functional does not decrease. Control variables are only

updated if the step length is accepted, while we exit the algorithm if � drops below a threshold value ��. The gradient descent

iterations are repeated until the relative change in the cost functional becomes smaller than a given tolerance �J . Convergence

is achieved at iteration k > 0 if

err �
óóóJ k * J k*1óóóóóóJ k*1óóó < �J ; with J k � J �

uk
iË^1;2`

;�k
jË^m;b;r`

�
:

The pseudo-code of the overall iterative scheme is detailed in Algorithm 1.

Algorithm 1 Strategy of the optimal control problem

1: Set k} 0, err } 2�J
2: Let .u1;0; u2;0/ be the known initial condition, and

�
�0
m
; �0

b
; �0

r

�
be the initial guess

3: for n = 0;5 ; N � T

�t
do

4: Solve SP
�
u
0;n+1

1
; u

0;n+1

2

�
with u

0;0
i

= ui;0 (initialization)

5: end for

6: Evaluate J 0

7: while err Î �J do

8: � } 6�_5

9: for n = N + 1;5 ; 1 do

10: Solve AP
�
v
k;n*1

1
; v
k;n*1

2

�
using u

k;N+1

1
and u

k;N+1

2
for terminal conditions

11: end for

12: k} k + 1

13: Compute GU
�
�k
m
; �k

b
; �k

r

�
14: for n = 0;5 ; N do

15: Solve SP
�
u
k;n+1

1
; u
k;n+1

2

�
with u

k;0
i

= ui;0

16: end for

17: Evaluate J �
uk
iË^1;2`

;�k
jË^m;b;r`

�
18: while J k > J k*1 do

19: � } 3�_4

20: if � < �� then return "Algorithm stagnated"

21: end if

22: Re-compute GU
�
�k
m
; �k

b
; �k

r

�
23: for n = 0;5 ; N do

24: Re-solve SP
�
u
k;n+1

1
; u
k;n+1

2

�
with u

k;0
i

= ui;0

25: end for

26: Re-evaluate J �
uk
iË^1;2`

;�k
jË^m;b;r`

�
27: end while

28: err }
ðJ k * J k*1ððJ k*1ð

29: end while

8



4 NUMERICAL RESULTS

4 NUMERICAL RESULTS

In what follows, we provide a set of numerical examples to test the performance of the �nite element method described above,

with the ultimate goal of investigating numerically the barrier index theory.

The method has been implemented using the free software Rheolef44, which represents a general purpose C++ library for

scienti�c computing with special emphasis on �nite elements and parallel computing. The parallelism relies upon MPI5, while

MUMPS is used for factorization and as direct solver on distributed-memory architectures. It relies also on the Boost6, Blas7,

Scotch8, and UMFPACK9 libraries for much of its functionalities. Results are displayed graphically using Paraview10 and

Gnuplot11. The computations are performed on a workstation with an Intel R© Core TM i7-4790 (3.6 GHz) processor.

mesh size h

2

3

4

5

‖uh − πhu‖0,2,Γ
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1
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10−6

10−9

10−12
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mesh size h

2

3

4

5

‖uh − πhu‖0,∞,Γ

10−110−2

1

10−3
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Figure 3 Example 1: Convergence study in the normsL2.�/ (Top),H1.�/ (Bottom left) andLØ.�/ (Bottom right) for high-order

polynomial approximations P� and high-order curved surface meshes. The logarithmic scale is used.

4.1 Example 1

The purpose of this example is to validate the resolution of the direct problem, mainly the assembly of surface operators for

the numerical solutions of elliptic surface partial di�erential equations. We consider a test case presented in45 and investigate

numerically the convergence properties of the solution. The problem consists in solving:

u * ��u = �
�
3x2y * y3

�
in �; with � = *

13

8

u
35

�
:

5Message Passing Interface - http://www.mpich.org
6Boost libraries - http://www.boost.org
7Basic Linear Algebra Subprograms library - http://www.netlib.org/blas
8Scotch - http://www.labri.fr/perso/pelegrin/scotch
9Umfpack routines - http://www.cise.u�.edu/research/sparse/umfpack/
10Paraview - http://www.paraview.org
11Gnuplot - http://www.gnuplot.info

9
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4.2 Example 2: Optimal control simulations in simpli�ed geometry 4 NUMERICAL RESULTS

Figure 4 Example 2: Idealized and simpli�ed geometry of yeast ER highlighting in red the mother, bud, bud neck and

photobleaching areas, respectively.

The geometry is the unit sphere
�
x Ë R3 : ðxð = 1



and the exact solution is given by:

u.x/ = �
ðxð2

12 + ðxð2 �3x2y * y3� :
We study the spatial accuracy for high-order �nite element approximations by computing the error in the norms L2.�/,H1.�/

and LØ.�/ of the computed solution uh on successively re�ned meshes with respect to the reference exact solution �hu, where

�h is the Lagrange interpolation operator in the corresponding �nite element space.

The decrease in errors with respect to mesh size and convergence rates are shown in Fig. 3. Results depict the conformity

between numerical and exact solutions for several polynomial �nite element approximations. For example, forP3 Lagrange �nite

elements, the experimental order of convergence is 4 in the L2.�/ norm, whereas it is equal to 3 in theH1.�/ norm. The results

matches the theoretical error estimates ôôuh * �huôô0;2;� < Ch�+1 and ôôuh * �huôô1;2;� < Ch� , where C represents a constant,

h = max
KËTh

diameter.K/ represents the mesh size, and � is the degree of the polynomial approximation with � Ë ^1; 2; 3; 4`, see45.

4.2 Example 2: Optimal control simulations in simpli�ed geometry

In this example, we perform a numerical validation of the proposed method in the case of simpli�ed geometry and data. To

that end, we consider an idealized geometry encompassing the convex envelopes of the mother and bud cortex, and we generate

successively re�ned semi-regular meshes. We assume that photobleaching is only applied to the bud domain and consider the

Figure 5 Example 2: Snapshots showing the computed �uorescence loss kinetics at optimal state for times t Ë ^10; 70; 170; 340`

with a mesh h = 4 � 10*3. Top: �m;2 = �b;2 = 2 � 104, 
m;2 = 
b;2 = 0. Bottom: �m;2 = �b;2 = 0, 
m;2 = 
b;2 = 108.

10



4 NUMERICAL RESULTS 4.2 Example 2: Optimal control simulations in simpli�ed geometry

k = 3.5× 103
k = 3.5× 103

Γb

Γm

Time [s]

N
or

m
al

iz
ed

in
te

ns
ity

[%
]

Loss of fluorescence

300250200150100500

100

75

50

25

0

k = 3.5× 103
k = 3.5× 103

Γb

Γm

Time [s]

N
or

m
al

iz
ed

in
te

ns
ity

[%
]

Loss of fluorescence

300250200150100500

100

75

50

25

0

Jαb,2

Jαm,2

Jδ

J

Iteration k

Energy minimization

3× 1032× 1031030

1012

1010

108

106

104

102
Jγb,2

Jγm,2

Jδ

J

Iteration k

Energy minimization

3× 1032× 1031030

1012

1010

108

106

104

102

1

10−2

µr

µb

µm

Iteration k

Model’s parameters

3× 1032× 1031030

0.25

0.2

0.15

0.1

µr

µb

µm

Iteration k

Model’s parameters

3× 1032× 1031030

0.2

0.15

0.1

0.05

Figure 6 Example 2: Numerical results of the optimal control with the desired states enforced over the entire time period (Left:


m;2 = 
b;2 = 0) and with the desired states at the �nal time T (Right: �m;2 = �b;2 = 0). Top: loss of �uorescence over time at

particular iterations k. Center: minimization of the functional cost. Bottom: convergence of key model parameters.

corresponding experimental measurements of �uorescence loss. We de�ne the di�erent subdomains as shown in Fig. 4. Hence,

the forward problem consists in �nding u2 satisfying (2.2-2.4), with �m;1 = �b;1 = 
m;1 = 
b;1 = 0 in (2.6).

To test the robustness of the algorithm and study the di�erent choices of the energy to be minimized, we consider two di�erent

sets of parameters, so that we minimize the di�erence between the solution and the targets either over the entire time interval

or at the �nal instant, respectively. In the �rst experiment, we consider h = 0:043, " = 10*10, P1 Lagrange polynomials,

�m;2 = �b;2 = 2 � 104, 
m;2 = 
b;2 = 0, � = 1013, �m = �b = �r = 1, and �0
m
= �0

b
= �0

r
= 0:1. For the optimal control with

desired states at the �nal time, we choose h = 0:043, " = 10*10, P1 Lagrange polynomials, �m;2 = �b;2 = 0, 
m;2 = 
b;2 = 108,

� = 1012, �m = �b = �r = 1, and �0
m
= �0

b
= �0

r
= 0:05. We run the optimal control algorithm for t Ë .0; T = 349/ until

convergence is reached. The time evolution of �uorescence loss kinetics is displayed in Fig. 6 (top) for several values of the

iteration k, showing slightly di�erent kinetics as we enforce the matching with the data in di�erent ways. In Fig. 6 (top right),

11
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Figure 7 Example 2: Modi�cation of estimates of control variables and optimal control solution for di�erent choices of starting

values for key parameters. Simulation parameters: �m;2 = �b;2 = 0, 
m;2 = 
b;2 = 108, � = 1012, �m = �b = �r = 1.

the iterative procedure converges and allows estimating the optimal parameters so that the solution corresponds to the target

kinetics at �nal time T . In Fig. 6 (center), we plot using a semi-logarithmic scale the decrease of the cost functional as a function

of the number of iterations for the two experiments, where J� represents the energy term weighted by � in (2.6) (similarly for

the other terms). A �rst phase characterized by a rapid decrease is followed by a plateau characterizing convergence, where the

optimal objective values are respectively 2:17 � 109 and 8:83 � 106. We also veri�ed that the control parameters also converge;

Fig. 6 (bottom) shows a rapid increase from the starting values with a following plateau with �m ù �b. The estimated optimal

sets of key parameters are �m = 0:232; �b = 0:229; �r = 0:124 in the �rst test case, while �m = 0:195; �b = 0:195; �r = 0:078

in the second case. Using the optimal parameters found, Fig. 5 provides snapshots of the numerical solution at the same times

for the two aforementioned cases.

Sensitivity of the optimal control solution to the initial guesses:

We now investigate the sensitivity of the optimal control solution to the choice of starting values of the key parameters �m; �b
and �r. We set h = 0:043 and use a P1 �nite element approximations. The cost functional parameters are �m;2 = �b;2 = 0,


m;2 = 
b;2 = 108, delta = 1012, �m = �b = �r = 1 so that more emphasis is placed on the solution matching targets at

the �nal time T . We run several simulations for di�erent choices of the starting values of the model parameters. Fig. 7 plots

the changes in �m, �b, the objective functional J and the loss of �uorescence in �m and �b, showing that the optimal control

solution is relatively insensitive to changes in the initial guesses. As expected, choosing a relatively far initialization of the model

parameters results in slower convergence. Indeed, convergence is reached after 250 iterations for �0
m
= �0

b
= �0

r
= 0:05, whereas

it is reached after 1500 iterations for �0
m
= �0

b
= �0

r
= 1.
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Figure 8Example 2: Change in the estimates of control variables and cost functional for higher-order �nite elements. Parameters:

�m;2 = �b;2 = 0, 
m;2 = 
b;2 = 108, � = 1012, �m = �b = �r = 1 and �0
m
= �0

b
= �0

r
= 0:05.

Convergence study for higher-order �nite element approximations:

In this test case, we study the sensitivity of the optimal parameters to the choice of the �nite element approximation. Let us

consider higher-degree Lagrange polynomials P� ; � Î 1 and study the estimated optimal solutions with respect to the total

number of degrees of freedom, referred to as Dof, for a �xed number of mesh elements.

For all simulations, we consider the following parameters: �m;2 = �b;2 = 0, 
m;2 = 
b;2 = 108, � = 1012 and �m = �b = �r = 1.

The time step size is chosen small enough not to in�uence substantially the overall accuracy. The time horizon is .0; T = 349/.

The evolution of the model parameters and the evolution of the energy cost with respect to the number of iterations are provided

in Fig. 8, showing an overall convergence for higher degrees. The table 1 reports the optimal quantities calculated at convergence

for higher polynomial degrees as well as the corresponding reference values, obtained by numerical continuation.

P� Dof �?
m
.k�Ø/ �?

b
.k�Ø/ �?

r
.k�Ø/ J ?.k�Ø/

P1 2407 0.195178 0.194918 0.0784062 8.83096E+6

P2 9622 0.201067 0.200895 0.0977545 4.98737E+6

P3 21647 0.202328 0.202163 0.102388 3.89932E+6

P4 38492 0.203342 0.203204 0.101571 2.89142E+6

P5 60127 0.204080 0.203959 0.103173 2.23366E+6

Reference values 0.206645 0.206725 0.102447 1.51009E+6

Table 1 Example 2: Convergence history for higher-order �nite element approximations using P� with � Î 1.
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Spatial convergence study:

Hereafter, we carry out a quantitative convergence study of the method with respect to the reference solution qt,ref obtained by

�tting the available measurement data. Let NTS design the number of time steps in each numerical simulation. We introduce

the relative error corresponding to the temporal evolution of the quantity qt and its rate of convergence as follows:

ñehñ�b;2
=

H
NTSÉ
t=1

ðqt,ref * qt;hð2
I1_2

; with qt = Ê
�b

u2.t; :/ and ROC =
log10

�ñehñ�b;2

�
log10 .h/

:

The parameter h represents an average mesh size within a given mesh re�nement level, while qt;h is an approximation of q using

Th. For di�erent values of NTS, we appropriately consider the standard linear interpolation applied to the solution qt. The results

in the table 2 show that the aforementioned quantity converges with a more than linear order of convergence in the norm l2.

h Dof �?
m
.k�Ø/ �?

b
.k�Ø/ �?

r
.k�Ø/ ROC

0.094 1450 0.17493 0.17427 0.07649 2.77

0.060 2634 0.18637 0.18594 0.06838 2.33

0.043 4810 0.19538 0.19512 0.07592 2.08

0.038 7262 0.19930 0.19912 0.07714 1.85

0.029 12556 0.20756 0.20755 0.08490 1.65

0.019 26692 0.21499 0.21509 0.09372 1.53

0.014 28348 0.21669 0.21682 0.09342 1.53

0.009 102084 0.22317 0.22343 0.10016 1.37

0.007 150522 0.22501 0.22531 0.10168 1.31

0.004 368908 0.22799 0.22836 0.10386 1.19

Reference values 0.2305 0.2309 0.1084 �

Table 2 Example 3: Convergence history of same outputs with respect to spatial resolution. Simulation parameters:P1 Lagrange

polynomials, �m;2 = �b;2 = 0, 
m;2 = 
b;2 = 108, � = 1012, �m = �b = �r = 1, and �0
m
= �0

b
= �0

r
= 0:05.

4.3 Example 3: Di�usion barrier in yeast endoplasmic reticulum

This test case concerns the numerical investigation of the empirical conclusions of the compartmentalization by di�usion barrier,

where the optimization is performed over the time interval of each FLIP experiment. We perform numerical calculations using

the data-driven model to investigate key model parameters in di�erent cellular compartments, paying particular attention to

the change in the cost functional. The e�ect of compartment size ratio on �uorescence kinetics will be explored afterwards in

Example 4.

In this regard, we consider the setting and measurements of the aforementioned series of FLIP experiments described in

Subsection 2.1, where photobleaching is either applied at the mother or bud compartments. The simulations are performed

using a realistic unstructured ER mesh of nearly regular triangular elements. We choose an initial guess �0
m
= �0

b
= �0

r
= 0:43

for the key parameters. We set the penalty parameter equal to " = 10*10, while the Tykhonov regularization coe�cients are

�m = �b = �r = 1.

The optimal control algorithm provided satisfactory results illustrating the convergence of the iterative procedure. Moreover,

we follow the decay of the objective functional J k with respect to the number of descent gradient iterations in Fig. 10 (left).

The graph shows a rapid decrease in cost in an initial phase, followed by a horizontal plateau reached when the minimum is

reached; That corresponds to the optimal objective functional obtained with the estimated optimal parameters.
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4 NUMERICAL RESULTS 4.3 Example 3: Di�usion barrier in yeast endoplasmic reticulum

Figure 9 Example 3: Flipping in mother compartment. Snapshots showing �uorescence kinetics loss in numerical simulations

with optimal model's parameters at times t Ë ^5; 15; 20; 50; 80; 110; 250; 355`.

The evolution of the adapted step length �k with respect to the number of iterations is reported in Fig. 10 (right). It shows in

a �rst phase several �uctuations due to the adaptation of the step length to ensure the decrease of the cost functional, featuring

here a rapid decrease. Subsequently, the variations of J are small, leading to lower and lower values of �k until it becomes lower

than the tolerance threshold �� when convergence is reached.

The change of model parameters with respect to the number of iterations is provided in Fig. 12. At convergence, the estimated

model parameters are �?
m
= 0:661853, �?

b
= 0:661895 and �?

r
= 0:0312565. To characterize the speed of protein di�usion in

the ER membrane, the direct problem is then solved for both FLIP experiments using the estimated parameters. We evaluate

the normalized intensity values throughout the times periods from the simulated kinetics of �uorescence in both bleached and

unbleached cell compartments. We also show in Fig. 13 the target experimental data of the �uorescence signal over the speci�c

Iteration k

Cost functional Jk

5× 1032.5× 1030

1.5× 1014

1014

5× 1013

0

Iteration k

Step length λk

5× 1032.5× 103

10−3

10−5

10−7

Figure 10 Example 3: (Left) Convergence towards the optimal objective function value versus the gradient descent iteration

count k. (Right) Change in the step length � with respect to the iteration count. The logarithmic scale is used on the y axis.

Scaling coe�cients: � = 106, �k;j = 106 and 
k;j = 0 Åk Ë ^m; b` and j Ë ^1; 2`, and �m = �b = �r = 1. Starting values for key

parameters: �0
m
= �0

b
= �0

r
= 0:43.
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4.3 Example 3: Di�usion barrier in yeast endoplasmic reticulum 4 NUMERICAL RESULTS

Figure 11 Example 3: Flipping in bud compartment. Snapshots showing �uorescence kinetics loss in numerical simulations

with optimal model's parameters at times t Ë ^5; 15; 20; 50; 80; 110; 250; 355`.

measurement instants, together with its maximum and minimum values. This shows a good agreement between the numerical

results and the experimental measurements.

The estimated optimal control parameters satisfy �?
m
_�?

b
ù 1:0 and �?

m
_�?

r
ù 21:2. That is, the numerical results reveal that

the di�usion of the reporter protein is similarly fast in the mother and in the bud compartments. However, it is 21 times slower

in the barrier zone at the level of the bud neck. Numerical results are in agreement with the conclusions of many biologists that

a physical di�usion barrier exists between the main compartments, whereas the protein Sec61-GF moves at similar speeds in

the mother and bud compartments, see e.g.9. Consequently, the restricted di�usion in the bud neck region helps to slow the loss

of �uorescence in the unbleached compartment in each FLIP experiments. From a biological point of view, the bud neck area

features a speci�c morphology and contributes primarily, and among other things, to the retention of damage and aging factors

between the mother and daughter cell, as mentioned above. To our knowledge, this is the �rst numerical study quantitatively

µr

µb

µm

µ⋆
r

µ⋆
m ≈ µ⋆

b

Iteration k

Model’s parameters

5× 1032.5 × 1030

0.8

0.6

0.4

0.2

0

Figure 12 Example 3: Change in the estimates of control variables versus the iteration count k. Scaling coe�cients: � = 106,

�k;j = 106 and 
k;j = 0 for k Ë ^m; b` and j Ë ^1; 2`, and �m = �b = �r = 1. Initial guesses: �0
m
= �0

b
= �0

r
= 0:43.
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4 NUMERICAL RESULTS 4.4 Example 4: Barrier index and dependency on compartments' size ratio
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Figure 13 Example 4: Time evolution of the kinetics of �uorescence, obtained with the estimated optimal parameters, compared

to the experimental data. (Left) Photobleaching applied to mother cortex. (Right) Photobleaching applied to the bud. Error bars

indicate the standard deviation SD after averaging 20 di�erent data measurements. Mean , SD.

con�rming the di�usion barrier theory. However, we are still far from a high-�delity mathematical description characterizing

the intrinsic processes underlying such barriers.

4.4 Example 4: Barrier index and dependency on compartments' size ratio

Thereafter, we explore the e�ect of compartment size on �uorescence kinetics. An index of great importance to biologists is

the Barrier Index, referred to as BI. We �rst de�ne T1_2 as the time corresponding to a concentration equal to 50~ of the initial

concentration before photobleaching in a given compartment, as shown graphically in Fig 13. The BI represents the ratio of the

times required to lose 50~ of the �uorescence signal in the unbleached compartment compared to the bleached compartment.

An agreement in the calculation of the barrier index between the photobleached and unbleached compartments between the

numerical and experimental results is obtained. Remark that the BI reaches much higher values (18:22,1:90 experimentally and

18:572 numerically) when photobleaching is applied to the bud than when it is applied to the mother (7:76,2:27 experimentally

and 6:907 numerically), see Fig 14. The biologists rationalized that this might simply be due to the fact that the ER volume in

the bud is smaller than that in the mother cell, leading to a much more rapid depletion of the smaller compartment upon FLIP.
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Figure 14 Example 4: Bar chart representing the T1_2 of the unbleached compartment over the T1_2 of the bleached compartment

in the experimented in comparison to the simulated data. Mean , SD.
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4.4 Example 4: Barrier index and dependency on compartments' size ratio 4 NUMERICAL RESULTS

Figure 15Example 4: (Left) ERmesh featuring a size of the bud nearly identical to the size of themother cell. (Right) Segmented

realistic realistic geometry of the yeast ER.

In order to test whether this explanation indeed explains the yeast observations, the dependence between the compartment

size ratio and the barrier index is studied numerically. We calculate how the observed BI would change when the relative volume

of mother and bud is allowed to vary. Using the segmented ER geometry, we generate di�erent meshes without changing the

ER organization in the mother cortex but where the bud is increasingly bigger, until reaching almost the size of the mother

compartment, see Fig 15. The surface meshes are subsequently remeshed in order to optimize the quality of the mesh for carrying

out �nite element calculations.

We consider the optimal parameters �?
m
, �?

b
and �?

r
found previously. Parallel FLIP experiments were then simulated in

each of these meshes, FLIPing either the mother or the bud compartment. In each geometry, the values of the BI obtained by

photobleaching in the mother and in the bud are then compared. Whereas the ratio between the BI in the bud divided by the BI

in the mother is high as long as the bud domain is signi�cantly smaller than the mother cell, this ratio becomes close to 1 as the

size of the bud approaches the size of the mother, see Fig. 16. A noticeable consequence is that, at least in budding yeast cell,

the di�erence in BI depending on the place of photobleaching re�ects the fact that (i) the ER membrane is compartmentalized

and (ii) one compartment is smaller than the other.

BIbud

BImother
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∣∣ /
∣∣Γb

∣∣
43210

4

3
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0

Figure 16 Example 4: Change in the ratios BIbud/BImother when the size of the bud increases relative to the size of the mother.

It tends to 1 for similar sizes of ER compartments.
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5 CONCLUSIONS

This contribution presents a numerical framework for the modeling of the kinetics of �uorescently tagged molecules on the

endoplasmic reticulum in asymmetrically dividing yeast cell. Using the Fluorescence Loss In Photobleaching technique, exper-

iments are carried out in laboratory and provide measurement data on the decrease in the level of �uorescence in the di�erent

cellular compartments. To study the anisotropic molecular di�usion, we present a data-driven model based on the use of partial

di�erential equations constrained optimization. Optimality conditions are derived and a gradient descent algorithm is used to

estimate the di�usion parameters in the di�erent cellular compartments. We address the main features of the method and we

provide numerical simulations with the aim of providing numerical evidence of compartmentalization in the ERmembrane. Our

computational model supports some biological conclusions indicating that the exchange of membrane proteins between mother

and bud compartments is very slow, almost 20 times slower, compared to the di�usion of proteins into each compartment due

to some surface di�usion limitations at the bud-neck zone.

This compartmentalization is also conserved in a broad range of cellular contexts, such asmouse neural stem cells and the early

C. elegans embryo, and contributes to processes as diverse as the con�nement of protein aggregates during aging and the pattern-

ing of developing embryos. Further improvements are needed to better explore the compartmentalisation in budding cells, while

accounting for high �delity mathematical descriptions. This is part of an ongoing work to explore concordant hypotheses for

anisotropic exchange of ER proteins in yeast and cardiac myocytes46, with a more accurate mathematical formalism accounting

for uncertainty quanti�cation in the solution and the sensitivity of data noise on model parameters.
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