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Abstract

We consider the coupled propagation of an optical field and its second harmonic in a quadratic nonlinear medium governed by a

coupled system of Schrodinger equations. We prove the existence of ring-profiled optical vortex solitons appearing as solutions

to a constrained minimization problem and as solutions to a min-max problem. In the case of the constrained minimization

problem solutions are shown to be positive but the wave propagation constants undetermined, but in the min-max approach the

wave propagation constants can be prescribed. The quadratic nonlinearity introduces some interesting properties not commonly

observed in other coupled systems in the context of nonlinear optics, such as the system not accepting any semi-trivial solutions,

meaning, that optical solitons cannot be observed when, say, one of the beams are off. Additionally, the second harmonic always

remains positive.
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Abstract

We consider the coupled propagation of an optical field and its second harmonic
in a quadratic nonlinear medium governed by a coupled system of Schrodinger
equations. We prove the existence of ring-profiled optical vortex solitons appearing
as solutions to a constrained minimization problem and as solutions to a min-max
problem. In the case of the constrained minimization problem solutions are shown
to be positive but the wave propagation constants undetermined, but in the min-
max approach the wave propagation constants can be prescribed. The quadratic
nonlinearity introduces some interesting properties not commonly observed in other
coupled systems in the context of nonlinear optics, such as the system not accepting
any semi-trivial solutions, meaning, that optical solitons cannot be observed when,
say, one of the beams are off. Additionally, the second harmonic always remains
positive.

2010 Mathematics Subject Classification. 35J20, 35J50, 35Q55, 35Q60.
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Smale condition, mountain-pass theorem.

1 Introduction

Nonlinear optics, which studies the effects of solitary waves due to optical propagation
in a nonlinear medium is a very active area of investigation in both theoretical and ex-
perimental research. Its applications are abound in nonlinear science and can be found
in quantum information processing, wireless communications, condensed matter physics,
particle interactions, and cosmology [1, 2, 6, 8, 14, 31, 33, 32, 35, 37].

Our interests is in the work of Skryabin and Firth [16, 17], which presents the dynamics
and stability of ring-profiled solitary waves propagating in a self-focusing saturable non-
linear medium and in a quadratic non-linear medium. In [18, 19], we established an exis-
tence theory in two cases where the non-linearity is of the saturable type and governed by
a single nonlinear Schrodinger equation. Similar analysis for other types of non-linearities
have also been considered, say, cubic [24, 27] and cubic-quintic [12]. In this study, our
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interest is the coupled propagation of the wave and its second harmonic governed by a
coupled nonlinear system of Schrodinger equations with a quadratic non-linearity. Such
coupled systems form so called soliton-induced waveguides [9, 10, 13, 20, 21, 34, 36] and
have been studied significantly by mathematical analysts [3, 4, 7, 22, 38]. In the case of
two mutually incoherent optical beams propagating in a self-focusing nonlinear saturable
medium [34], optical vortex solitons exists, say, even if one beam is off, which translates to
the existence of semi-trivial solutions in the mathematical context. However, we show that
the coupled system with quadratic nonlinearity does not allow any semi-trivial solutions
and establish an existence theory for this system.

To this end, consider the field envelopes E1 and E2 of an optical field and its second
harmonic described by the dimensionless coupled nonlinear Schrodinger equations [16, 17]:

i∂zE1 +
1

2
~∇2
⊥E1 + E∗1E2 = 0 (1.1)

i∂zE2 +
1

4
~∇2
⊥E2 +

1

2
E2

1 = βE2, (1.2)

where β is the phase mismatch parameter. The wave propagation is in the longitudinal
z-direction over the transverse plane of coordinates (x, y) perpendicular to the z-axis. ~∇2

⊥
is the Laplace operator over the transverse plane of coordinates. Optical vortex solitons
are localized solutions of (1.1)-(1.2), which do not change their intensity profile during
propagation and with a phase singularity at its center, and described under the ansatz

Ej = Aj(r)e
im(lθ+κz), j = 1, 2. (1.3)

l is the azimuthal model index or a free parameter, which we will call the vortex number
and is restricted to take on integer values to ensure azimuthal periodicity. κ is the wave
propagation constant. r =

√
x2 + y2 and θ is the polar angle. Under the ansatz (1.3),

the coupled nonlinear Schrodinger equations reduce to the so called l-vortex system,

A1,rr +
1

r
A1,r −

l2

r2
A1 = 2(κ− A2)A1, (1.4)

A2,rr +
1

r
A2,r −

4l2

r2
A2 = 4(2κ+ β)A2 − 2A2

1, (1.5)

and considered under the boundary conditions

A1(0) = 0 = A1(R), A2(0) = 0 = A2(R), (1.6)

where the first boundary condition, Aj(0) = 0, j = 1, 2, is due to the presence of the
vortex core or, equivalently, the regularity of Aj, j = 1, 2, at r = 0, and the second
boundary condition, Aj(R) = 0, j = 1, 2, for R > 0 sufficiently large, represents the
distance from the vortex core and may be imposed due to beam confinement.

An important parameter characterization of spatial vortex solitons is defined by the
integral

Q(Aj) =

∫ R

0

|Ej|rdrdθ = 2π

∫ R

0

A2
jrdr, j = 1, 2, (1.7)
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where we refer to Q as the energy flux and Q(A1) + 2Q(A2) is the total energy flux of the
system. We define the energy functional

E(A1, A2) =

∫ R

0

(
A2

1,r + A2
2,r +

A2
1

r2
+
A2

2

r2
+ A2

1A2

)
rdr, (1.8)

and refer to solutions as being of finite energy whenever E(A1, A2) <∞.
Our specific interest is in establishing the existence of finite energy fully non-trivial

exponentially decaying solution pairs, (A1, A2), of the system (1.4)-(1.6). By fully non-
trivial solutions, we mean solutions that are not the trivial solution, (0, 0), and not semi-
trivial, meaning, (A1, A2), where neither A1 ≡ 0 or A2 ≡ 0. To this end, we summarize
our main results with the following theorems,

Theorem 1.1 Let the azimuthal model index, l, be any nonzero integer and consider
the boundary value problem (1.4)-(1.6) governing the amplitude of the optical field and
its second harmonic propagating along the longitudinal z-direction with a propagation
constant κ and a phase mismatch constant β. For 0 < Q(A1) := Q1 < 2π|l| and any
Q(A2) := Q2 > 0, there exists a solution pair (A1, A2) with Aj(r) > 0, r ∈ (0, R), j = 1, 2,
and κ, β ∈ R arising as Lagrange multipliers of a constrained optimization problem.

Theorem 1.2. Let κ > max{0,−β/2} and (A1, A2) be a nontrivial solution pair to
(1.4)-(1.6).

(i) The second harmonic A2 is always positive, i.e., A2(r) > 0 for all r ∈ (0, R).

(ii) There exist no semi-trivial solutions.

(iii) Let Mj := max
r∈(0,R)

|Aj(r)|, j = 1, 2. The global maximum of the second harmonic

satisfies

l2

2R2
+ κ < M2 <

M2
1

2l2

R2
+ 2(2κ+ β)

. (1.9)

(iv) There holds the exponential decay estimate

A2
1(r) ≤ C exp(−

√
2κr) and A2

2(r) ≤ C exp(−
√

2κ+ βr), (1.10)

for r sufficiently large and C > 0 a constant dependent on κ and β only.

Theorem 1.3. For any α > max{0,−β/2}, |l| ≥ 1, and R > 0, the coupled system
(1.4)-(1.5) satisfying the boundary conditions (1.6) has a fully non-trivial solution defined
over [0, R]. Moreover, such solution is a saddle point of an indefinite action functional
and appears as a result of a min-max approach.

The remainder of this paper is as follows. In section 2 we establish Theorem 1 via a
constrained optimization approach. Then various results concerning the solutions of the
coupled system, such as, the non-existence of semi-trivial solutions, the second harmonic
being positive and the exponential decay of the solutions are established in Section 3. In
section 4, we conclude with the prove of Theorem 1.3.
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2 Existence of Vortices via a Constrained Minimiza-

tion Problem

Here we prove that the boundary value problem (1.4)-(1.6) may be solved via a constrained
optimization problem. To achieve this, first consider the action functional

I(A1, A2) =
1

2

∫ R

0

(
A2

1,r +
1

2
A2

2,r +
l2

r2
A2

1 +
2l2

r2
A2

2 − 2A2
1A2

)
rdr, (2.1)

and energy flux constraint functionals

Q(A1) = 2π

∫ R

0

A2
1rdr = Q1 > 0 Q(A2) = 2π

∫ R

0

A2
2rdr = Q2 > 0. (2.2)

It then suffices to prove the existence of a solution to the constrained optimization prob-
lem,

min{I(A1, A2) : (A1, A2) ∈ C, Q(A1) = Q1 > 0, Q(A2) = Q2 > 0}, (2.3)

defined over the admissible class

C = {A1, A2 are absolutely continuous on [0, R], satisfy (1.6), E(A1, A2) <∞} . (2.4)

Applying the basic inequality 2ab ≤ a2 + b2, for all a, b ∈ R, to (2.1) and using the
constraint, Q(A2) = Q2 > 0, we have

I(A1, A2) ≥ 1

2

∫ (
A2

1,r +
1

2
A2

2,r +
l2

r2
A2

1 +
2l2

r2
A2

2 − A4
1

)
rdr − Q2

4π
. (2.5)

For any function satisfying A(0) = 0, the Cauchy-Schwartz inequality gives

A2(r) =

∫ r

0

2A(ρ)Ar(ρ)dρ ≤ 2

(∫ r

0

ρA2
ρ(ρ)dρ

)1/2(∫ r

0

1

ρ
A2(ρ)dρ

)1/2

. (2.6)

Multiplying by rA2 and integrating, we arrive at∫ R

0

rA4dr ≤ 2

(∫ R

0

rA2dr

)(∫ R

0

rA2
rdr

)1/2(∫ R

0

1

r
A2dr

)1/2

. (2.7)

Using Cauchy’s inequality with ε [11], the constraint Q(A1) = Q1 > 0, and (2.7), we get∫ R

0

rA4
1dr ≤

Q1

π

(∫ R

0

rA2
1,rdr

)1/2(∫ R

0

1

r
A2

1dr

)1/2

(2.8)

≤ ε

∫ R

0

rA2
1,rdr +

Q2
1

4π2ε

∫ R

0

1

r
A2

1dr. (2.9)

4



Consequently, using (2.9) in (2.5), we obtain

I(A1, A2) ≥ 1

2
(1− ε)

∫ R

0

rA2
1,rdr +

1

2

(
l2 − Q2

1

4π2ε

)∫ R

0

1

r
A2

1dr (2.10)

+
1

4

∫ R

0

rA2
2,rdr + 2l2

∫ R

0

1

r
A2

2dr −
Q2

2π
.

We can now choose ε > 0 such that the inequalities

1− ε > 0 and l2 − Q2
1

4π2ε
> 0 (2.11)

are simultaneously satisfied, which leads to

Q1 < 2π|l|. (2.12)

Consequently, assuming Q1 < 2π|l|, we then get the coercive lower bound

I(A1, A2) ≥ C1

∫ R

0

rA2
1,rdr + C2

∫ R

0

A2
1

r
dr +

1

4

∫ R

0

rA2
2,rdr + 2l2

∫ R

0

A2
2

r
dr − Q2

2π
, (2.13)

where C1, C2 are positive constants depending on ε, l, Q1, but independent of A1 and A2.
Consequently, we can now choose a minimizing sequence of (2.3), say, {(A1,m, A2,m)}∞m=1,

and applying the coercive lower bound (2.13) achieve the upper bound∫ R

0

(
r[A1,m]2r +

A2
1,m

r

)
dr +

∫ R

0

(
r[A2,m]2r +

A2
2,m

r

)
dr ≤ C, (2.14)

where C > 0 is a constant independent of m and we use the notation [A]r =
dA

dr
.

Using the fact that the distributional derivative [25] satisfies ||A|r| ≤ |Ar| and the
simple inequality −b ≥ −|b|, b ∈ R, we observe that I(|A1,m|, |A2,m|) ≤ I(A1,m, A2,m).
We also have that Q is an even functional so that Q(A) = Q(|A|). Therefore, we may
modified the sequence {(A1,m, A2,m)}∞m=1 such that each A1,m and A2,m are non-negative,
i.e., A1,m(r) ≥ 0 and A2,m(r) ≥ 0 for all r ∈ (0, R). So we assume {(A1,m, A2,m)}∞m=1 is a
sequence of non-negative valued functions. We can also view each of these functions as
radially symmetric functions defined over the disk DR = {(x, y) ∈ R2|x2 + y2 ≤ R2} and
vanishing on the boundary of DR. Moreover, from (2.14) and the inequality∫ R

0

rA2dr ≤ R2

∫ R

0

1

r
A2dr, (2.15)

we see that {(A1,m, A2,m)}∞m=1 is bounded under the radially symmetric norm defined by

||(A1, A2)||2 =

∫ R

0

(
A2

1,r + A2
2,r + A2

1 + A2
2

)
rdr, (2.16)
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over the product space H = W 1,2
0 (DR) × W 1,2

0 (DR) with the induced component-wise
operations of the standard Sobolev space W 1,2

0 (DR). Without loss of generality, we may
assume that the sequence (A1,m, A2,m) ⇀ (A1, A2) converges weakly in H as m → ∞.
From the compact embedding W 1,2(DR) ↪→ Lp(DR), for p ≥ 1, we get the strong con-
vergence (A1,m, A2,m) → (A1, A2) in Lp(DR) × Lp(DR) as m → ∞. It also follows that
(A1, A2) is a pair radially symmetric functions and satisfy A1(R) = 0 = A2(R).

We still need to show that A1(0) = 0 = A2(0). To this end, we observe that the
sequence {(A1,m, A2,m)}∞m=1 is bounded over the product space W 1,2(ε, R)×W 1,2(ε, R) for
any ε > 0. From the compact embedding of W 1,2(ε, R) ↪→ C[ε, R] we get the uniform
convergence of (A1,m, A2,m) → (A1, A2) defined over [ε, R] × [ε, R] as m → ∞. For any
pair r1, r2 ∈ (0, R), with r1 < r2, and j = 1, 2, we have

|A2
j,m(r2)− A2

j,m(r1)| =
∣∣∣∣∫ r2

r1

d

dr
(Aj,m(r))2 dr

∣∣∣∣ (2.17)

≤
∫ r2

r1

2|Aj,m(r)||[Aj,m]r(r)|dr

≤ 2

(∫ r2

r1

r[Aj,m]2r(r)dr

)1/2(∫ r2

r1

A2
j,m(r)

r
dr

)1/2

≤ 2C1/2

(∫ r2

r1

A2
j,m(r)

r
dr

)1/2

,

where the last inequality and C follows from (2.14). Taking the limit as m→∞ in (2.17),
we get

|A2
j(r2)− A2

j(r1)| ≤ 2C1/2

(∫ r2

r1

A2
j(r)

r
dr

)1/2

. (2.18)

From (2.14) and Fatou’s lemma, we have∫ R

0

r[Aj]
2
rdr ≤ lim inf

m→∞

∫ R

0

r[Aj,m]2rdr, (2.19)∫ R

0

A2
j

r
dr ≤ lim inf

m→∞

∫ R

0

A2
j,m

r
dr. (2.20)

Consequently, and in view of (2.14), 1
r
A2
j ∈ L(0, R) for each j = 1, 2. Hence, as r1, r2 → 0,

the right-hand side of (2.18) goes to zero and gives the existence of the limits

ξ1 = lim
r→0

A2
1(r), and ξ2 = lim

r→0
A2

2(r). (2.21)

Since 1
r
A2

1,
1
r
A2

2 ∈ L(0, R) we have ξ1 = 0 and ξ2 = 0. Therefore, A1(0) = 0 = A2(0) as
desired.

Summarizing our results, we have that (A1, A2) obtained as the limit of the minimizing
sequence {(A1,m, A2,m)}∞m=1 for the problem (2.3) satisfies Aj(0) = 0 = Aj(R), Aj(r) ≥ 0,
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for all r ∈ [0, R], j = 1, 2, E(A1, A2) <∞, and

I(A1, A2) ≤ lim inf
m→∞

I(A1,m, A2,m), Q(Aj) = lim
m→∞

Q(Aj,m) = Qj, j = 1, 2. (2.22)

Therefore, (A1, A2) is a solution to the coupled system (1.4)-(1.6) in which parameters
κ, β ∈ R appearing as Lagrange multipliers of the constrained minimization problem (2.3).

Moreover, such a solution (A1, A2) satisfies Aj(r) > 0, j = 1, 2. If this was not
the case, there would exists a point r0 ∈ (0, R) such that Aj(r0) = 0, j = 1, 2, then
d
dr
Aj(r0) = 0 since r0 would be a minimum of Aj(r). Then, by the uniqueness theorem

for the initial value problem of ordinary differential equations, we would have Aj(r) = 0
for all r ∈ (0, R), which is a contradiction to the beam power constraint Q(Aj) = Qj > 0,
j = 1, 2.

3 The second harmonic, non-existence of semi-trivial

solutions, and miscellaneous results

In this section we prove that the second harmonic is always positive, that the system
(1.4)-(1.6) possesses no semi-trivial solutions, establish estimates on the global max of
the waves, and obtain an exponential decay estimate. With this goal in mind, we provide
each result as an independent lemma which together form Theorem 1.2.

Lemma 3.1. Let κ > −β/2 and (A1, A2) be a non-trivial solution pair of (1.4)-(1.6).
The second harmonic A2 is always positive, i.e., A2(r) > 0 for all r ∈ (0, R).

Proof. Let A2 be a solution of (1.4)-(1.6) and suppose there is a point r0 ∈ (0, R) such
that A2(r0) < 0. Then there must exist a second point r1 ∈ (0, R) such that A2(r1) < 0,
A2,r(r1) = 0, and A2,rr(r1) > 0. Substituting into equation (1.5), we get

0 < A2,rr(r1) =

(
4l2

r2
1

+ 4(2κ+ β)

)
A2(r1)− 2A2

2(r1) < 0, (3.1)

a contradiction. Consequently, there is no r0 ∈ (0, R) such that A2(r0) < 0. �

Lemma 3.2. For κ > −β/2 and (A1, A2) be a non-trivial solution pair of (1.4)-(1.6).
Then (A1, A2) is not a semi-trivial solution, i.e., neither A1 ≡ 0 or A2 ≡ 0.

Proof. Let (A1, A2) be a nontrivial solution pair to (1.4)-(1.6), i.e., (A1, A2) 6≡ (0, 0).
Suppose A2 ≡ 0 and substitute into (1.5), to get 0 = A2

1(r) for all r ∈ [0, R]. Hence,
A1 ≡ 0, a contradiction to the non-triviality of the solution.

Suppose A1 ≡ 0 and substitute into (1.5) to get

A2,rr +
1

r
A2,r =

(
4l2

r2
+ 4(2κ+ β)

)
A2, (3.2)

7



and note that if A2 is a solution, then −A2 is also a solution. Thus there is an r0 ∈ (0, R)
such that A2(r0) > 0, A2,r(r0) = 0, and A2,rr(r0) < 0. Then (3.2), gives

0 > A2,rr(r0) =

(
4l2

r2
0

+ 4(2κ+ β)

)
A2(r0) > 0, (3.3)

a contradiction. Consequently, A1 6≡ 0. �

Lemma 3.3. Let κ > max{0,−β/2}, (A1, A2) be a nontrivial solution pair of (1.4)-(1.6),
and Mj := max

r∈(0,R)
|Aj(r)|, j = 1, 2. Then

l2

2R2
+ κ < M2 <

M2
1

2l2

R2
+ 2(2κ+ β)

. (3.4)

Proof. Suppose (A1, A2) is a nontrivial solution pair to (1.4)-(1.6). LetMj := max
r∈(0,R)

Aj(r),

j = 1, 2. By Lemma 3.1, A2(r) > 0 for all r ∈ (0, R). Then there is an r2 ∈ (0, R) such
that M2 = A2(r2) > 0, A2,r(r2) = 0, and A2,rr(r2) < 0. Inserting into equation (1.5) gives

0 > A2,rr(r2) =

(
4l2

r2
2

+ 4(2κ+ β))

)
M2 − 2A2

1(r2) (3.5)

or equivalently

M2 <
A2

1(r2)

2l2

R2
+ 2(2κ+ β)

≤ M2
1

2l2

R2
+ 2(2κ+ β)

. (3.6)

Suppose there is an r0 ∈ (0, R) such that A1(r0) > 0, then there will also be an
r1 ∈ (0, R) such that A1,rr(r1) < 0, A1,r(r1) = 0, and A1(r1) > 0. Substituting this r1 into
(1.4), then gives

0 > A1,rr(r1) =

(
l2

r2
1

+ 2(κ− A2(r1))

)
A1(r1) (3.7)

and it follows that

l2

2R2
+ κ < A2(r1) ≤M2. (3.8)

On the other hand, if there is an r0 ∈ (0, R) such that A1(r0) < 0, then there also is
an r1 ∈ (0, R) such that A1,rr(r1) > 0, A1,r(r1) = 0, and A1(r1) < 0. Consequently,
substituting into (1.4), gives

0 < A1,rr(r1) =

(
l2

r2
1

+ 2(κ− A2(r1))

)
A1(r1) (3.9)

8



and again it follows that

l2

2R2
+ κ < A2(r1) ≤M2. (3.10)

In either case, we get the desire inequality. �

Localized solutions and beam confinement demand that the wave amplitude decay
exponentially fast for large R. The following lemma shows that the exponential decay
estimate follows from a direct application of the maximum principle and a suitable com-
parison function.

Lemma 3.4. Let κ > max{0,−β/2} and (A1, A2) be a solution to (1.4)-(1.6). Then
there is an R0 ∈ (0, R) such that

A2
1(r) ≤ C exp(−

√
2κr) and A2

2(r) ≤ C exp(−
√

2κ+ βr), (3.11)

for every r ∈ (R0, R] and C > 0 a constant dependent on κ and β only.

Proof. Rewrite (1.4) as follows,

∆A1 = A1,rr +
1

r
A1,r =

(
l2

r2
+ 2(κ− A2)

)
A1. (3.12)

We then have

∆A2
1 ≥ 2A1∆A1 = 2

(
l2

r2
+ 2(κ− A2)

)
A2

1 ≥ 4 (κ− A2)A2
1. (3.13)

By the continuity of A1 on [0, R] and the boundary condition A1(R) = 0, for any ε1 > 0
there is an R1 ∈ (0, R) such that

∆A2
1 ≥ 4 (κ− ε1)A2

1 for every r ∈ [R1, R]. (3.14)

Consider the comparison function ξ1 : [0, R]→ R defined by

ξ1(r) = C1 exp(−σ2
1r), C1, σ1 > 0. (3.15)

For every r ∈ [R1, R] we have

∆(A2
1 − ξ1) ≥ 4 (κ− ε1)A2

1 −
(
σ2ξ − σ1ξ

r

)
≥ 4 (κ− ε)A2

1 − σ2
1ξ1. (3.16)

Let σ2
1 = 4(k − ε1), to get

∆(A2
1 − ξ1) ≥ σ2

1(A2
1 − ξ1). (3.17)
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Now we can choose C1 in (3.15) large enough so that A2
1 − ξ1 ≤ 0 for r = R1. Since

A1(r)→ 0 as r → R−, and applying the maximum principle, we conclude that A2
1−ξ1 ≤ 0

for all r ∈ [R1, R]. For simplicity, we choose ε1 = κ/2 > 0 and get our desired result

A2
1 ≤ C1 exp(−

√
2kr) for every r ∈ [R1, R], (3.18)

where C1 > 0 and R1 > 0 are constants depending on κ only.
In a similar manner as above, with the comparison function ξ2 : [0, R]→ R defined by

ξ2(r) = C2 exp(−σ2
2r), C2, σ2 > 0, (3.19)

we can arrive at

∆(A2
2 − ξ2) ≥ σ2

2(A2
2 − ξ2), (3.20)

where σ2
2 = 4(2κ + β). Then, via the maximum principle and C2, R2 sufficiently large,

conclude

A2
2 ≤ C2 exp(−2

√
2κ+ βr) for every r ∈ [R2, R], (3.21)

where C2 > 0 and R2 > 0 are constants depending on κ and β only. We may then take
C = max{C1, C2} and R0 = max{R1, R2}. �

4 Saddle Point Solutions via a Mountain Pass Theo-

rem

Theorem 1.1 establishes the existence of a non-trivial positive solution via a constrained
optimization problem, but the parameters κ and β were undetermined. In this section,
we prove Theorem 1.3 and show that a fully non-trivial solution exists as a saddle point
of an indefinite action functional where the wave propagation constant κ and its second
harmonic β may be prescribed on a continuous range of values. With this goal in mind,
consider the action functional

J(A1, A2) =
1

2

∫ R

0

(
A2

1,r +
1

2
A2

2,r +
l2

r2
A2

1 +
2l2

r2
A2

2

)
rdr (4.1)

+

∫ R

0

(
(κ− A2)A2

1 + (2κ+ β)A2
2 − A2

1A2

)
rdr,

with |l| ≥ 1 and

κ > max{0,−β/2}. (4.2)

Let H be the completion of the space X = {A ∈ C1[0, 1] : A(0) = 0 = A(R)} (the set of
differentiable functions over [0, R] which vanish at the two endpoints of the interval), with
the inner product and norm,

〈A, Ã〉 =

∫ R

0

{
ArÃr +

l2

r2
AÃ

}
rdr, ||A||2 = 〈A,A〉, (4.3)
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respectively. From

||A||2 =

∫ R

0

{
A2
r +

l2

r2
A2

}
rdr ≥

∫ R

0

{
A2
r +

l2

R2
A2

}
rdr ≥ C

∫ R

0

{
A2
r + A2

}
rdr, (4.4)

it follows that H is an embedded subspace of the standard Sobolev space defined over
the disc of radius R centered at the origin, W 1,2

0 (DR), and may be viewed as the space of
radially symmetric functions with the property A(0) = 0 for all A ∈ H. With H defined,
we may now consider the product space H = H × H with the induced component-wise
operations of W 1,2

0 (DR), inner product, and norm

〈(A1, A2), (Ã1, Ã2)〉 = 〈A1, Ã1〉+ 〈A2, Ã2〉 ||(A1, A2)||2H = ||A1||2 + ||A2||2, (4.5)

respectively.
The following two lemmas show that the functional (4.1) has a mountain pass structure

and is indefinite.

Lemma 4.1. There are constants K,C0 > 0 such that

inf
{
J(A1, A2) : ||(A1, A2)||2H = K

}
≥ C0. (4.6)

Proof. Let K > 0 be a constant and (A1, A2) ∈ H such that ||(A1, A2)||2H = K. From
(2.7), we get∫ R

0

rA4dr ≤ 2

(∫ R

0

rA2dr

)(∫ R

0

rA2
rdr

)1/2(∫ R

0

1

r
A2dr

)1/2

≤ 2R2K2. (4.7)

So,

J(A1, A2) ≥ 1

4
||(A1, A2)||2H −

∫ R

0

rA2
1A2dr (4.8)

≥ 1

4
||(A1, A2)||2H −

(∫ R

0

rA4
1dr

)1/2(∫ R

0

rA2
2dr

)1/2

(4.9)

≥ 1

4
K − (2R2K2)1/2(R2K)1/2 (4.10)

=
1

4
K −

√
2R2K3/2 := f(K). (4.11)

Then f

(
1

72R4

)
=

1

864R4
is the maximum value of f . Therefore, we have the lower

bound

J(A1, A2) ≥ 1

864R4
, ||(A1, A2)||2H =

1

72R4
, (4.12)

as desired. �
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Lemma 4.2. For any K > 0 there is an (A1, A2) ∈ H such that ||(A1, A2)||2H > K and
J(A1, A2) < 0. Moreover, J is indefinite on H.

Proof. Consider the following function

A0(r) =

{
b
a
r, 0 ≤ r ≤ a,

b
a
(2a− r), a ≤ r ≤ 2a,

, (4.13)

where R = 2a. It can be shown as in [24] that the function A0 is the limit of a Cauchy
sequence in H and, consequently, belongs in H. By direct calculation we get∫ 2a

0

rA2
0dr =

2

3
a2b2, (4.14)∫ 2a

0

rA2
0,rdr = 2b2, (4.15)∫ 2a

0

A2
0

r
dr = 2b2(2 ln(2)− 1), (4.16)∫ 2a

0

rA3
0dr =

1

2
a2b3. (4.17)

It then follows that

||(A0, A0)||2H = 8b2 ln(2), (4.18)

J(A0, A0) = b2

[
3

2
+ 3l2(2 ln(2)− 1) +

2

3
(3κ+ β)a2 − 1

2
a2b

]
. (4.19)

Therefore, for any K > 0, we can choose b large enough so that 8b2 ln(2) > K and
J(A0, A0) < 0. Additionally, J(A0, A0) → −∞ as b → ∞ and, consequently, J is indefi-
nite. �

We now prove that J satisfies the Palais-Smale condition. Note that it is straightfor-
ward to show that J is C1(H) and recall that a C1-functional J : H → R is said to be
Palais-Smale if for any sequence {(A1,m, A2,m)}∞m=1 ∈ H such that {J(A1,m, A2,m)}∞m=1is
bounded in H and J ′(A1,m, A2,m)→ 0 as m→∞ (as a sequence in the dual of H), implies
the existence of a strongly convergent sub-sequence of {(A1,m, A2,m)}∞m=1 converging to
an element (A1, A2) in H [26, 28].

Lemma 4.3. The action functional J defined by (4.1) is Palais-Smale.

Proof. Let {(A1,m, A2,m)} be a sequence in H such that

J(A1,m, A2,m) =
1

2

∫ R

0

(
[A1,m]2r +

1

2
[A2,m]2r +

l2

r2
A2

1,m +
2l2

r2
A2

2,m

)
rdr (4.20)

+

∫ R

0

(
κA2

1,m + (2κ+ β)A2
2,m − A2

1,mA2,m

)
rdr → α, m→∞,
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and

|J ′(A1,m, A2,m)(Ã1, Ã2)| ≤ δm||(Ã1, Ã2)||H, δm ≥ 0, (Ã1, Ã2) ∈ H, (4.21)

where δm → 0 as m→∞. Take (Ã1, Ã2) = (A1,m, A2,m) in (4.21) to arrive at

−(J ′(A1,m, A2,m)(A1,m, A2,m)) ≤ δm||(A1,m, A2,m)||H (4.22)

or equivalently∫ R

0

A2
1,,mA2,mrdr ≤

1

3

∫ R

0

(
[A1,m]2r +

1

2
[A2,m]2r +

l2

r2
A2

1,m +
2l2

r2
A2

2,m

)
rdr (4.23)

+
2

3

∫ R

0

(
κA2

1,m + (2κ+ β)A2
2,m

)
rdr +

1

3
δm||(A1,m, A2,m)||H.

Without loss of generality from (4.20) we can assume J(A1,m, A2,m) ≤ α + 1 for all
m = 1, 2, . . .. Using (4.23), we then get

α + 1 ≥1

6

∫ R

0

(
[A1,m]2r +

1

2
[A2,m]2r +

l2

r2
A2

1,m +
2l2

r2
A2

2,m

)
rdr (4.24)

+
1

3

∫ R

0

(
κA2

1,m + (2κ+ β)A2
2,m

)
rdr − 1

3
δm||(A1,m, A2,m)||H

≥ 1

12

∫ R

0

(
[A1,m]2r + [A2,m]2r +

l2

r2
A2

1,m +
l2

r2
A2

2,m

)
rdr (4.25)

− 1

3
δm||(A1,m, A2,m)||H

≥ 1

48
||(A1,m, A2,m)||2H −

4

3
δm, m = 1, 2, . . . , (4.26)

where in the last inequality we used Cauchy’s inequality with ε [11] and, consequently, we
get that {(A1,m, A2,m)}∞m=1is bounded in H. Without loss generality, we may assume that
{(A1,m, A2,m)}∞m=1 converges weakly to an element (A1, A2) ∈ H as m → ∞. Moreover,
(A1,m, A2,m) → (A1, A2) as m → ∞ strongly in any Lp(DR) × Lp(DR) or, equivalently,
Lp((0, R), rdr)× Lp((0, R), rdr) for any p ≥ 1. Letting m→∞ in (4.21), we obtain

0 =

∫ R

0

(
[A1]r[Ã1]r +

1

2
[A2]r[Ã2]r +

l2

r2
A1Ã1 +

2l2

r2
A2Ã2

)
rdr (4.27)

+

∫ R

0

(
2κA1Ã1 + 2(2κ+ β)A2Ã2 − 2A1Ã1A2 − A2

1Ã2

)
rdr ∀(Ã1, Ã2) ∈ H.

Let (Ã1, Ã2) = (A1,m − A1, A2,m − A2) and insert into (4.27) and (4.21) and insert the
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resulting (4.27) into the resulting (4.21), to arrive at∣∣∣∣ ∫ R

0

(
([A1,m]r − [A1]r)

2 +
l2

r2
(A1,m − A1)2

)
rdr (4.28)∫ R

0

(
1

2
([A2,m]r − [A2]r)

2 +
2l2

r2
(A2,m − A2)2

)
rdr

+

∫ R

0

(
2κ(A1,m − A1)2 + 2(2κ+ β)(A2,m − A2)2 − 2(A1,mA2,m − A1A2)(A1,m − A1)

)
rdr

−
∫ R

0

(
(A2

1,m − A2
1)(A2,m − A2)

)
rdr

∣∣∣∣ ≤ δm||(A1,m − A1, A2,m − A2)||H,

which then gives

1

2
||(A1,m − A1, A2,m − A2)||2H ≤ δm||(A1,m − A1, A2,m − A2)||H (4.29)

+

∫ R

0

∣∣(A2
1,m − A2

1)(A2,m − A2)
∣∣ rdr + 2

∫ R

0

|(A1,mA2,m − A1A2)(A1,m − A1)| rdr.

Applying Cauchy’s inequality with ε [11], we then get

1

4
||(A1,m − A1, A2,m − A2)||2H ≤ δ2

m +

∫ R

0

∣∣(A2
1,m − A2

1)(A2,m − A2)
∣∣ rdr (4.30)

+ 2

∫ R

0

|(A1,mA2,m − A1A2)(A1,m − A1)| rdr, m = 1, 2, . . . ,

which then gives the strong convergence of (A1,m, A2,m) → (A1, A2) as m → ∞ in H, as
desired. �

With the above lemmas, we can now obtain our desire results as a consequence of the
classical mountain-pass theorem [5, 11, 26]. First, from Lemma 4.3, we have that the
functional J , given by (4.1), satisfies the Palais-Smale condition. Then by Lemma 4.1
and Lemma 4.2, there are constants K,C0 > 0 and an element (A0, A0) ∈ H such that
||(A0, A0)||2H > K and J(A0, A0) < 0. Now consider the set

Γ = {g ∈ C([0, 1]; H)|g(0) = (0, 0), g(1) = (A0, A0)} (4.31)

of all continuous paths in H that link the zero element (0, 0) of H to (A0, A0). Then
there is some tg ∈ (0, 1) such that ||g(tg)||2H = K. It then follows from the classical
mountain-pass theorem that

C = inf
g∈Γ

max
t∈[0,1]

J(g(t)) ≥ C0 (4.32)

is a critical value of J , meaning, that there is an element (A1, A2) ∈ H such that
J(A1, A2) = C, which is a critical point of J . Moreover, such critical point is not the
trivial solution, (0, 0), and by Lemma 3.1 it is also not a semi-trivial solution as desired.
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