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1. INTRODUCTION

In 1950, Halmos [22] made a deep insight into structure theory of operators on Hilbert space by exhibiting
any contraction as a part of a unitary. In 1953, Sz.-Nagy [39] showed that Halmos result can be extended
to powers of contractions using a unitary operator. In 1963, T. Ando [5] showed that there is a version
of Sz.-Nagy dilation for commuting contractions. Combined with spectral theory and theory of (several)
complex variables, today, dilation theory of contractions is a rapidly evolving area of research and for
a comprehensive look, we refer |1},/4H7,/9-16}19-21,|27}, 28,3137, /40-43]. Started in 1970’s, dilations of
contractions acting on Lebesgue spaces and Banach spaces followed Hilbert space developments [2}3}/17]
18},24,1304(38].

In 2021, by identifying essential mechanisms of dilation theory, Bhat, De and Rakshit [§] obtained sur-
prising results in the set theory context and vector spaces. In 2022, further study in the context of vector
spaces was carried by Krishna and Johnson [26]. We note that another vector space variant is also studied
by Han, Larson, Liu and Liu [23]. Recently Krishna introduced the notion of magic contractions and
derived Sz.-Nagy dilation for p-adic Hilbert spaces and modules [25].

In this paper, we derive indefinite inner product module versions of Halmos dilation (Theorem ,
Egervary N-dilation (Theorem , Sz.-Nagy dilation (Theorem . Our article is highly motivated
from the paper of Halmos [22]|, Egervary [16], Schaffer [36], Sz.-Nagy [39], Bhat, De and Rakshit [§],
Krishna and Johnson [26] and Krishna [25].

2. INDEFINITE HALMOS, EGERVARY AND SZ.-NAGY DILATIONS

We are going to use the following notions. A ring R with an automorphism * which is either identity or

of order 2 is called as an *-ring. Throughout the paper we assume that characteristic of ring is 2.

Definition 2.1. [29] Let V be a module over R. We say that V is an indefinite inner product module (we
write IIPM) if there is a map (called as indefinite inner product) (-,-) : V x V — R satisfying following.
(i) If x € V is such that (x,y) =0 for ally € V, then z = 0.
(i) (x,y) = (y,x)* for allx,y € V.

(ili) (ax +y,2) = alx,2) + (y,2) for alla € R, for all x,y,z € V.
1
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Let V be a IIPM and T : V — V be a morphism. We say that T is adjointable if there is a morphism,
denoted by T* : ¥V — V such that (T'z,y) = (x,T*y), Vz,y € V. Note that (i) in Definition says that
adjoint, if exists, is unique. An adjointable morphism U is said to be a unitary if UU* = U*U = Iy,
the identity operator on V. An adjointable morphism P is said to be projection if P2 = P* = P. An
adjointable morphism 7" is said to be an isometry if T7%7T = I,,. An adjointable morphism 7T is said to be
self-adjoint if T* = T'. We denote the identity operator on V by Iy.

Our first result is the indefinite Halmos dilation.

Theorem 2.2. (Indefinite Halmos dilation) Let V be a IIPM over a *-ring of characteristic 2 and
T:V =YV be a self-adjoint morphism. Then the morphism

U T hy+T
S \+T T

T =PyUly, T*=P,U*y,

is unitary on V @ V. In other words,

where P, : V@V 3 (z,y) — x € V.

Proof. A direct calculation says that

Vo= T Ivy+T
" \np+T T

is the inverse and adjoint of U. (]

Our second result is the indefinite Egervary N-dilation.

Theorem 2.3. (Indefinite Egervary N-dilation) Let V be a IIPM over a *-ring of characteristic 2
and T : V — V be a self-adjoint morphism. Let N be a natural number. Then the morphism

T 0 0 0 0 L+T
L+T 0 0 0 O T
0 Iy 0 O 0
0 0 Iy 0 O 0
U=
0 0 O 0
o o0 -~ Iy O 0
0 0 - 0 Iy 0 (N+1)x (N+1)
18 unitary on EBilelV and
(1) T = PyU*y, Vk=1,...,N, (T*)*=P,(U"*y, Vk=1,...,N

where Py : NV 3 (z) N = @y € V.
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Proof. A direct calculation of power of U gives Equation . To complete the proof, now we need show
that U is unitary. Define

T IL+T 0 0 0 0
0 0 Iy 0 0 O
0 0 0 0 O
0 0 0 0 0
V= .
0 0 0 0 Iy O
0 0 0 0 Iy
y+T T 00 0 (N+1)x(N+1)
Then UV =VU = I@kzv;lv and U* =V. (I

Note that the Equation holds only upto N and not for N + 1 and higher natural numbers. In the
following theorem, given a IIPM V, @52 V is the IIPM defined by

n=—o00
a0V i={{zn}02 o, Tn €V,Vn € Z,x,, # 0 only for finitely many n’s}

equipped with inner product

oo

<{xn}$f=—ooa {yn}%o=—oo> = Z (TnsYn), v{xn};o:—oov {yn}zi_oo € P _ V.

n—=—oo

Our third result is the indefinite Sz.-Nagy dilation.

Theorem 2.4. (Indefinite Sz.-Nagy dilation) Let V be a IIPM over a *-ring of characteristic 2 and
T:V =V be a self-adjoint morphism. Let U = (Unm)—co<n,m<oco be the morphism defined on 5> _ V

given by the infinite matriz defined as follows:

uoo =1, wyp=L+T, uao=~L+T, u11:=T,

)

Unnt1 =1y, Vne€Zn#0,1, uUpm:=0 otherwise,

i.e.,
I, 0 0 0 0 0
0 Iy 0 0 0 0
_ 0 0 Ip+T 0 0
- 0 0 L+T 0 0
0 0 0 0 I, 0
0 0 0 0 0 Iy

00 X 00

where T is in the (0,0) position (which is boxed), is unitary on &5 _ V and

(2) T" = P,U"y, VneN, (T9)"=Py(U")"y, VneN,

where Py : &3 _ V3 (x,)52 =z € V.

n=—oo n=—oo
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Proof. We get Equation by calculation of powers of U. The matrix V = (Vn,m)—co<n,m<oo defined
by

vo,0 =T, wvo—1:=Iy+T, vig=L+T, v,-1:=T,

Unn—1 =1y, Vne€Zn#0,1, v,m:=0 otherwise,

ie.,
Iy 0 0 0 0 0
0 Iy 0 0 0 0
v 0 0 Iy+T 0 0
B 0 0 T IL+T 0 0
0 O 0 0 Iy 0
0 0 0 0 0 Iy
: o0 X 00
where T is in the (0.0) position (which is boxed), satisfies UV = VU = Igec v and U* = V. O
We note that explicit sequential form of U is
Un)pz oo = (-yx0, 1, (Iy +T)xo + T:m,‘ Txo+ (Iy +T)xy ‘, T2, T2y ... )

where Txg + (Iy + T)x; is in the 0 position (which is boxed) and U* is

U* (mn);z.ozfoo

= ( R $,3,$,2,‘ (IV + T).%‘,l + Tz ‘, Tr_, + (Iv + T)!Eo, T1,... ),

where (Iy +T)z_1+Txg is in the 0 position (which is boxed). We next wish to derive indefinite isometric

Sz.-Nagy dilation.

Theorem 2.5. (Indefinite isometric Sz.-Nagy dilation) Let V be a IIPM over a *-ring of charac-
teristic 2 and T : V — V be a self-adjoint morphism. Let U = (Un m)o<n,m<co e the morphism defined

on B2,V given by the infinite matriz defined as follows:

upo =T, w1 =Iy+T, Upp1p:=1Iy, Yn>2, up, =0 otherwise,

i.e.,
0 0 0 0 0
y+T 0 0 0 0 0
0 Iy 0 0 0 0
U= 0 0 Iy 0 0 0
0 0 0 L 0 0
0 0 0 0 Iy 0

o0 X 00

where T is in the (0,0) position (which is boxed), is isometry on S,V and
(3) "= PyU"y, VneN, (T*)"=Pu(U") ", ¥neN,

where Py 1 @720V 3 (2,)0%, — To € V.
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Proof. 1t suffices to note the adjoint of U is

I,b+T 0 0 0 0

0 0 Iy 0 0 0

0 0 0 Iy 0 O

U — 0 0 0 L 0
0 0 0 0 Iy

0 0 0 0 0

00 X 00
where T is in the (0,0) position (which is boxed). O

We now formulate following problems.

Problem 2.6.

(i) Whether there is an indefinite Ando dilation? If yes, whether one can dilate commut-

ing three, four, ... commuting self-adjoint morphisms to commuting unitaries?

(ii) Whether there is (a kind of ) uniqueness of indefinite Halmos dilation?

(iii) Whether there is a indefinite intertwining-lifting theorem (commutant lifting theo-

(1]

2]

(3]

rem)?
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