INDEFINITE HALMOS, EGERVARY AND Sz.-NAGY DILATIONS

K. Mahesh Krishna ${ }^{1}$
${ }^{1}$ Affiliation not available
September 28, 2022

INDEFINITE HALMOS, EGERVARY AND SZ.-NAGY DILATIONS

K. MAHESH KRISHNA
Post Doctoral Fellow
Statistics and Mathematics Unit
Indian Statistical Institute, Bangalore Centre
Karnataka 560 059, India
Email: kmaheshak@gmail.com

Date: September 27, 2022

Abstract

Let \mathcal{M} be an indefinite inner product module over a *-ring of characteristic 2 . We show that every self-adjoint operator on \mathcal{M} admits Halmos, Egervary and Sz.-Nagy dilations.

Keywords: Dilation, Indefinite inner product space, Module.
Mathematics Subject Classification (2020): 47A20, 16D10, 46C20.

1. Introduction

In 1950, Halmos 22 made a deep insight into structure theory of operators on Hilbert space by exhibiting any contraction as a part of a unitary. In 1953, Sz.-Nagy 39 showed that Halmos result can be extended to powers of contractions using a unitary operator. In 1963, T. Ando (5) showed that there is a version of Sz.-Nagy dilation for commuting contractions. Combined with spectral theory and theory of (several) complex variables, today, dilation theory of contractions is a rapidly evolving area of research and for a comprehensive look, we refer $[1,4,7,9,16,19,21,27,28,31,37,40,43$. Started in 1970's, dilations of contractions acting on Lebesgue spaces and Banach spaces followed Hilbert space developments $2,3,17$, 18, $24,30,38$.
In 2021, by identifying essential mechanisms of dilation theory, Bhat, De and Rakshit 8 obtained surprising results in the set theory context and vector spaces. In 2022, further study in the context of vector spaces was carried by Krishna and Johnson [26. We note that another vector space variant is also studied by Han, Larson, Liu and Liu [23]. Recently Krishna introduced the notion of magic contractions and derived Sz.-Nagy dilation for p-adic Hilbert spaces and modules 25 .
In this paper, we derive indefinite inner product module versions of Halmos dilation (Theorem 2.2), Egervary N-dilation (Theorem 2.3), Sz.-Nagy dilation (Theorem 2.4). Our article is highly motivated from the paper of Halmos [22, Egervary 16], Schaffer [36, Sz.-Nagy 39], Bhat, De and Rakshit [8], Krishna and Johnson [26] and Krishna 25.

2. Indefinite Halmos, Egervary and Sz.-Nagy Dilations

We are going to use the following notions. A ring \mathcal{R} with an automorphism $*$ which is either identity or of order 2 is called as an ${ }^{*}$-ring. Throughout the paper we assume that characteristic of ring is 2 .

Definition 2.1. [2g] Let \mathcal{V} be a module over \mathcal{R}. We say that \mathcal{V} is an indefinite inner product module (we write IIPM) if there is a map (called as indefinite inner product) $\langle\cdot, \cdot\rangle: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{R}$ satisfying following.
(i) If $x \in \mathcal{V}$ is such that $\langle x, y\rangle=0$ for all $y \in \mathcal{V}$, then $x=0$.
(ii) $\langle x, y\rangle=\langle y, x\rangle^{*}$ for all $x, y \in \mathcal{V}$.
(iii) $\langle\alpha x+y, z\rangle=a\langle x, z\rangle+\langle y, z\rangle$ for all $a \in \mathcal{R}$, for all $x, y, z \in \mathcal{V}$.

Let \mathcal{V} be a IIPM and $T: \mathcal{V} \rightarrow \mathcal{V}$ be a morphism. We say that T is adjointable if there is a morphism, denoted by $T^{*}: \mathcal{V} \rightarrow \mathcal{V}$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle, \forall x, y \in \mathcal{V}$. Note that (i) in Definition 2.1 says that adjoint, if exists, is unique. An adjointable morphism U is said to be a unitary if $U U^{*}=U^{*} U=I_{\mathcal{V}}$, the identity operator on \mathcal{V}. An adjointable morphism P is said to be projection if $P^{2}=P^{*}=P$. An adjointable morphism T is said to be an isometry if $T^{*} T=I_{\mathcal{V}}$. An adjointable morphism T is said to be self-adjoint if $T^{*}=T$. We denote the identity operator on \mathcal{V} by $I_{\mathcal{V}}$.
Our first result is the indefinite Halmos dilation.
Theorem 2.2. (Indefinite Halmos dilation) Let \mathcal{V} be a IIPM over a *-ring of characteristic 2 and $T: \mathcal{V} \rightarrow \mathcal{V}$ be a self-adjoint morphism. Then the morphism

$$
U:=\left(\begin{array}{cc}
T & I_{\mathcal{V}}+T \\
I_{\mathcal{V}}+T & T
\end{array}\right)
$$

is unitary on $\mathcal{V} \oplus \mathcal{V}$. In other words,

$$
T=\left.P_{\mathcal{V}} U\right|_{\mathcal{V}}, \quad T^{*}=\left.P_{\mathcal{V}} U^{*}\right|_{\mathcal{V}}
$$

where $P_{\mathcal{V}}: \mathcal{V} \oplus \mathcal{V} \ni(x, y) \mapsto x \in \mathcal{V}$.
Proof. A direct calculation says that

$$
V:=\left(\begin{array}{cc}
T & I_{\mathcal{V}}+T \\
I_{\mathcal{V}}+T & T
\end{array}\right)
$$

is the inverse and adjoint of U.
Our second result is the indefinite Egervary N-dilation.
Theorem 2.3. (Indefinite Egervary \boldsymbol{N}-dilation) Let \mathcal{V} be a IIPM over a ${ }^{*}$-ring of characteristic 2 and $T: \mathcal{V} \rightarrow \mathcal{V}$ be a self-adjoint morphism. Let N be a natural number. Then the morphism

$$
U:=\left(\begin{array}{ccccccc}
T & 0 & 0 & \cdots & 0 & 0 & I_{\mathcal{V}}+T \\
I_{\mathcal{V}}+T & 0 & 0 & \cdots & 0 & 0 & T \\
0 & I_{\mathcal{V}} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & I_{\mathcal{V}} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & I_{\mathcal{V}} & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & I_{\mathcal{V}} & 0
\end{array}\right)_{(N+1) \times(N+1)}
$$

is unitary on $\oplus_{k=1}^{N+1} \mathcal{V}$ and

$$
\begin{equation*}
T^{k}=\left.P_{\mathcal{V}} U^{k}\right|_{\mathcal{V}}, \quad \forall k=1, \ldots, N, \quad\left(T^{*}\right)^{k}=\left.P_{\mathcal{V}}\left(U^{*}\right)^{k}\right|_{\mathcal{V}}, \quad \forall k=1, \ldots, N \tag{1}
\end{equation*}
$$

where $P_{\mathcal{V}}: \oplus_{k=1}^{N+1} \mathcal{V} \ni\left(x_{k}\right)_{k=1}^{N+1} \mapsto x_{1} \in \mathcal{V}$.

Proof. A direct calculation of power of U gives Equation 11. To complete the proof, now we need show that U is unitary. Define

$$
V:=\left(\begin{array}{ccccccc}
T & I_{\mathcal{V}}+T & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & I_{\mathcal{V}} & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & I_{\mathcal{V}} & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & I_{\mathcal{V}} \\
I_{\mathcal{V}}+T & T & 0 & \cdots & 0 & 0 & 0
\end{array}\right)_{(N+1) \times(N+1)}
$$

Then $U V=V U=I_{\oplus_{k=1}^{N+1} \mathcal{V}}$ and $U^{*}=V$.
Note that the Equation (1) holds only upto N and not for $N+1$ and higher natural numbers. In the following theorem, given a IIPM $\mathcal{V}, \oplus_{n=-\infty}^{\infty} \mathcal{V}$ is the IIPM defined by

$$
\oplus_{n=-\infty}^{\infty} \mathcal{V}:=\left\{\left\{x_{n}\right\}_{n=-\infty}^{\infty}, x_{n} \in \mathcal{V}, \forall n \in \mathbb{Z}, x_{n} \neq 0 \text { only for finitely many } n^{\prime} \mathrm{s}\right\}
$$

equipped with inner product

$$
\left\langle\left\{x_{n}\right\}_{n=-\infty}^{\infty},\left\{y_{n}\right\}_{n=-\infty}^{\infty}\right\rangle:=\sum_{n=-\infty}^{\infty}\left\langle x_{n}, y_{n}\right\rangle, \quad \forall\left\{x_{n}\right\}_{n=-\infty}^{\infty},\left\{y_{n}\right\}_{n=-\infty}^{\infty} \in \oplus_{n=-\infty}^{\infty} \mathcal{V}
$$

Our third result is the indefinite Sz.-Nagy dilation.
Theorem 2.4. (Indefinite Sz.-Nagy dilation) Let \mathcal{V} be a IIPM over a ${ }^{*}$-ring of characteristic 2 and $T: \mathcal{V} \rightarrow \mathcal{V}$ be a self-adjoint morphism. Let $U:=\left(u_{n, m}\right)_{-\infty \leq n, m \leq \infty}$ be the morphism defined on $\oplus_{n=-\infty}^{\infty} \mathcal{V}$ given by the infinite matrix defined as follows:

$$
\begin{aligned}
& u_{0,0}:=T, \quad u_{0,1}:=I_{\mathcal{V}}+T, \quad u_{-1,0}:=I_{\mathcal{V}}+T, \quad u_{-1,1}:=T \\
& u_{n, n+1}:=I_{\mathcal{V}}, \quad \forall n \in \mathbb{Z}, n \neq 0,1, \quad u_{n, m}:=0 \quad \text { otherwise }
\end{aligned}
$$

i.e.,

$$
U=\left(\begin{array}{cccccccc}
& \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & I_{\mathcal{V}} & 0 & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & I_{\mathcal{V}} & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & I_{\mathcal{V}}+T & T & 0 & 0 & \cdots \\
\cdots & 0 & 0 & T & I_{\mathcal{V}}+T & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & I_{\mathcal{V}} & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & 0 & I_{\mathcal{V}} & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right)_{\infty \times \infty}
$$

where T is in the $(0,0)$ position (which is boxed), is unitary on $\oplus_{n=-\infty}^{\infty} \mathcal{V}$ and

$$
\begin{equation*}
T^{n}=\left.P_{\mathcal{V}} U^{n}\right|_{\mathcal{V}}, \quad \forall n \in \mathbb{N}, \quad\left(T^{*}\right)^{n}=\left.P_{\mathcal{V}}\left(U^{*}\right)^{n}\right|_{\mathcal{V}}, \quad \forall n \in \mathbb{N} \tag{2}
\end{equation*}
$$

where $P_{\mathcal{V}}: \oplus_{n=-\infty}^{\infty} \mathcal{V} \ni\left(x_{n}\right)_{n=-\infty}^{\infty} \mapsto x_{0} \in \mathcal{V}$.

Proof. We get Equation (2) by calculation of powers of U. The matrix $V:=\left(v_{n, m}\right)_{-\infty \leq n, m \leq \infty}$ defined by

$$
\begin{aligned}
& v_{0,0}:=T, \quad v_{0,-1}:=I_{\mathcal{V}}+T, \quad v_{1,0}:=I_{\mathcal{V}}+T, \quad v_{1,-1}:=T \\
& v_{n, n-1}:=I_{\mathcal{V}}, \quad \forall n \in \mathbb{Z}, n \neq 0,1, \quad v_{n, m}:=0 \quad \text { otherwise }
\end{aligned}
$$

i.e.,

$$
V=\left(\begin{array}{cccccccc}
& \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & I_{\mathcal{V}} & 0 & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & I_{\mathcal{V}} & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & I_{\mathcal{V}}+T & T & 0 & 0 & \cdots \\
\cdots & 0 & 0 & T & I_{\mathcal{V}}+T & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & I_{\mathcal{V}} & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & 0 & I_{\mathcal{V}} & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right)_{\infty \times \infty}
$$

where T is in the (0.0) position (which is boxed), satisfies $U V=V U=I_{\oplus_{n=-\infty}^{\infty}} \mathcal{V}$ and $U^{*}=V$.
We note that explicit sequential form of U is

$$
U\left(x_{n}\right)_{n=-\infty}^{\infty}=\left(\ldots, x_{-2}, x_{-1},\left(I_{\mathcal{V}}+T\right) x_{0}+T x_{1}, T x_{0}+\left(I_{\mathcal{V}}+T\right) x_{1}, x_{2}, x_{2}, \ldots\right)
$$

where $T x_{0}+\left(I_{\mathcal{V}}+T\right) x_{1}$ is in the 0 position (which is boxed) and U^{*} is

$$
U^{*}\left(x_{n}\right)_{n=-\infty}^{\infty}=\left(\ldots, x_{-3}, x_{-2},\left(I_{\mathcal{V}}+T\right) x_{-1}+T x_{0}, T x_{-1}+\left(I_{\mathcal{V}}+T\right) x_{0}, x_{1}, \ldots\right)
$$

where $\left(I_{\mathcal{V}}+T\right) x_{-1}+T x_{0}$ is in the 0 position (which is boxed). We next wish to derive indefinite isometric Sz.-Nagy dilation.

Theorem 2.5. (Indefinite isometric Sz.-Nagy dilation) Let \mathcal{V} be a IIPM over a ${ }^{*}$-ring of characteristic 2 and $T: \mathcal{V} \rightarrow \mathcal{V}$ be a self-adjoint morphism. Let $U:=\left(u_{n, m}\right)_{0 \leq n, m \leq \infty}$ be the morphism defined on $\oplus_{n=0}^{\infty} \mathcal{V}$ given by the infinite matrix defined as follows:

$$
u_{0,0}:=T, \quad u_{2,1}:=I_{\mathcal{V}}+T, \quad u_{n+1, n}:=I_{\mathcal{V}}, \quad \forall n \geq 2, \quad u_{n, m}:=0 \quad \text { otherwise }
$$

i.e.,

$$
U=\left(\begin{array}{ccccccc}
\boxed{T} & 0 & 0 & 0 & 0 & 0 & \cdots \\
I_{\mathcal{V}}+T & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & I_{\mathcal{V}} & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & I_{\mathcal{V}} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & I_{\mathcal{V}} & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & I_{\mathcal{V}} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right)_{\infty \times \infty}
$$

where T is in the $(0,0)$ position (which is boxed), is isometry on $\oplus_{n=0}^{\infty} \mathcal{V}$ and

$$
\begin{equation*}
T^{n}=\left.P_{\mathcal{V}} U^{n}\right|_{\mathcal{V}}, \quad \forall n \in \mathbb{N}, \quad\left(T^{*}\right)^{n}=\left.P_{\mathcal{V}}\left(U^{*}\right)^{n}\right|_{\mathcal{V}}, \quad \forall n \in \mathbb{N} \tag{3}
\end{equation*}
$$

where $P_{\mathcal{V}}: \oplus_{n=0}^{\infty} \mathcal{V} \ni\left(x_{n}\right)_{n=0}^{\infty} \mapsto x_{0} \in \mathcal{V}$.

Proof. It suffices to note the adjoint of U is

$$
U^{*}=\left(\begin{array}{ccccccc}
\boxed{T} & I_{\mathcal{V}}+T & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & I_{\mathcal{V}} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & I_{\mathcal{V}} & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & I_{\mathcal{V}} & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & I_{\mathcal{V}} & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right)_{\infty \times \infty}
$$

where T is in the $(0,0)$ position (which is boxed).
We now formulate following problems.

Problem 2.6.

(i) Whether there is an indefinite Ando dilation? If yes, whether one can dilate commuting three, four, ... commuting self-adjoint morphisms to commuting unitaries?
(ii) Whether there is (a kind of) uniqueness of indefinite Halmos dilation?
(iii) Whether there is a indefinite intertwining-lifting theorem (commutant lifting theorem)?

References

[1] Jim Agler and John E. McCarthy. Pick interpolation and Hilbert function spaces, volume 44 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
[2] M. A. Akcoglu and L. Sucheston. Dilations of positive contractions on L_{p} spaces. Canad. Math. Bull., 20(3):285-292, 1977.
[3] Mustafa A. Akcoglu and P. Ekkehard Kopp. Construction of dilations of positive L_{p}-contractions. Math. Z., 155(2):119127, 1977.
[4] C. Ambroziea and V. Muller. Commutative dilation theory. In Operator Theory, pages 1-29. Springer, 2015.
[5] T. Andô. On a pair of commutative contractions. Acta Sci. Math. (Szeged), 24:88-90, 1963.
[6] William Arveson. Dilation theory yesterday and today. In A glimpse at Hilbert space operators, volume 207 of Oper. Theory Adv. Appl., pages 99-123. Birkhäuser Verlag, Basel, 2010.
[7] Hari Bercovici. Operator theory and arithmetic in H^{∞}, volume 26 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1988.
[8] B. V. Rajarama Bhat, Sandipan De, and Narayan Rakshit. A caricature of dilation theory. Adv. Oper. Theory, 6(4):Paper No. 63, 20, 2021.
[9] B. V. Rajarama Bhat and Mithun Mukherjee. Two states. Houston J. Math., 47(1):63-95, 2021.
[10] Tirthankar Bhattacharyya. Dilation of contractive tuples: a survey. In Surveys in analysis and operator theory (Canberra, 2001), volume 40 of Proc. Centre Math. Appl. Austral. Nat. Univ., pages 89-126. Austral. Nat. Univ., Canberra, 2002.
[11] Man-Duen Choi and Kenneth R. Davidson. A 3×3 dilation counterexample. Bull. Lond. Math. Soc., 45(3):511-519, 2013.
[12] M. J. Crabb and A. M. Davie. von Neumann's inequality for Hilbert space operators. Bull. London Math. Soc., 7:49-50, 1975.
[13] R. G. Douglas. Structure theory for operators. I. J. Reine Angew. Math., 232:180-193, 1968.
[14] S. W. Drury. Remarks on von Neumann's inequality. In Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981), volume 995 of Lecture Notes in Math., pages 14-32. Springer, Berlin, 1983.
[15] E. Durszt and B. Sz.-Nagy. Remark to a paper: "Models for noncommuting operators" [J. Funct. Anal. 48 (1982), no. 1, 1-11] by A. E. Frazho. J. Functional Analysis, 52(1):146-147, 1983.
[16] E. Egerváry. On the contractive linear transformations of n-dimensional vector space. Acta Sci. Math. (Szeged), 15:178182, 1954.
[17] Stephan Fackler and Jochen Gluck. A toolkit for constructing dilations on Banach spaces. Proc. Lond. Math. Soc. (3), 118(2):416-440, 2019.
[18] Gero Fendler. On dilations and transference for continuous one-parameter semigroups of positive contractions on $L^{p}{ }_{-}$ spaces. Ann. Univ. Sarav. Ser. Math., 9(1):iv+97, 1998.
[19] C. Foias, A. E. Frazho, I. Gohberg, and M. A. Kaashoek. Metric constrained interpolation, commutant lifting and systems, volume 100 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1998.
[20] Ciprian Foias and Arthur E. Frazho. The commutant lifting approach to interpolation problems, volume 44 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1990.
[21] Arthur E. Frazho. Models for noncommuting operators. J. Functional Analysis, 48(1):1-11, 1982.
[22] Paul R. Halmos. Normal dilations and extensions of operators. Summa Brasil. Math., 2:125-134, 1950.
[23] Deguang Han, David R. Larson, Bei Liu, and Rui Liu. Structural properties of homomorphism dilation systems. Chin. Ann. Math. Ser. B, 41(4):585-600, 2020.
[24] Martin Kern, Rainer Nagel, and Gunther Palm. Dilations of positive operators: construction and ergodic theory. Math. Z., 156(3):265-277, 1977.
[25] K. Mahesh Krishna. p-adic magic contractions, p-adic von Neumann inequality and p-adic Sz.-Nagy dilation. arXiv:2209.12012v1 [math.NT] 24 September, 2022.
[26] K. Mahesh Krishna and P. Sam Johnson. Dilations of linear maps on vector spaces. Oper. Matrices, 16(2):465-477, 2022.
[27] Eliahu Levy and Orr Moshe Shalit. Dilation theory in finite dimensions: the possible, the impossible and the unknown. Rocky Mountain J. Math., 44(1):203-221, 2014.
[28] John E. McCarthy and Orr Moshe Shalit. Unitary N-dilations for tuples of commuting matrices. Proc. Amer. Math. Soc., 141(2):563-571, 2013.
[29] John Milnor and Dale Husemoller. Symmetric bilinear forms. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73. Springer-Verlag, New York-Heidelberg, 1973.
[30] Rainer Nagel and Günther Palm. Lattice dilations of positive contractions on L^{p}-spaces. Canad. Math. Bull., 25(3):371374, 1982.
[31] Stephen Parrott. Unitary dilations for commuting contractions. Pacific J. Math., 34:481-490, 1970.
[32] Vern Paulsen. Completely bounded maps and operator algebras, volume 78 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002.
[33] Gilles Pisier. Similarity problems and completely bounded maps, volume 1618 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2001.
[34] Gelu Popescu. Isometric dilations for infinite sequences of noncommuting operators. Trans. Amer. Math. Soc., 316(2):523-536, 1989.
[35] Donald Sarason. Generalized interpolation in H^{∞}. Trans. Amer. Math. Soc., 127:179-203, 1967.
[36] J. J. Schäffer. On unitary dilations of contractions. Proc. Amer. Math. Soc., 6:322, 1955.
[37] Orr Moshe Shalit. Dilation theory: a guided tour. In Operator theory, functional analysis and applications, volume 282 of Oper. Theory Adv. Appl., pages 551-623. Birkhäuser/Springer, Cham, 2021.
[38] Elena Stroescu. Isometric dilations of contractions on Banach spaces. Pacific J. Math., 47:257-262, 1973.
[39] Béla Sz.-Nagy. Sur les contractions de l'espace de Hilbert. Acta Sci. Math. (Szeged), 15:87-92, 1953.
[40] Béla Sz.-Nagy. On Schäffer's construction of unitary dilations. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 3(4):343346, 1960/61.
[41] Béla Sz.-Nagy and Ciprian Foiaş. The "lifting theorem" for intertwining operators and some new applications. Indiana Univ. Math. J., 20(10):901-904, 1971.
[42] Bela Sz.-Nagy, Ciprian Foias, Hari Bercovici, and Laszlo Kerchy. Harmonic analysis of operators on Hilbert space. Universitext. Springer, New York, second edition, 2010.
[43] N. Th. Varopoulos. On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory. J. Functional Analysis, 16:83-100, 1974.

