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Abstract

Studies of eco-evolutionary dynamics have integrated evolution with ecological processes at multiple scales (populations, com-

munities, and ecosystems) and with multiple interspecific interactions (antagonistic, mutualistic, and competitive). However,

evolution has often been conceptualized as a single process: short-term adaptive genetic change driven by natural selection.

Here we argue that other diverse evolutionary processes should also be considered, to explore the full spectrum of feedbacks

between ecological and evolutionary processes. Relevant but underappreciated processes include (1) drift and mutation, (2)

disruptive selection causing lineage diversification or speciation reversal, (3) evolution driven by relative fitness differences that

may decrease population growth, and (4) topics including multilevel selection, sexual selection and conflict, hard and soft se-

lection, and genetic/genomic architectures/signatures. Because natural selection is not the sole mechanism of rapid evolution,

it will be important to integrate a variety of concepts in evolutionary biology and ecology to better understand and predict

eco-evolutionary dynamics in nature.
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Abstract 25 

Studies of eco-evolutionary dynamics have integrated evolution with ecological processes at 26 

multiple scales (populations, communities, and ecosystems) and with multiple interspecific 27 

interactions (antagonistic, mutualistic, and competitive). However, evolution has often been 28 

conceptualized as a single process: short-term adaptive genetic change driven by natural 29 

selection. Here we argue that other diverse evolutionary processes should also be considered, 30 

to explore the full spectrum of feedbacks between ecological and evolutionary processes. 31 

Relevant but underappreciated processes include (1) drift and mutation, (2) disruptive 32 

selection causing lineage diversification or speciation reversal, (3) evolution driven by 33 

relative fitness differences that may decrease population growth, and (4) topics including 34 

multilevel selection, sexual selection and conflict, hard and soft selection, and 35 

genetic/genomic architectures/signatures. Because natural selection is not the sole mechanism 36 

of rapid evolution, it will be important to integrate a variety of concepts in evolutionary 37 

biology and ecology to better understand and predict eco-evolutionary dynamics in nature.  38 
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Main text 39 

Ecologists have revealed that microevolution (i.e., allele frequency changes over a few 40 

generations) can be rapid enough to affect contemporary ecological processes (e.g., Pimentel 41 

1961; Thompson 1998; Yoshida et al. 2003; Hairston et al. 2005; Fussmann et al. 2007; 42 

Schoener 2011; Hendry 2016; Bassar et al. 2021; Rudman et al. 2022). Although ecology and 43 

evolutionary biology have been neighboring research areas from the age of Darwin, the 44 

prevailing assumption had long been that ecological processes occur much faster than 45 

evolutionary processes (Darwin 1859; Slobodkin 1961). Thus, the idea of concurrent 46 

ecological and evolutionary dynamics and the feedbacks between them is exciting not only 47 

for synthesizing the two basic scientific disciplines, but also for its applied aspects, such as 48 

the need to predict future eco-evolutionary responses to ongoing environmental change 49 

(Gomulkiewicz & Holt 1995; Kinnison & Hairston 2007; Hoffmann & Sgrò 2011).  50 

 Studies of eco-evolutionary dynamics have integrated evolution with ecological 51 

processes operating at the population (Yoshida et al. 2003; Coulson et al. 2017), community 52 

(Johnson & Stinchcombe 2007), and ecosystem scales (Matthews et al. 2011). Researchers 53 

have also considered the interplay of eco-evolutionary dynamics in the context of multiple 54 

types of interspecific interactions including antagonistic (Post & Palkovacs 2009), mutualistic 55 

(Jones et al. 2009; Northfield & Ives 2013), and competitive (Hart et al. 2019; Pastore et al. 56 

2021) interactions.  57 

 However, evolution in this framework has typically been reduced conceptually to a 58 

single process: short-term adaptive evolution driven by natural selection (Bassar et al. 2021), 59 

with an emphasis (at least initially) on situations where rapid adaptation to a detrimental 60 

change in the biotic or abiotic environment prevents population decline and possible 61 

extinction (Bell 2017). This may be a historical legacy from early studies of rapid evolution, 62 

that often involved adaptive evolution driven by trophic interactions. For example, a majority 63 
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of the studies of rapid evolution tabulated by Thompson (1998) involved gain or loss of 64 

defense traits — gains in response to selection pressure from predators or pathogens or losses 65 

when a threat is diminished (presumably to avoid an unnecessary cost of defense). Most of 66 

the other examples involve either the other end of a trophic interaction, rapid consumer or 67 

pathogen evolution to improve exploitation of available prey or hosts, or evolution of 68 

resistance to chemicals such as environmental toxins, herbicides and pesticides, and 69 

antibiotics. 70 

 Here we propose that it will be useful to conceptualize eco-evolutionary dynamics 71 

more broadly, integrating other kinds of evolutionary processes (including non-adaptive 72 

evolution) to understand better the full spectrum of feedbacks between ecology and 73 

evolution.  74 

 75 

Drift and Mutation: The four fundamental processes in evolutionary dynamics are selection, 76 

migration, drift, and mutation. Selection (as noted above) and to a lesser extent migration 77 

(e.g., Farkas et al. 2013) have received due attention, but drift and mutation have been 78 

relatively neglected in studies of eco-evolutionary dynamics. Theory (Snyder & Ellner 2018; 79 

Snyder et al. 2021) and experimental data (Liu et al. 2019) suggest that the magnitude of 80 

random genetic drift is often far above that predicted by standard population genetic (Wright-81 

Fisher or Moran) models. Even under tightly controlled laboratory conditions, Liu et al. 82 

(2019) found that the drift-effective population size for caged Drosophila populations was 83 

roughly 10 times smaller than the actual population size, because a small fraction of 84 

individuals (for unknown reasons, unrelated to genotype) monopolized reproduction. Such 85 

extreme reproductive skew is also seen in natural populations, for example Chen et al. (2019) 86 

observed vast variation in lifetime reproduction within one Florida scrub jay population, the 87 

top 10 individuals producing more total nestlings than the bottom 200, which could not be 88 
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ascribed to any known genetic differences between individuals. Whereas, the primary 89 

message of rapid evolution is that the deterministic component of evolutionary change is 90 

much larger than we formerly imagined, it may be equally true that the random component of 91 

evolutionary change is also much larger than we currently imagine, and too large to ignore 92 

when projecting evolutionary responses to changed ecological conditions.  93 

 Drift can also mediate eco-evolutionary feedback between population dynamics 94 

and deleterious mutations. For example, extinction vortex and mutational meltdown (Gilpin 95 

& Soulé 1986; Lynch & Lande 1993) is a positive feedback between decreased population 96 

density and greater fixation of deleterious mutations due to genetic drift. Once population 97 

density has decreased sufficiently, eco-evolutionary feedback drives extinction. Although the 98 

concept of an extinction vortex itself is not new, it will be intriguing to measure the speed of 99 

evolution driven by genetic drift and consider a conceptual eco-evolutionary framework 100 

incorporating selection and drift (Nabutanyi & Wittmann 2021). This will be especially 101 

important when studying eco-evolutionary dynamics in large organisms with small 102 

population sizes (e.g., Campbell-Staton et al. 2021) and in metapopulation and 103 

metacommunity dynamics with many small populations in separated habitats (De Meester et 104 

al. 2019) as the classical shifting balance theory (Wright 1982) implies.  105 

Mutation may also have feedbacks with population density because the absolute 106 

rate at which mutations, favorable or unfavorable, arise in a population depends on 107 

population size. This relationship is embodied in the “fundamental (canonical) equation of 108 

Adaptive Dynamics” (Dieckmann & Law 1996), because Adaptive Dynamics theory posits 109 

that evolution is mutation-limited and operates on a slower time-scale than ecological 110 

dynamics. Absence of such a time-scale separation is a defining feature of eco-evolutionary 111 

dynamics (Bassar et al. 2021), but it still may be interesting to consider feedbacks involving 112 

mutation rate, especially in microorganisms such as bacteria. For example, if adaptive 113 
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evolution is important for population persistence in the face of changing conditions, could 114 

reduced population size lead to selection for higher mutation rates?  115 

Theoretical studies of eco-evolutionary dynamics have often employed 116 

deterministic models such as ordinary differential equations (ODEs: Govaert et al. 2019). As 117 

drift and mutation are stochastic processes, we need to employ other modeling frameworks 118 

(e.g., stochastic differential/difference equations or individual-based models) to integrate drift 119 

and mutation into eco-evolutionary dynamics (e.g., Constable et al. 2016).  120 

 121 

Disruptive selection causing diversification and fusion of lineages: Compared with 122 

directional and balancing selection, disruptive selection is underrepresented in studies of eco-123 

evolutionary dynamics. Although disruptive selection and the resultant lineage diversification 124 

(evolutionary branching) have been examined in studies of Adaptive Dynamics theory (Geritz 125 

et al. 1998), the basic assumption there is that evolution is much slower than ecological 126 

processes. What will happen when that evolution is as fast as ecological processes?  127 

Rapid evolution in response to disruptive selection may promote rapid speciation 128 

(Hendry et al. 2007). Interestingly, some theoretical studies have shown that rapid 129 

antagonistic coevolution can drive lineage diversification whereas slow coevolution results in 130 

continuous trait changes without divergence (Calcagno et al. 2010). The cessation of 131 

disruptive selection, on the other hand, may cause speciation reversal, a fusion of two distinct 132 

lineages, which have been described in several systems (Vonlanthen et al. 2012). It will be 133 

interesting to consider ecological consequences of disruptive selection and the resultant eco-134 

evolutionary feedbacks, because rapid (micro)evolution may actually cause long-standing 135 

evolutionary change (i.e., macroevolution). 136 

 137 

Selection that reduces population growth rate: Despite the recognition that selection is 138 
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driven by relative fitness within populations rather than absolute fitness (Metz et al. 1992), 139 

studies of eco-evolutionary dynamics have tended to focus on selection that increases 140 

absolute fitness, partly because of the prevalence of studies on evolutionary rescue, where 141 

adaptive evolution prevents population extinction (Gomulkiewicz & Holt 1995; Kinnison & 142 

Hairston 2007; Bell 2017). Theoretical studies on eco-evolutionary dynamics (e.g., Vasseur et 143 

al. 2011; Cortez 2018; Yamamichi & Letten 2021) often employ the model of Lande (1976) 144 

for quantitative trait evolution, in which a mean trait value ( ) evolves to increase the per-145 

capita population growth rate: 146 

 147 

   (1) 148 

 149 

where v is additive genetic variance and N is population density.  150 

However, because selection acts on relative fitness, it can actually decrease 151 

population growth rate (Abrams et al. 1993). This can be incorporated in Equation 1 by 152 

considering frequency-dependent selection (Abrams 2001). Selection on relative fitness may 153 

cause extinction resulting in “evolutionary suicide” rather than “evolutionary rescue” 154 

(Henriques & Osmond 2020). Again, studies in Adaptive Dynamics theory have investigated 155 

evolutionary suicide (Parvinen 2005), but the basic assumption there has been that evolution 156 

is slow. In the context of community ecology, adaptation to intraspecific interactions such as 157 

sexual and social interactions may result in an evolutionary tragedy of the commons (Rankin 158 

et al. 2007a), and promote negative frequency-dependence by reducing the population growth 159 

rate of species with high abundance (“intraspecific adaptation load” sensu (Yamamichi et al. 160 

2020)). In particular, there is currently a heated debate about whether sexual selection 161 

increases population growth rate (e.g., by selecting better adapted males) or not (e.g., by 162 

wasting energy or attracting predators via male-male competition and female mate choice) 163 

z

dz
dt

= v ∂
∂z

1
N
dN
dt
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(Kokko & Brooks 2003; Martins et al. 2018; Cally et al. 2019). Either may be the case 164 

depending upon the context of the interaction, and both can result in eco-evolutionary 165 

dynamics as population interactions result in evolution (driven by sexual selection) that feeds 166 

back to affect population growth rate. It will be important to consider evolution that 167 

maximizes geometric mean fitness (e.g., bet-hedging: Cohen 1966) as well, because it may 168 

also reduce the short-term population growth rate (unlike Equation 1). 169 

 170 

Other evolutionary processes: There are many other aspects of evolution that have been 171 

considered relatively infrequently in the context of eco-evolutionary dynamics. For example, 172 

one of the central topics in evolutionary biology is evolution of cooperation due to kin or 173 

multilevel selection (Nowak 2006). By considering feedbacks between ecological and 174 

evolutionary processes, it will be possible to provide a new perspective on the evolution of 175 

cooperation: for example, laboratory experiments with yeast have shown transient eco-176 

evolutionary cycles to a coexistence equilibrium of cooperators and cheaters (Sanchez & 177 

Gore 2013). Weitz et al. (2016) proposed a theoretical framework that combines evolution of 178 

cooperation and ecological dynamics, and found similar cycles. Bergstrom and Lachmann 179 

(2003) showed that a rapidly evolving species benefits less in coevolution with mutualist 180 

partners. On the other hand, Rankin et al. (2007b) using eco-evolutionary model simulations 181 

showed that interspecific competition may promote evolution of intraspecific cooperation, 182 

highlighting the potential importance of multi-level selection.  183 

As with evolution of cooperation, other adaptive evolution, driven by intraspecific 184 

interactions such as sexual selection and conflict, has been underrepresented until recently 185 

(Giery & Layman 2019; Svensson 2019; Yamamichi et al. 2020). Similarly, recent papers 186 

have highlighted the value in considering the difference between hard and soft selection (Bell 187 

et al. 2021) and population genetic aspects in eco-evolutionary dynamics (Osmond & Coop 188 
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2020; Yamamichi 2022). Soft selection is affected by environmental conditions as well as 189 

population composition and may result in counterintuitive effects on population growth (Bell 190 

et al. 2021). Seeking population genetic signatures of eco-evolutionary dynamics may be 191 

particularly pertinent in this era of “big genomic data.” We may be able to infer past eco-192 

evolutionary dynamics by examining genomic patterns of populations (e.g., selective sweeps 193 

due to adaptive evolution in evolutionary rescue: (Osmond & Coop 2020)). It will also be 194 

possible to examine how genetic architecture of adaptive trait evolution affects eco-195 

evolutionary dynamics in the future (Rudman et al. 2018; Yamamichi 2022). 196 

 Because natural selection is not the sole mechanism of rapid evolution, it will be 197 

important to integrate concepts in population genetics, evolutionary biology, and ecology 198 

carefully to better understand and predict ecological dynamics in nature. Despite the rise of 199 

studies of eco-evolutionary dynamics from at most one or two per year prior to 2007 to well 200 

over 100 per year since 2017 (Bassar et al. 2021), a recent co-citation network analysis by 201 

Réale et al. (2020) indicates that there has been no trend towards a stronger integration of 202 

ecology and evolutionary biology. This may partly be because the number of researchers is 203 

increasing and each subdiscipline has expanded. However, conceptual developments can be 204 

accelerated by considering analogies between ecology and evolutionary biology (Hairston et 205 

al. 1996; Vellend 2016). Studying eco-evolutionary dynamics as an interdisciplinary topic 206 

presents a great opportunity to promote a synthesis of population/community ecology and 207 

population/quantitative genetics as well as evolutionary (behavioral) ecology. In addition, it 208 

will be essential for deepening our understanding of microbiology and effects of ongoing 209 

environmental changes (Loreau et al. 2022). Through this process, considering eco-210 

evolutionary dynamics will become essential not only for ecologists but also for geneticists 211 

and evolutionary biologists. 212 

 213 
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