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Abstract

The effect of magnetic fields on black hole superradiance is an interesting topic with possible astrophysical applications. A

dyonic RN-like black hole is not asymptotically flat, it describes a black hole immersed in an asymptotically uniform magnetic

field. In this paper, we discuss the superadditive stability of a class of asymptotically flat, band-like black holes, the binary RN

black holes. In this article, we introduce the above condition into dyonic RN-like black holes. If a dyonic RN-like black hole

satisfies the condition of μ = yω, when μ [?] [?] 2(mH + qΦH),so the dyonic RN-like black hole is superradiantly stable at that

time.
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The effect of magnetic fields on black hole superradiance is an interesting topic with possible
astrophysical applications. A dyonic RN-like black hole is not asymptotically flat, it describes a black
hole immersed in an asymptotically uniform magnetic field. This paper discusses the superadditive
stability of a class of asymptotically flat, band-like black holes, the binary RN black holes. This
article introduces the above condition into dyonic RN-like black holes. If a dyonic RN-like black hole
satisfies the condition of µ = yω, when µ ≥

√
2(qΦH), the dyonic RN-like black hole is superradiantly

stable at that time.
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1. INTRODUCTION

The research on the stability of black holes can be traced back to 1957 when Regge and Wheeler found that
Schwarzschild black holes are stable under small perturbations of the metric. In 1970, Zerilli further studied
Schwarzschild black holes and RN black holes and reduced the perturbation problem to a process of solving the
Schrödinger-like equation (wave equation) [1–4]. In 1972 Teukolsky studied the perturbations of various matter fields
(gravitational, electromagnetic, neutrino fields) in Kerr space-time and decoupled the field equations into independent
wave equations[5, 6], laying the foundation for the study of the external field disturbance of black holes. In 1983,
Chandrasekhar’s ”Mathematical Theory of Black Holes” systematically expounded the perturbation theory of black
holes. Superradiance is essentially the process of radiation enhancement, which plays an important role in optics,
quantum mechanics, especially relativity, and astrophysics. Dicke, who coined the term ”superradiance” in the context
of quantum optics coherent emission [7], achieved the first high-resolution superradiance measurements using coherent
synchrotron radiation [7, 8]. Zeldovich believed that the dissipative rotating body amplifies the human radiation, and
Starobinsky recognized the super-radiation phenomenon of black holes on his basis: when the frequency of the human
radiation satisfies the super-radiation condition, The rotational energy can be extracted from the black hole [7, 8].
Black hole superradiation is closely related to the black hole area theorem, the Penrose process, tidal forces, and even
Hawking radiation [9]. In the general theory of relativity, the superradiation of a black hole is to extract energy,
charge, and angular momentum in a vacuum[9, 10]. It can be known from the scattering problem of root quantum
mechanics: the plane wave whose eigenfrequency is ω moves toward the center of the black hole, and is scattered to
infinity under the action of the black hole, and the scattered particles obey a certain angular distribution. Taking the
scalar wave under the background of static spherical symmetry as an example, we will see, at this time, the scalar
field satisfies the Schrödinger-like equation of the following form:

d2ψlm

dx2
+ Veff ψlm = 0, (1)

where ψlm is the radial component of the field after decomposing the variables, x is the turtle coordinate, and Veff
depends on the theoretical model and the space-time background. In the case of spherical symmetry, we consider the
scattering of monochromatic plane waves. Assuming that Veff is constant on the boundary, the asymptotic solution
satisfies

ψlm ∼

{
T e−ikHr, r → r+
Ie−ik∞r +Reik∞r, r → ∞,

(2)

in

kH = ω − ωc,

k∞ =
√
ω2 − µ2.

(3)
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ωc is the critical frequency, for a charged and rotating black hole, the critical frequency is

ωc = qΦH +mΩH =
qQrp +ma

r2p + a2
, (4)

where rp is the event horizon of the black hole (namely the outer horizon), ΩH is the angular velocity of the black
hole and the electric potential at the event horizon, m is the magnetic quantum number of the scalar field, q is the
charge of the scalar field. When the black hole is not rotating, the critical frequency degenerates to

ωc = qΦH =
qQ

rp
. (5)

W ≡
∣∣∣∣ ψ ψ∗

ψ′ ψ∗′

∣∣∣∣ = ψψ∗′ − ψ∗ψ′ (6)

can be obtained at infinity

W = 2ik∞
(
|R|2 − |I|2

)
(7)

And at the horizon is

W = −2ikH |T |2. (8)

Since the Lansky determinant is a constant, we have

|R|2 = |I|2 − kH
k∞

|T |2. (9)

It can be found that when kH

k∞
> 0, |R|2 < |I|2, the reflected wave amplitude is smaller than the human radiation

wave amplitude, and the energy of the scalar field decreases; when kH

k∞
< 0, |R|2 > |I|2, the amplitude of the reflected

wave is greater than the amplitude of the human radiation, and the energy of the scalar field increases at this time.
Therefore, the superradiance generation condition is the increased condition of the scalar field energy, that is,

0 < ω < ωc. (10)

In the above equation, the critical angular frequency ωc is defined as

ωc = qΨ, (11)

where Ψ is the electromagnetic potential of the outer horizon of the dyonic RN black hole, Ψ =Q/r+. The superradiant
condition for an electrically charged massive scalar perturbation on the dyonic RN black hole background is

ω < ωc =
qQ

r+
. (12)

The bound state condition at spatial infinity for the scalar perturbation is

ω2 < µ2. (13)

When the radiation wave with the frequency ω satisfies the formula, superradiance scattering occurs, at this time, the
reflected wave carries more energy than the human radiation wave, which is the superradiation occurrence condition
of the charged black hole in the general theory of relativity. It is worth noting that if the black hole is not charged,
that is, the Schwarzschild black hole, there is no super-radiation phenomenon, and only the rotating black hole or the
charged black hole has the super-radiation phenomenon[8–10].

Hod proved[10] that the Kerr black hole should be superradiant stable under massive scalar perturbation when

µ ≥
√
2mΩH , where µ is the mass.

The effect of magnetic fields on black hole superradiance is an interesting topic with possible astrophysical applica-
tions. A dyonic RN-like black hole is not asymptotically flat, it describes a black hole immersed in an asymptotically
uniform magnetic field. This paper discusses the superradiant stability of a class of asymptotically flat, band-like
black holes, the binary RN black holes. This article introduces the above condition into dyonic RN-like black holes.
If a dyonic RN-like black hole satisfies the condition of µ = yω[11, 12], when µ ≥

√
2(qΦH), so the dyonic RN-like

black hole is superradiantly stable at that time.
The structure of this paper is as follows. In Section 2, we describe dyonic RN-like black holes’ new class of action

and field equations. In Section 3, we derive the radial equation of motion and effective potential. In Section 4,
we carefully analyze the effective potential’s shape and obtain the system’s superradiant stability parameter region.
Section 5 is dedicated to the conclusion.
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2. NEW CLASS OF ACTION AND FIELD EQUATIONS

We set the system to be in the interval from 0 to 1. Since the interval from 0 to 1 can be mapped to the interval
from 0 to infinity, the size sequence this paper discusses is unchanged. The purpose of this theory is that find that
the modified Einstein gravitational equation has a Reissner-Nordstrom solution in a vacuum. First, we can consider
the following equation (modified Einstein’s gravitational equation).

The proper time of spherical coordinates is[13](The metric which is in exponential form)

ds2 = −eG(t,r)dt2 + e−G(t,r)dr2 +
[
r2dθ2 + r2 sin2 θdφ2

]
(14)

Rµν − 1

2
gµνR+ Λ(

(
gθθ

)2
)gµν = −8πG

C4
Tµv (15)

In this work, the action(we set 8G = c = 1 ) is given by the following relation which in the special case, reduces to
the Einstein-Maxwell dilaton gravity:[10]

S =
1

16πG

∫
d4x

√
−g(−2Λ(

(
gθθ

)
+R) (16)

where Λ is a function of the Ricci scalar R and Φ is the representation of the dilatonic field, also similar to f(R)(We
will now consider non-pathological functional forms of f(R) that can be expanded in a Taylor series of the form
f(R) = a0 +R+ a2R

2 + a3R
3 + . . . anR

n + . . . where we have normalized all coefficients concerning the coefficient of
the linear term). Variation of the action for the metric gµν , the gauge Aµ and dilaton field Φ gives the following field
equations:

This leads to:

1

2
RΛ′(R)− Λ = 0. (17)

RklΛ
′(R)− 1

2
gklΛ = 0

∇σ

[√
−gΛ′(R)gµν

]
= 0.

(18)

In this relationship, we get

Λ = B(p× r)/r4, (19)

B is an algebraic parameter, and p is a momentum or momentum operator.
A dyonic-like RN black hole is a stationary spherically symmetric space-time geometry, which is the solution of

the Einstein-Maxwell theory [14]. Using spherical coordinates (t, r, θ, ϕ), the line element can be expressed as (we use
natural units, where G = c = ℏ = 1).We set up a geometric entity, and B takes a certain value for the parametric
algebra so that the following formula holds.

ds2 = −□
r2

dt2 +
r2

□
dr2 + r2 dθ2 + r2 sin2 θdϕ2, (20)

Where

□ = −2Mr + r2 +Q2 +B2, (21)

M is the mass of the black hole, and Q and B are the electric and magnetic charges of the black hole, respectively.
The dynamic RN black hole has an outer horizon in r+ and an inner horizon in r−,

r+ =M +
√
M2 −Q2 −B2, r− =M −

√
M2 −Q2 −B2. (22)

They satisfy the following relation

□ = (r − r+) (r − r−) , r+r− = Q2 +B2, r+ + r− = 2M. (23)

The equation of motion of the charged massive scalar perturbation Φ in the dynamic RN black hole background is
described by the covariant Klein-Gordon (KG) equation(

DνDν − µ2
)
Φ = 0, (24)
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where Dν = ∇ν − iqAν and Dν = ∇ν − iqAν are covariant Derivatives, q and µ are the charge and mass of the scalar
field, respectively. The electromagnetic field of a dynamic black hole is described by the following vector potential

Aν =

(
−Q
r
, 0, 0, B(cos θ ∓ 1)

)
, (25)

The upper minus sign applies to the northern hemisphere of the black hole, and the lower plus sign applies to the
southern hemisphere.

The solution of the KG equation can be decomposed into the following form

Φ(t, r, θ, ϕ) = R(r)Y (θ)eimϕe−iωt, (26)

where ω is the angular frequency of the scalar perturbation and m is the azimuthal harmonic index. Y (θ) is the
angular part of the solution and R(r) is the radial part of the solution. Substituting the above solution into the KG
equation, we can get the radial and angular parts of the equation of motion. Considering the different electromagnetic
potentials in the northern and southern hemispheres, the equation of motion angle is discussed below in two cases.

3. THE RADIAL EQUATION OF MOTION AND EFFECTIVE POTENTIAL

A new radial wave function is defined as[11–14]

ψlm ≡ ∆
1
2Rlm. (27)

to substitute the radial equation of motion for a Schrodinger-like equation

d2Ψlm

dr2
+ (ω2 − V )Ψlm = 0, (28)

where

ω2 − V =
U +M2 − a2 −Q2

∆2
, (29)

in which V denotes the effective potential.
Considering the superradiation condition, i.e. ω < ωc, and the bound state condition, when the potential is

captured, the Kerr-Newman black hole and the charged massive scalar perturbation system are superradiation stable.
Beyond the outer event horizon of a Kerr-Newman black hole, it doesn’t exist. Therefore, the shape of the effective
potential V is next analyzed to investigate the presence of trapping wells.

The asymptotic behaviors of the effective potential V around the inner and outer horizons and at spatial infinity
can be expressed as

V (r → +∞) → µ2 − 2(2Mω2 − qQω −Mµ2)

r
+O(

1

r2
), (30)

V (r → r+) → −∞, V (r → r−) → −∞. (31)

If a Kerr black hole satisfies the condition of µ = yω, it will be superradiantly stable when µ <
√
2mΩH . In this

article, we introduce the above condition into Kerr-Newman black holes. Therefore, the formula of the asymptotic
behaviors is written as

V (r → +∞) → y2ω2 − 2[M(2− y2)ω2 − qQω]

r
+O(

1

r2
), (32)

V (r → r+) → −∞, V (r → r−) → −∞. (33)

It is concluded from the equations above that the effective potential approximates a constant at infinity in space, and
the extreme between its inner and outer horizons cannot be less than one. The asymptotic behavior of the derivative
of the effective potential V at spatial infinity can be expressed as

V ′(r → +∞) → 2[M(2− y2)ω2 − qQω]

r2
+O(

1

r3
), (34)

The derivative of the effective potential has to be negative to satisfy the no trapping well condition,

2M(2− y2)ω2 − 2Qqω < 0. (35)
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4. ANALYSIS OF SUPERRADIANT STABILITY

In this section, we will find the regions in the parameter space where the system of dyonic RN black hole and massive
scalar perturbation is superradiantly stable. We determine the parameter regions by considering the extremes of the
effective potential in the range r− < r < +∞

Now, we define a new variable z, z = r − r−. The expression of the derivative of the effective potential V is

V ′(r) =
−2

(
ar4 + br3 + cr2 + dr + e

)
△3

= V ′(z) =
−2

(
a1z

4 + b1z
3 + c1z

2 + d1z + e1
)

△3
,

(36)

where

a1 = a; b1 = (4r−) a1 + b,

c1 =
(
6r2−

)
a1 + (3r−) b1 + c,

d1 =
(
4r3−

)
a1 +

(
3r2−

)
b1 + (2r−) c1,

e1 =
(
r2−

)
a1 +

(
r3−

)
b1 +

(
r2−

)
c1 + (r−) d1 + e.

(37)

Explicitly,

a1 =− 2Mω2 + qQω +Mµ2,

b1 =− 2
(
8M2 − 6Mr+ + r2+

)
ω2 + 2qQ (5M − 2r+)ω

+ µ2
(
6M2 − 6Mr+ + r2+

)
− q2

(
Q2 +B2

)
+ λ,

c1 =− 6 (2M − r+)
3
ω2 + 9qQ (2M − r+)

2
ω

+ 3
(
(M − r+)

(
µ2 (2M − r+)

2 − q2Q2 − q2B2 + λ
)
−Mq2Q2

)
,

(38)

d1 =− 2 (4M − 3r+) (2M − r+)
3
ω2 + 2qQ (7M − 5r+) (2M − r+)

2
ω

+ 2q2
(
−B2

(
M2 − 5Q2

)
+ 4Q4 +B4

)
− 2q2Q2 (3M (r+ − 2M)

+2µ2
(
2M2 − 3Mr+ + r2+

)2
+ 2

(
Q2 +B2

))
− 12Mq2Q2r−

+ 2 (M − r+)
2
(λ− 1)

e1 =(r+ − r−) (qQ− ωr−)
2
r2− +

1

4
(r+ − r−)

3
,

(39)

where λ = l(l + 1), l > qB[14].Since we set the system to range from 0 to 1, qB > q2Q2.
In this paper, we denote the numerator of the derivative of the effective potential V ′(z). This quartic polynomial of

z allows us to study the existence of trapped wells beyond the horizon by analyzing the properties of the roots of the
equation. We use z1, z2, z3 and z4 to represent the four roots of f1(z) = 0. The relationship between them conforms
to Vieta’s theorem.

z1z2z3z4 =
e1
a1
, z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 =

c1
a1
. (40)

When z > 0, from the asymptotic behavior of the effective potential of the inner and outer horizons and space
infinity, it can be inferred that the equation V ′(z) = 0(or f1(z) = 0) cannot be less on two. So the two positive roots
are written as z1, z2.

Research shows that for any ω

e1 > 0. (41)

and in

e1 > 0, c1 < 0, (42)

f1(z) = 0, that is, z3, z4 are all negative numbers.
When y2 > 2(a1 > 0) for e1 > 0, c1 < 0 at this time, then f(ω) < 0, and we can know that the equation V1

′(z) = 0
cannot have more than two positive roots. So the dyonic RN-like black hole is superradiantly stable at that time.
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5. SUMMARY

In this paper, we introduce µ = yω[12, 13] into dyonic RN-like black holes and discuss the superradiation stability
of dyonic RN-like black holes. We adopt the method of variable separation to divide the motion equations of the least
coupled scalar perturbation in dynamical RN black holes into two forms: angular and radial.

Hod proved [10] that when µ ≥
√
2mΩH (where µ is the mass), Kerr black holes should be superradiantly stable

under large-scale scalar perturbations. In this post, a new variable y is added here to extend the results of the previous
post.

When µ ≥
√
2(qΦH), this dyonic RN-like black hole was superradiantly stable at that time.
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1. INTRODUCTION

The research on the stability of black holes can be traced back to 1957 when Regge and Wheeler found that
Schwarzschild black holes are stable under small perturbations of the metric. In 1970, Zerilli further studied
Schwarzschild black holes and RN black holes and reduced the perturbation problem to a process of solving the
Schrödinger-like equation (wave equation) [1–4]. In 1972 Teukolsky studied the perturbations of various matter fields
(gravitational, electromagnetic, neutrino fields) in Kerr space-time and decoupled the field equations into independent
wave equations[5, 6], laying the foundation for the study of the external field disturbance of black holes. In 1983,
Chandrasekhar’s ”Mathematical Theory of Black Holes” systematically expounded the perturbation theory of black
holes. Superradiance is essentially the process of radiation enhancement, which plays an important role in optics,
quantum mechanics, especially relativity, and astrophysics. Dicke, who coined the term ”superradiance” in the context
of quantum optics coherent emission [7], achieved the first high-resolution superradiance measurements using coherent
synchrotron radiation [7, 8]. Zeldovich believed that the dissipative rotating body amplifies the human radiation, and
Starobinsky recognized the super-radiation phenomenon of black holes on his basis: when the frequency of the human
radiation satisfies the super-radiation condition, The rotational energy can be extracted from the black hole [7, 8].
Black hole superradiation is closely related to the black hole area theorem, the Penrose process, tidal forces, and even
Hawking radiation [9]. In the general theory of relativity, the superradiation of a black hole is to extract energy,
charge, and angular momentum in a vacuum[9, 10]. It can be known from the scattering problem of root quantum
mechanics: the plane wave whose eigenfrequency is ω moves toward the center of the black hole, and is scattered to
infinity under the action of the black hole, and the scattered particles obey a certain angular distribution. Taking the
scalar wave under the background of static spherical symmetry as an example, we will see, at this time, the scalar
field satisfies the Schrödinger-like equation of the following form:

d2ψlm

dx2
+ Veff ψlm = 0, (1)

where ψlm is the radial component of the field after decomposing the variables, x is the turtle coordinate, and Veff
depends on the theoretical model and the space-time background. In the case of spherical symmetry, we consider the
scattering of monochromatic plane waves. Assuming that Veff is constant on the boundary, the asymptotic solution
satisfies

ψlm ∼

{
T e−ikHx, r → r+
Ie−ik∞x +Reik∞x, r → ∞,

(2)

in

kH = ω − ωc,

k∞ =
√
ω2 − µ2.

(3)
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ωc is the critical frequency, for a charged and rotating black hole, the critical frequency is

ωc = qΦH +mΩH =
qQrp +ma

r2p + a2
, (4)

where rp is the event horizon of the black hole (namely the outer horizon), ΩH is the angular velocity of the black
hole and the electric potential at the event horizon, m is the magnetic quantum number of the scalar field, q is the
charge of the scalar field. When the black hole is not rotating, the critical frequency degenerates to

ωc = qΦH =
qQ

rp
. (5)

W ≡
∣∣∣∣ ψ ψ∗

ψ′ ψ∗′

∣∣∣∣ = ψψ∗′ − ψ∗ψ′ (6)

can be obtained at infinity

W = 2ik∞
(
|R|2 − |I|2

)
(7)

And at the horizon is

W = −2ikH |T |2. (8)

Since the Lansky determinant is a constant, we have

|R|2 = |I|2 − kH
k∞

|T |2. (9)

It can be found that when kH

k∞
> 0, |R|2 < |I|2, the reflected wave amplitude is smaller than the human radiation

wave amplitude, and the energy of the scalar field decreases; when kH

k∞
< 0, |R|2 > |I|2, the amplitude of the reflected

wave is greater than the amplitude of the human radiation, and the energy of the scalar field increases at this time.
Therefore, the superradiance generation condition is the increased condition of the scalar field energy, that is,

0 < ω < ωc. (10)

In the above equation, the critical angular frequency ωc is defined as

ωc = qΨ, (11)

where Ψ is the electromagnetic potential of the outer horizon of the dyonic RN black hole, Ψ =Q/r+. The superradiant
condition for an electrically charged massive scalar perturbation on the dyonic RN black hole background is

ω < ωc =
qQ

r+
. (12)

The bound state condition at spatial infinity for the scalar perturbation is

ω2 < µ2. (13)

When the radiation wave with the frequency ω satisfies the formula, superradiance scattering occurs, at this time, the
reflected wave carries more energy than the human radiation wave, which is the superradiation occurrence condition
of the charged black hole in the general theory of relativity. It is worth noting that if the black hole is not charged,
that is, the Schwarzschild black hole, there is no super-radiation phenomenon, and only the rotating black hole or the
charged black hole has the super-radiation phenomenon[8–10].

Hod proved[10] that the Kerr black hole should be superradiant stable under massive scalar perturbation when

µ ≥
√
2mΩH , where µ is the mass.

The effect of magnetic fields on black hole superradiance is an interesting topic with possible astrophysical applica-
tions. A dyonic RN-like black hole is not asymptotically flat, it describes a black hole immersed in an asymptotically
uniform magnetic field. In this paper, we discuss the superadditive stability of a class of asymptotically flat, band-like
black holes, the binary RN black holes. In this article, we introduce the above condition into dyonic RN-like black
holes. If a dyonic RN-like black hole satisfies the condition of µ = yω[11, 12], when µ ≥

√
2(qΦH), so the dyonic

RN-like black hole is superradiantly stable at that time.
The structure of this paper is as follows. In Section 2, we describe dyonic RN-like black holes’ new class of action

and field equations. In Section 3, we derive the radial equation of motion and effective potential. In Section 4, we
carefully analyze the shape of the effective potential and obtain the superadditive stability parameter region of the
system. Section 5 is dedicated to the conclusion.
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2. NEW CLASS OF ACTION AND FIELD EQUATIONS

We set the system to be in the interval from 0 to 1. Since the interval from 0 to 1 can be mapped to the interval from
0 to infinity, the size sequence of the system value remains unchanged. The purpose of this theory is that find that
the modified Einstein gravitational equation has a Reissner-Nordstrom solution in a vacuum. First, we can consider
the following equation (modified Einstein’s gravitational equation).

The proper time of spherical coordinates is[13](The metric which is in exponential form)

ds2 = −eG(t,r)dt2 + e−G(t,r)dr2 +
[
r2dθ2 + r2 sin2 θdφ2

]
(14)

Rµν − 1

2
gµνR+ Λ(

(
gθθ

)2
)gµν = −8πG

C4
Tµv (15)

In this work, the action(we set 8G = c = 1 ) is given by the following relation which in the special case, reduces to
the Einstein-Maxwell dilaton gravity:[10]

S =
1

16πG

∫
d4x

√
−g(−2Λ(

(
gθθ

)
+R) (16)

where Λ is a function of the Ricci scalar R and Φ is the representation of the dilatonic field, also similar to f(R)(We
will now consider non-pathological functional forms of f(R) that can be expanded in a Taylor series of the form
f(R) = a0+R+a2R

2+a3R
3+ . . . anR

n+ . . . where we have normalized all coefficients with respect to the coefficient
of the linear term). Variation of the action with respect to the metric gµν , the gauge Aµ and dilaton field Φ gives the
following field equations:

This leads to:

1

2
RΛ′(R)− Λ = 0 (17)

RklΛ
′(R)− 1

2
gklΛ = 0

∇σ

[√
−gΛ′(R)gµν

]
= 0

(18)

In this relation, y and z are just two integration constants and are assumed to be positive from avoiding non-physical
ambiguity.

Λ = B(p× r)/r4 (19)

B is an algebraic parameter, and p is a momentum or momentum operator.
A dyonic-like RN black hole is a stationary spherically symmetric space-time geometry, which is the solution of

the Einstein-Maxwell theory [14]. Using spherical coordinates (t, r, θ, ϕ), the line element can be expressed as (we use
natural units, where G = c = ℏ = 1).We set up a geometric entity, and B takes a certain value for the parametric
algebra so that the following formula holds.

ds2 = −□
r2

dt2 +
r2

□
dr2 + r2 dθ2 + r2 sin2 θdϕ2, (20)

Where

□ = −2Mr + r2 +Q2 +B2, (21)

M is the mass of the black hole, Qe and B are the electric and magnetic charges of the black hole, respectively. The
dynamic RN black hole has an outer horizon in r+ and an inner horizon in r−,

r+ =M +
√
M2 −Q2 −B2, r− =M −

√
M2 −Q2 −B2. (22)

Obviously, they satisfy the following relation

□ = (r − r+) (r − r−) , r+r− = Q2 +B2, r+ + r− = 2M. (23)
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The equation of motion of the charged massive scalar perturbation Φ in the dynamic RN black hole background is
described by the covariant Klein-Gordon (KG) equation(

DνDν − µ2
)
Φ = 0, (24)

where Dν = ∇ν − iqAν and Dν = ∇ν − iqAν are covariant Derivatives, q and µ are the charge and mass of the scalar
field, respectively. The electromagnetic field of a dynamic black hole is described by the following vector potential

Aν =

(
−Q
r
, 0, 0, B(cos θ ∓ 1)

)
, (25)

The upper minus sign applies to the northern hemisphere of the black hole, and the lower plus sign applies to the
southern hemisphere.

The solution of the KG equation can be decomposed into the following form

Φ(t, r, θ, ϕ) = R(r)Y (θ)eimϕe−iωt, (26)

where ω is the angular frequency of the scalar perturbation and m is the azimuthal harmonic index. Y (θ) is the
angular part of the solution and R(r) is the radial part of the solution. Substituting the above solution into the KG
equation, we can get the radial and angular parts of the equation of motion. Considering the different electromagnetic
potentials in the northern and southern hemispheres, the equation of motion angle is discussed below in two cases.

3. THE RADIAL EQUATION OF MOTION AND EFFECTIVE POTENTIAL

A new radial wave function is defined as[11–14]

ψlm ≡ ∆
1
2Rlm. (27)

to substitute the radial equation of motion for a Schrodinger-like equation

d2Ψlm

dr2
+ (ω2 − V )Ψlm = 0, (28)

where

ω2 − V =
U +M2 − a2 −Q2

∆2
, (29)

in which V denotes the effective potential.
Considering the superadditive condition, i.e. ω < ωc, and the bound state condition, when the potential is captured,

the Kerr-Newman black hole and the charged massive scalar perturbation system are superadditive stables. Beyond
the outer event horizon of a Kerr-Newman black hole, it doesn’t exist. Therefore, the shape of the effective potential
V is next analyzed to investigate the presence of trapping wells.

The asymptotic behaviors of the effective potential V around the inner and outer horizons and at spatial infinity
can be expressed as

V (r → +∞) → µ2 − 2(2Mω2 − qQω −Mµ2)

r
+O(

1

r2
), (30)

V (r → r+) → −∞, V (r → r−) → −∞. (31)

If a Kerr black hole satisfy the condition of µ = yω, it will be superradiantly stable when µ <
√
2mΩH . In this

article, we introduce the above condition into Kerr-Newman black holes. Therefore, the formula of the asymptotic
behaviors is written as

V (r → +∞) → y2ω2 − 2[M(2− y2)ω2 − qQω]

r
+O(

1

r2
), (32)

V (r → r+) → −∞, V (r → r−) → −∞. (33)
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It is concluded from the equations above that the effective potential approximates a constant at infinity in space, and
the extreme between its inner and outer horizons cannot be less than one. The asymptotic behavior of the derivative
of the effective potential V at spatial infinity can be expressed as

V ′(r → +∞) → 2[M(2− y2)ω2 − qQω]

r2
+O(

1

r3
), (34)

The derivative of the effective potential has to be negative in order to satisfy the no trapping well condition,

2M(2− y2)ω2 − 2Qqω < 0. (35)

4. ANALYSIS OF SUPERRADIANT STABILITY

In this section, we will find the regions in the parameter space where the system of dyonic RN black hole and massive
scalar perturbation is superradiantly stable. We determine the parameter regions by considering the extremes of the
effective potential in the range r− < r < +∞

Now, we define a new variable z, z = r − r−. The expression of the derivative of the effective potential V is

V ′(r) =
−2

(
ar4 + br3 + cr2 + dr + e

)
△3

= V ′(z) =
−2

(
a1z

4 + b1z
3 + c1z

2 + d1z + e1
)

△3
,

(36)

where

a1 = a; b1 = (4r−) a1 + b,

c1 =
(
6r2−

)
a1 + (3r−) b1 + c,

d1 =
(
4r3−

)
a1 +

(
3r2−

)
b1 + (2r−) c1,

e1 =
(
r2−

)
a1 +

(
r3−

)
b1 +

(
r2−

)
c1 + (r−) d1 + e.

(37)

Explicitly,

a1 =− 2Mω2 + qQω +Mµ2,

b1 =− 2
(
8M2 − 6Mr+ + r2+

)
ω2 + 2qQ (5M − 2r+)ω

+ µ2
(
6M2 − 6Mr+ + r2+

)
− q2

(
Q2 +B2

)
+ λ,

c1 =− 6 (2M − r+)
3
ω2 + 9qQ (2M − r+)

2
ω

+ 3
(
(M − r+)

(
µ2 (2M − r+)

2 − q2Q2 − q2B2 + λ
)
−Mq2Q2

)
,

(38)

d1 =− 2 (4M − 3r+) (2M − r+)
3
ω2 + 2qQe (7M − 5r+) (2M − r+)

2
ω

+ 2q2
(
−B2

(
M2 − 5Q2

)
+ 4Q4 +B4

)
− 2q2Q2 (3M (r+ − 2M)

+2µ2
(
2M2 − 3Mr+ + r2+

)2
+ 2

(
Q2 +B2

))
− 12Mq2Q2r−

+ 2 (M − r+)
2
(λ− 1)

e1 =(r+ − r−) (qQ− ωr−)
2
r2− +

1

4
(r+ − r−)

3
,

(39)

where λ = l(l + 1), l > qB[14].Since we set the system to range from 0 to 1, qB > q2Q2.
In this paper, we denote the numerator of the derivative of the effective potential V ′(z). This quartic polynomial of

z allows us to study the existence of trapped wells beyond the horizon by analyzing the properties of the roots of the
equation. We use z1, z2, z3 and z4 to represent the four roots of f1(z) = 0. The relationship between them conforms
to Vieta’s theorem.

z1z2z3z4 =
e1
a1
, z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 =

c1
a1
. (40)
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When z > 0, from the asymptotic behavior of the effective potential of the inner and outer horizons and space
infinity, it can be inferred that the equation V ′(z) = 0(or f1(z) = 0) cannot be less on two. So the two positive roots
are written as z1, z2.

Research shows that for any ω

e1 > 0. (41)

and in

e1 > 0, c1 < 0, (42)

f1(z) = 0, that is, z3, z4 are all negative numbers.
When y2 > 2(a1 > 0) for e1 > 0, c1 < 0 at this time, then f(ω) < 0, and we can know that the equation V1

′(z) = 0
cannot have more than two positive roots. So the dyonic RN-like black hole is superradiantly stable at that time.

5. SUMMARY

In this paper, we introduce µ = yω[12, 13] into dyonic RN-like black holes and discuss the superadditive stability of
dyonic RN-like black holes. We adopt the method of variable separation to divide the motion equations of the least
coupled scalar perturbation in dynamical RN black holes into two forms: angular and radial.

Hod proved [10] that when µ ≥
√
2mΩH (where µ is the mass), Kerr black holes should be superradiatively stable

under large-scale scalar perturbations. In this post, a new variable y is added here to extend the results of the previous
post.

When µ ≥
√
2(qΦH), this dyonic RN-like black hole was superradiatively stable at that time.
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The effect of magnetic fields on black hole superradiance is an interesting topic with possible
astrophysical applications. A dyonic RN-like black hole is not asymptotically flat, it describes a
black hole immersed in an asymptotically uniform magnetic field. In this paper, we discuss the
superadditive stability of a class of asymptotically flat, band-like black holes, the binary RN black
holes. In this article, we introduce the above condition into dyonic RN-like black holes. If a dyonic
RN-like black hole satisfies the condition of µ = yω, when µ ≥

√
2(mΩH + qΦH),so the dyonic

RN-like black hole is superradiantly stable at that time.
Keywords: superradiantly stable,a new variable y, dyonic RN-like black hole

1. INTRODUCTION

The research on the stability of black holes can be traced back to 1957 when Regge and Wheeler found that
Schwarzschild black holes are stable under small perturbations of the metric. In 1970, Zerilli further studied
Schwarzschild black holes and RN black holes and reduced the perturbation problem to a process of solving the
Schrödinger-like equation (wave equation) [1–4]. In 1972 Teukolsky studied the perturbations of various matter fields
(gravitational, electromagnetic, neutrino fields) in Kerr space-time and decoupled the field equations into independent
wave equations[5, 6], laying the foundation for the study of the external field disturbance of black holes. In 1983,
Chandrasekhar’s ”Mathematical Theory of Black Holes” systematically expounded the perturbation theory of black
holes. Superradiance is essentially the process of radiation enhancement, which plays an important role in optics,
quantum mechanics, especially relativity, and astrophysics. Dicke, who coined the term ”superradiance” in the context
of quantum optics coherent emission [7], achieved the first high-resolution superradiance measurements using coherent
synchrotron radiation [7, 8]. Zeldovich believed that the dissipative rotating body amplifies the human radiation, and
Starobinsky recognized the super-radiation phenomenon of black holes on his basis: when the frequency of the human
radiation satisfies the super-radiation condition, The rotational energy can be extracted from the black hole [7, 8].
Black hole superradiation is closely related to the black hole area theorem, the Penrose process, tidal forces, and even
Hawking radiation [9]. In the general theory of relativity, the superradiation of a black hole is to extract energy,
charge, and angular momentum in a vacuum[9, 10]. It can be known from the scattering problem of root quantum
mechanics: the plane wave whose eigenfrequency is ω moves toward the center of the black hole, and is scattered to
infinity under the action of the black hole, and the scattered particles obey a certain angular distribution. Taking the
scalar wave under the background of static spherical symmetry as an example, we will see, at this time, the scalar
field satisfies the Schrödinger-like equation of the following form:

d2ψlm

dx2
+ Veff ψlm = 0, (1)

where ψlm is the radial component of the field after decomposing the variables, x is the turtle coordinate, and Veff
depends on the theoretical model and the space-time background. In the case of spherical symmetry, we consider the
scattering of monochromatic plane waves. Assuming that Veff is constant on the boundary, the asymptotic solution
of satisfies

ψlm ∼

{
T e−ikHx, r → r+
Ie−ik∞x +Reik∞x, r → ∞,

(2)

In

kH = ω − ωc,

k∞ =
√
ω2 − µ2.

(3)

∗Electronic address: wxchen4277@qq.com
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ωc is the critical frequency, for a charged and rotating black hole, the critical frequency is

ωc = qΦH +mΩH =
qQrp +ma

r2p + a2
, (4)

where rp is the event horizon of the black hole (namely the outer horizon), ΩH is the angular velocity of the black
hole and the electric potential at the event horizon, m is the magnetic quantum number of the scalar field, q is the
charge of the scalar field. When the black hole is not rotating, the critical frequency degenerates to

ωc = qΦH =
qQ

rp
. (5)

W ≡
∣∣∣∣ ψ ψ∗

ψ′ ψ∗′

∣∣∣∣ = ψψ∗′ − ψ∗ψ′ (6)

can be obtained at infinity

W = 2ik∞
(
|R|2 − |I|2

)
(7)

And at the horizon is

W = −2ikH |T |2. (8)

Since the Lansky determinant is a constant, we have

|R|2 = |I|2 − kH
k∞

|T |2. (9)

It can be found that when kH

k∞
> 0, |R|2 < |I|2, the reflected wave amplitude is smaller than the human radiation

wave amplitude, and the energy of the scalar field decreases; when kH

k∞
< 0, |R|2 > |I|2, the amplitude of the reflected

wave is greater than the amplitude of the human radiation, and the energy of the scalar field increases at this time.
Therefore, the superradiance generation condition is the increased condition of the scalar field energy, that is,

0 < ω < ωc. (10)

In the above equation, the critical angular frequency ωc is defined as

ωc = qΨ, (11)

where Ψ is the electromagnetic potential of the outer horizon of the dyonic RN black hole, Ψ =Q/r+. The superradiant
condition for an electrically charged massive scalar perturbation on the dyonic RN black hole background is

ω < ωc =
qQ

r+
. (12)

The bound state condition at spatial infinity for the scalar perturbation is

ω2 < µ2. (13)

When the radiation wave with the frequency ω satisfies the formula, superradiance scattering occurs, at this time, the
reflected wave carries more energy than the human radiation wave, which is the superradiation occurrence condition
of the charged black hole in the general theory of relativity. It is worth noting that if the black hole is not charged,
that is, the Schwarzschild black hole, there is no super-radiation phenomenon, and only the rotating black hole or the
charged black hole has the super-radiation phenomenon[8–10].

Hod proved[10] that the Kerr black hole should be superradiant stable under massive scalar perturbation when

µ ≥
√
2mΩH , where µ is the mass.

The effect of magnetic fields on black hole superradiance is an interesting topic with possible astrophysical applica-
tions. A dyonic RN-like black hole is not asymptotically flat, it describes a black hole immersed in an asymptotically
uniform magnetic field. In this paper, we discuss the superadditive stability of a class of asymptotically flat, band-like
black holes, the binary RN black holes. In this article, we introduce the above condition into dyonic RN-like black
holes. If a dyonic RN-like black hole satisfies the condition of µ = yω[11, 12], when µ ≥

√
2(qΦH), so the dyonic

RN-like black hole is superradiantly stable at that time.
The structure of this paper is as follows. In Section 2, we describe dyonic RN-like black holes’ new class of action

and field equations. In Section 3, we derive the radial equation of motion and effective potential. In Section 4, we
carefully analyze the shape of the effective potential and obtain the superadditive stability parameter region of the
system. Section 5 is dedicated to the conclusion.
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2. NEW CLASS OF ACTION AND FIELD EQUATIONS

The purpose of this theory is that find that the modified Einstein gravitational equation has a Reissner-Nordstrom
solution in a vacuum. First, we can consider the following equation (modified Einstein’s gravitational equation).

The proper time of spherical coordinates is[13](The metric which is in exponential form)

ds2 = −eG(t,r)dt2 + e−G(t,r)dr2 +
[
r2dθ2 + r2 sin2 θdφ2

]
(14)

Rµν − 1

2
gµνR+ Λ(

(
gθθ

)2
)gµν = −8πG

C4
Tµv (15)

In this work, the action(we set 8G = c = 1 ) is given by the following relation which in the special case, reduces to
the Einstein-Maxwell dilaton gravity:[10]

S =
1

16πG

∫
d4x

√
−g(−2Λ(

(
gθθ

)
+R) (16)

where Λ is a function of the Ricci scalar R and Φ is the representation of the dilatonic field, also similar to f(R)(We
will now consider non-pathological functional forms of f(R) that can be expanded in a Taylor series of the form
f(R) = a0+R+a2R

2+a3R
3+ . . . anR

n+ . . . where we have normalized all coefficients with respect to the coefficient
of the linear term). Variation of the action with respect to the metric gµν , the gauge Aµ and dilaton field Φ gives the
following field equations:

This leads to:

1

2
RΛ′(R)− Λ = 0 (17)

RklΛ
′(R)− 1

2
gklΛ = 0

∇σ

[√
−gΛ′(R)gµν

]
= 0

(18)

In this relation, y and z are just two integration constants and assumed to be positive from avoiding non-physical
ambiguity.

Λ = B(p× r)/r4 (19)

B is an algebraic parameter,p is momentum or momentum operator.
A dyonic-like RN black hole is a stationary spherically symmetric space-time geometry, which is the solution of

the Einstein-Maxwell theory [14]. Using spherical coordinates (t, r, θ, ϕ), the line element can be expressed as (we use
natural units, where G = c = ℏ = 1)

ds2 = −□
r2

dt2 +
r2

□
dr2 + r2 dθ2 + r2 sin2 θdϕ2, (20)

Where

□ = −2Mr + r2 +Q2 +B2, (21)

M is the mass of the black hole, Qe and B are the electric and magnetic charges of the black hole, respectively. The
dynamic RN black hole has an outer horizon in r+ and an inner horizon in r−,

r+ =M +
√
M2 −Q2 −B2, r− =M −

√
M2 −Q2 −B2. (22)

Obviously, they satisfy the following relation

□ = (r − r+) (r − r−) , r+r− = Q2 +B2, r+ + r− = 2M. (23)

The equation of motion of the charged massive scalar perturbation Φ in the dynamic RN black hole background is
described by the covariant Klein-Gordon (KG) equation(

DνDν − µ2
)
Φ = 0, (24)
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where Dν = ∇ν − iqAν and Dν = ∇ν − iqAν are covariant Derivatives, q and µ are the charge and mass of the scalar
field, respectively. The electromagnetic field of a dynamic black hole is described by the following vector potential

Aν =

(
−Q
r
, 0, 0, B(cos θ ∓ 1)

)
, (25)

The upper minus sign applies to the northern hemisphere of the black hole, and the lower plus sign applies to the
southern hemisphere.

The solution of the KG equation can be decomposed into the following form

Φ(t, r, θ, ϕ) = R(r)Y (θ)eimϕe−iωt, (26)

where ω is the angular frequency of the scalar perturbation and m is the azimuthal harmonic index. Y (θ) is the
angular part of the solution and R(r) is the radial part of the solution. Substituting the above solution into the KG
equation, we can get the radial and angular parts of the equation of motion. Considering the different electromagnetic
potentials in the northern and southern hemispheres, the equation of motion angle is discussed below in two cases.

3. THE RADIAL EQUATION OF MOTION AND EFFECTIVE POTENTIAL

A new radial wave function is defined as[11–14]

ψlm ≡ ∆
1
2Rlm. (27)

to substitute the radial equation of motion for a Schrodinger-like equation

d2Ψlm

dr2
+ (ω2 − V )Ψlm = 0, (28)

where

ω2 − V =
U +M2 − a2 −Q2

∆2
, (29)

in which V denotes the effective potential.
Considering the superadditive condition, i.e. ω < ωc, and the bound state condition, when the potential is captured,

the Kerr-Newman black hole and the charged massive scalar perturbation system are superadditive stables. Beyond
the outer event horizon of a Kerr-Newman black hole, it doesn’t exist. Therefore, the shape of the effective potential
V is next analyzed to investigate the presence of trapping wells.

The asymptotic behaviors of the effective potential V around the inner and outer horizons and at spatial infinity
can be expressed as

V (r → +∞) → µ2 − 2(2Mω2 − qQω −Mµ2)

r
+O(

1

r2
), (30)

V (r → r+) → −∞, V (r → r−) → −∞. (31)

If a Kerr black hole satisfy the condition of µ = yω, it will be superradiantly stable when µ <
√
2mΩH . In this

article, we introduce the above condition into Kerr-Newman black holes. Therefore, the formula of the asymptotic
behaviors is written as

V (r → +∞) → y2ω2 − 2[M(2− y2)ω2 − qQω]

r
+O(

1

r2
), (32)

V (r → r+) → −∞, V (r → r−) → −∞. (33)

It is concluded from the equations above that the effective potential approximates a constant at infinity in space, and
the extreme between its inner and outer horizons cannot be less than one. The asymptotic behavior of the derivative
of the effective potential V at spatial infinity can be expressed as

V ′(r → +∞) → 2[M(2− y2)ω2 − qQω]

r2
+O(

1

r3
), (34)

The derivative of the effective potential has to be negative in order to satisfy the no trapping well condition,

2M(2− y2)ω2 − 2Qqω < 0. (35)
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4. ANALYSIS OF SUPERRADIANT STABILITY

In this section, we will find the regions in the parameter space where the system of dyonic RN black hole and massive
scalar perturbation is superradiantly stable. We determine the parameter regions by considering the extremes of the
effective potential in the range r− < r < +∞

Now, we define a new variable z, z = r − r−. The expression of the derivative of the effective potential V is

V ′(r) =
−2

(
ar4 + br3 + cr2 + dr + e

)
△3

= V ′(z) =
−2

(
a1z

4 + b1z
3 + c1z

2 + d1z + e1
)

△3
,

(36)

where

a1 = a; b1 = (4r−) a1 + b,

c1 =
(
6r2−

)
a1 + (3r−) b1 + c,

d1 =
(
4r3−

)
a1 +

(
3r2−

)
b1 + (2r−) c1,

e1 =
(
r2−

)
a1 +

(
r3−

)
b1 +

(
r2−

)
c1 + (r−) d1 + e.

(37)

Explicitly,

a1 =− 2Mω2 + qQω +Mµ2,

b1 =− 2
(
8M2 − 6Mr+ + r2+

)
ω2 + 2qQ (5M − 2r+)ω

+ µ2
(
6M2 − 6Mr+ + r2+

)
− q2

(
Q2 +B2

)
+ λ,

c1 =− 6 (2M − r+)
3
ω2 + 9qQ (2M − r+)

2
ω

+ 3
(
(M − r+)

(
µ2 (2M − r+)

2 − q2Q2 − q2B2 + λ
)
−Mq2Q2

)
,

(38)

d1 =− 2 (4M − 3r+) (2M − r+)
3
ω2 + 2qQe (7M − 5r+) (2M − r+)

2
ω

+ 2q2
(
−B2

(
M2 − 5Q2

)
+ 4Q4 +B4

)
− 2q2Q2 (3M (r+ − 2M)

+2µ2
(
2M2 − 3Mr+ + r2+

)2
+ 2

(
Q2 +B2

))
− 12Mq2Q2r−

+ 2 (M − r+)
2
(λ− 1)

e1 =(r+ − r−) (qQ− ωr−)
2
r2− +

1

4
(r+ − r−)

3
,

(39)

where λ = l(l + 1), l > qB[14].
In this paper, we denote the numerator of the derivative of the effective potential V ′(z). This quartic polynomial of

z allows us to study the existence of trapped wells beyond the horizon by analyzing the properties of the roots of the
equation. We use z1, z2, z3 and z4 to represent the four roots of f1(z) = 0. The relationship between them conforms
to Vieta’s theorem.

z1z2z3z4 =
e1
a1
, z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 =

c1
a1
. (40)

When z > 0, from the asymptotic behavior of the effective potential of the inner and outer horizons and space
infinity, it can be inferred that the equation V ′(z) = 0(or f1(z) = 0) cannot be less on two. So the two positive roots
are written as z1, z2.

Research shows that for any ω

e1 > 0. (41)

and in

e1 > 0, c1 < 0, (42)

f1(z) = 0, that is, z3, z4 are all negative numbers.
When y2 > 2(a1 > 0) for e1 > 0, c1 < 0 at this time, then f(ω) < 0, and we can know that the equation V1

′(z) = 0
cannot have more than two positive roots. So the dyonic RN-like black hole is superradiantly stable at that time.
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5. SUMMARY

In this paper, we introduce µ = yω[12, 13] into dyonic RN-like black holes and discuss the superadditive stability of
dyonic RN-like black holes. We adopt the method of variable separation to divide the motion equations of the least
coupled scalar perturbation in dynamical RN black holes into two forms: angular and radial.

Hod proved [10] that when µ ≥
√
2mΩH (where µ is the mass), Kerr black holes should be superradiatively stable

under large-scale scalar perturbations. In this post, a new variable y is added here to extend the results of the previous
post.

When µ ≥
√
2(qΦH), this dyonic RN-like black hole was superradiatively stable at that time.
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