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Abstract

In recent years, spectrum analysis and computation have developed rapidly in order to explore and characterize the properties

of network sciences. Let Ln be obtained from the transformation of the graph L6,4,4 n , which obtained by attaching crossed

two four-membered rings to the terminal of crossed phenylenes. Firstly, we study the (nomalized) Laplacian spectrum of Ln

based on the decomposition theorem for the corresponding matrices. Secondly, we obtain the closed-term fomulas for the

(multiplicative degree) Kirchhoff index and the number of spanning trees from the relationship between roots and coefficients

in linear chain networks. Finally, we are surprised to find that the (multiplicative degree) Kirchhoff index of Ln is nearly to one

quarter of its (Gutman) Wiener index when n tends to infinity.
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1. Introduction

Throughout this article, we only consider simple, undirected and finite graphs and assume that all

graphs are connected. Suppose G be a graph with the vertex set V (G ) = {v1, v2, · · · , vn} and the edge

set E(G ) = {e1, e2, · · · , em}. The adjacency matrix A(G ) is a 0− 1 n× n matrix indexed by the vertices

of G and defined by aij = 1 if and only if vsvt ∈ EG . For more notation, one can be referred to [1].

The Laplacian matrix of graph G is defined as L(G ) = D(G )−A(G ), and assume that the eigenvalues

of L(G ) are labeled 0 = µ1 < µ2 ≤ · · · ≤ µn.

(L(G ))st =


ds, s = t;

−1, s 6= t and vs v vt;

0, otherwise.

(1.1)

The normalized Laplacian matrix is given by

(L(G ))st =


1, s = t;

− 1√
dsdt

, s 6= t and vs v vt;

0, otherwise.

(1.2)

The distance, dij = dG (us, ut), between vertices us and ut of G is the length of a shortest us, ut-path

in G . The Wiener index [2, 3] is the sum of the distances of any two vertices in the graph G , that is

W (G ) =
∑
s<t

dst.

In 1947, the distance-based invariant first appeared in chemistry [3, 4] and began to apply it to

mathematics 30 years later [5]. Nowadays, the Wiener index is widely used in mathematics [6–8] and

chemistry [9–11].

E-mail address: liujiabaoad@163.com, wangkang19980413@163.com, gujiaojiaoajd@163.com
* Corresponding author.
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In a simple graph G , the degree, di = dG(vi), of a vertex vi is the number of edges at vi. The Gutman

index [12] of the simple graph G is expressed by

Gut(G ) =
∑
s<t

dsdtdst. (1.3)

Klein and Randić initially outlined the concepts associated with the resistance distance [13] of the

graph. Assume that each edge is replaced by a unit resistor, and we use rst to denote the resistance

distance between two vertices s and t. Similar to Wiener index, the Kirchhoff index [14, 15] of graph G

is expressed as the sum of the resistance distances between each two vertices, that is

Kf(G ) =
∑
s<t

rst.

In 2007, Chen and Zhang [16] defined the multiplicative degree-Kirchhoff index [17,18], that is

Kf∗(G ) =
∑
s<t

dsdtrst.

Phenyl is a conjugated hydrocarbon, and L6,4,4
n denote a linear chain, containing n hexagons and

2n− 1 squares, please see it in Figure 1.

With the rapid changes of the times, organic chemistry has also developed rapidly, which has led to

a growing interest in polycyclic aromatic compounds. The benzene molecular graph has attracted the

attention of elites in various industries such as biology [19, 20], mathematics [21, 22], chemistry [23, 24],

computers [25,26], and materials [27] because of its increasing application in daily life.

In 1985, the computational method and procedure of the matrix decomposition theorem were proposed

by Yang [28]. This led to the solution of some problems in graph networks and allowed the unprecedented

development of self-homogeneous linear hydrocarbon chains. For example, in 2021, X.L. Ma [30] got the

normalized Laplacian spectrum of linear phenylene, and the linear phenylene containing has n hexagons

and n − 1 squares. L. Lan [31] explored the linear phenylene with n hexagons and n squares. Umar

Ali [32] analyzed the strong prism of a graph G is the strong product of the complete graph of order

2 and G. X.Y. Geng [33] obtained the Laplacian spectrum of L6,4,4
n , which containing n hexagons and

2n − 1 squares. J.B. Liu [34] derived the Kirchhoff index and complexity of On, which denoting linear

octagonal-quadrilateral networks. C. Liu [35] got the Laplacian spectrum and Kirchhoff index of Ln, and

the Ln has t hexagons and 3t+ 1 quadrangles. J.B. Liu [36] explored the multiplicative degree-Kirchhoff

index and complexity based on the graph L2n. For more results, refer to [37–47].

Inspired by these recent works, we try to investigate the Laplacians and the normalized Laplaceians

for graph transformations on phenyl dicyclobutadieno derivatives.

The various sections of this article are as follows: In Section 2, we proposed some concepts and lemmas

and use them in subsequent articles. In Section 3 and Section 4, we acquired the Laplacian matrix and

the nomalized Laplacian matrix, then we make sure the Kirchoff index, the multiplicative degree-Kirchoff

index and the complexity of Ln. In Section 5, we obtained conciusions based on the calculations in this

paper.

2. Preliminary Works

In this article, graph Ln and graph L6,4,4
n are portrayed in Figure 1. Define the characteristic polynomial

of matrix U of order n is PU (x) = det(xI − U).

It is easy to understand that π = (1, 1̃)(2, 2̃) · · ·
(
4n, 4̃n

)
is an automorphism. Set V1 = {1, 2, · · · , 4n},

V2 = {1̃, 2̃, · · · , 4̃n}, |V (Ln)| = 8n, |E(Ln)| = 19n− 4. Thus the (normalized) Laplacians matrix can be

2



Figure 1: Graphs of L6,4,4
n and Ln.

expressed in the form of block matrix, that is

L(Ln) =

 LV0V0
LV0V1

LV0V2

LV1V0
LV1V1

LV1V2

LV2V0
LV2V1

LV2V2

 , L(Ln) =

 LV0V0
LV0V1

LV0V2

LV1V0
LV1V1

LV1V2

LV2V0 LV2V1 LV2V2

 ,

where LVsVt
and LVsVt

is a submatrix consisting of rows corresponding to the vertices in Vs and columns

corresponding to the vertices in Vt, s, t = 0, 1, 2.

Let

Q =

 It 0 0
0 1√

2
I4n

1√
2
I4n

0 1√
2
I4n − 1√

2
I4n

 ,

then

QL(LG )Q′ =

(
LA(G ) 0

0 LS(G )

)
, QL(LG )Q′ =

(
LA(G ) 0

0 LS(G )

)
,

and Q′ is the transposition of Q.

LA = LV1V1
+ LV1V2

, LS = LV1V1
− LV1V2

, LA = LV1V1
+ LV1V2

, LS = LV1V1
− LV1V2

.

Theorem 2.1. [30] Set G is a graph and think that LA(G ), LS(G ), LA(G ), LS(G ) are determined as

above, then

ϑL(Ln)(y) = θLA(G )(y)θLS(G )(y), ϑL(Ln)(y) = θLA(G )(y)θLS(G )(y).

Lemma 2.2. [48] With the extensive study of Kirchhoff index, Gutman and Mohar proposed a algorithm

based on the relation between Kirchhoff index and the Laplacian eigenvalues, namely

Kf(G ) = n

n∑
t=2

1

ξt
,

3



and the eigenvalues of L(G ) are 0 = ξ1 < ξ2 ≤ · · · ≤ ξn(n ≥ 2).

Lemma 2.3. [15] Let′s say that the eigenvalues of L(G ) are ε1 ≤ ε2 ≤ · · · ≤ εn, then its multiplicative

degree-Kirchhoff index can be denoted by

Kf∗(G ) = 2m

n∑
t=2

1

εt
.

Lemma 2.4. [1] The number of spanning trees of the G can also be called the complexity of G . If G

is a graph with |VG| = n and |EG| = m. Let λi(i = 2, 3, . . . , n) be the eigenvalues of L(G). Then the

complexity of G is

2mτ(G ) =

n∏
i=1

di ·
n∏
i=2

λi.

3. Kirchhoff index of Ln

In this section, the main objective is to find out the Kirchhoff index of Ln. Then, combining the

definition of the Laplacian matrix and Eq.(1.1), we can write these block matrices as follows.

LV1V1 =



3 −1
−1 4 −1

−1 5 −1
−1 5 −1

−1 5 −1
−1 4 −1

. . .

−1 5 −1
−1 4 −1

−1 5 −1
−1 3


(4n)×(4n)

,

LV1V2
=



−1 −1
−1 0 −1

−1 −1 −1
−1 −1 −1

−1 −1 −1
−1 0 −1

. . .

−1 −1 −1
−1 0 −1

−1 −1 −1
−1 −1


(4n)×(4n)

.
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Hence,

LA =



2 −2
−2 4 −2

−2 4 −2
−2 4 −2

−2 4 −2
−2 4 −2

. . .

−2 4 −2
−2 4 −2

−2 4 −2
−2 2


(4n)×(4n)

,

and

LS = diag(4, 4, 6, 6, 6, 4, · · · , 6, 4, 6, 4)(4n).

Assume that 0 = α1 < α2 ≤ α3 ≤ · · · ≤ α4n are the roots of PLA
(x) = 0, and 0 < β1 ≤ β2 ≤ β3 ≤

· · · ≤ β4n are the roots of PLS
(x) = 0. By Lemma 2.2, we immediately have

Kf(Ln) = 2(4n)
( 4n∑
i=2

1

αi
+

4n∑
j=1

1

βj

)
. (3.4)

Obviously,
∑4n
j=1

1
βj

can be obtained according to LS .

4n∑
j=1

1

βj
=

1

6
× (3n− 2) +

1

4
× (n+ 2) =

9n+ 2

12
. (3.5)

Next, we focus on computing
∑4n
i=2

1
αi

. Let

PLA
(x) = det(xI − LA) = x(x4n−1 + a1x

4n−2 + · · ·+ a4n−2x+ a4n−1), a4n−1 6= 0.

Based on the Vieta
′
s theorem of PLA

(x), we can exactly get the following equation,

4n∑
i=2

1

αi
=

(−1)4n−2a4n−2
(−1)4n−1a4n−1

.

For the sake of convenience, let Ms is used to express the s− th order principal minors of matrix A,

and ms = detMs is recorded. We can get m1 = 2, m2 = 4, m3 = 8.

And

ms = 4ms−1 − 4ms−2, 4 ≤ s ≤ 4n,

by further induction, we have

ms = 2s.

In this way, we can get two theorems.

Theorem 3.1. (−1)4n−1a4n−1 = (4n)24n−1.

5



Proof. Due to the sum of all the principal minors of order 4n− 1 of LA is (−1)4n−1a4n−1, then

(−1)4n−1a4n−1 =

4n∑
s=1

detLA[s]

=

4n∑
s=1

det

(
Ms−1 0

0 U4n−s

)

=

4n∑
s=1

detMs−1 · detU4n−s,

where

Ms−1 =


l11 −2 · · · 0
−2 l22 · · · 0
...

...
. . .

...
0 0 · · · ls−1,s−1


(s−1)×(s−1)

,

U4n−s =


ls+1,s+1 · · · 0 0

...
. . .

...
...

0 · · · l4n−1,4n−1 −2
0 · · · −2 l4n,4n


(4n−s)×(4n−s)

.

Let m0 = 1, detU0 = 1, because of the symmetry of matrix LA, then detU4n−s = detM4n−s. Hence

(−1)4n−1a4n−1 =

4n∑
s=1

detms−1 · detm4n−s

= (4n)24n−1,

as desired.

Theorem 3.2. (−1)4n−2a4n−2 = (4n−1)(4n)(4n+1)24n−3

3 .

Proof. Since the (−1)4n−2a4n−2 is the tatal of all the principal minors of order 4n− 2 of LA, we have

(−1)4n−2a4n−2 =
∑

1≤s<t≤4n

detLA[s, t],

where

LA[s, t] =

 Mp−1 0 0
0 Nt−s−1 0
0 0 U4n−t

 , 1 ≤ s < t ≤ 4n,

and

Nt−s−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4 −2
−2 4 −2

−2 4 −2
. . .

−2 4 −2
−2 4 −2

−2 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(t−s−1)

= (t− s)2t−s−1.

6



Therefore, we can have

(−1)4n−2a4n−2 =
∑

1≤s<t≤4n

detMs−1 · detNt−s−1 · detU4n−t

=
∑

1≤s<t≤4n

(t− s)2t−s−1 · detms−1 ·m4n−t

=
(4n− 1)(4n)(4n+ 1)24n−3

3
.

The proof is over.

From the results of Theorem 3.1 and Theorem 3.2, we can get

4n∑
i=2

1

αi
=

(−1)4n−2a4n−2
(−1)4n−1a4n−1

=
16n2 − 1

12
, (3.6)

where the eigenvalues of LA are 0 = α1 < α2 ≤ α3 ≤ · · · ≤ α4n.

Theorem 3.3. Suppose L6,4,4
n be the dicyclobutadieno derivative of phenylenes and the graph Ln be

obtained from the transformation of the graph L6,4,4
n .

Kf(Ln) =
32n3 + 18n2 + 2n

3
.

Proof. Substituting Eqs.(3.5) and (3.6) into (3.4), the Kirchhoff index of Ln can be expressed

Kf(Ln) = 2(4n)
( 4n∑
i=2

1

αi
+

4n∑
j=1

1

βj

)
= (8n)

(9n+ 2

12
+

(4n+ 1)(4n− 1)

12

)
=

32n3 + 18n2 + 2n

3
.

The result as desired

The Kirchhoff index of Ln from L1 to L15, see Table 1.

Table 1: The Kirchhoff indices of L1, L2...L15

G Kf(G ) G Kf(G )) G Kf(G )) G Kf(G ) G Kf(G )
L1 17.3 L4 781.3 L7 3957.3 L10 11273.3 L13 24457.3
L2 110.7 L5 1486.7 L8 5850.7 L11 14930.7 L14 30454.7
L3 344.0 L6 2524.0 L9 8268.0 L12 19304.0 L15 37360.0

Next, we will further consider the Wiener index of Ln.

Theorem 3.4. Let L6,4,4
n be the dicyclobutadieno derivative of [n]phenylenes and the graph Ln be

obtained from the transformation of the graph L6,4,4
n , then

lim
n→∞

Kf(Ln)

W (Ln)
=

1

4
.

Proof. Consider dst for all vertices. For the calculation of convenience, we divide the vertices of the

graph into the following five categories.

Case 1. Vertex 1 of Ln:

g1(i) = 1 + 2
( 4n−1∑
k=1

k
)
.

7



Case 2. Vertex 4j − 3(j = 1, 2, · · · , n) of Ln, i = 4j − 3:

g2(i) = 1 + 2
( i−1∑
k=1

k +

4n−i∑
k=1

k
)
.

Case 3. Vertex 4j − 2(j = 1, 2, · · · , n) of Ln, i = 4j − 2:

g3(i) = 1 + 2
( i−1∑
k=1

k +

4n−i∑
k=1

k
)
.

Case 4. Vertex 4j − 1(j = 1, 2, · · · , n− 1) of Ln, i = 4j − 1:

g4(i) = 1 + 2
( i−1∑
k=1

k +

4n−i∑
k=1

k
)
.

Case 5. Vertex 4j(j = 1, 2, · · · , n− 1) of Ln, i = 4j:

g5(i) = 1 + 2
( i−1∑
k=1

k +

4n−i∑
k=1

k
)
.

Hence, we have

W (Ln) =
4g1(i) + 2

∑
i=4j−3 g2(i) + 2

∑
i=4j−2 g3(i) + 2

∑
i=4j−1 g4(i) + 2

∑
i=4j g5(i)

2

=
4(1 + 2

∑4n−1
k=1 k) + 2

∑n
j=1

[
1 + 2(

∑4j−4
k=1 k +

∑4n−4j+2
k=1 k)

]
2

+
2
∑n
j=1

[
2 + 2(

∑4j−3
k=1 k +

∑4n−4j+2
k=1 k)

]
+ 2

∑n
j=1

[
1 + 2(

∑4j−2
k=1 k +

∑4n−4j+1
k=1 k)

]
2

+
2
∑n−1
j=1

[
1 + 2(

∑4j−1
k=1 k +

∑4n−4j
k=1 k)

]
2

=
128n3 + 48n2 − 5n+ 3

3
.

Consider the above results of Kirchhoff index and Wiener index, we can get following equation when

n tends to infinity.

lim
n→∞

Kf(Ln)

W (Ln)
=

1

4
.

The result as desired.
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4. Multiplicative degree-Kirchhoff index and complexity of Ln

In this section, we use the eigenvalues of normalized Laplacian matrix to determine the multiplicative

degree-Kirchhoff index of Ln. Besides, we calculate the complexity of Ln. Then

LV1V1
=



1 −1√
12

−1√
12

1 −1√
20

−1√
20

1 −1
5

−1
5 1 −1

5−1
5 1 −1√

20
−1√
20

1 −1√
20

. . .
−1
5 1 −1√

20
−1√
20

1 −1√
20

−1√
20

1 −1√
15

−1√
15

1


(4n)×(4n)

,

and

LV1V2 =



−1
3

−1√
12

−1√
12

0 −1√
20

−1√
20

−1
5

−1
5

−1
5

−1
5

−1
5−1

5
−1
5

−1√
20

−1√
20

0 −1√
20

. . .
−1
5

−1
5

−1√
20

−1√
20

0 −1√
20

−1√
20

−1
5

−1√
15

−1√
15

−1
3


(4n)×(4n)

.

Therefore,

LA =



2
3

−1√
3

−1√
3

1 −1√
5

−1√
5

4
5

−2
5

−2
5

4
5

−2
5−2

5
4
5

−1√
5

−1√
5

1 −1√
5

. . .
−2
5

4
5

−1√
5

−1√
5

1 −1√
5

−1√
5

4
5

−2√
15

−2√
15

2
3


(4n)×(4n)

,

and

LS = diag
(4

3
, 1,

6

5
,

6

5
,

6

5
, · · · , 6

5
, 1,

6

5
,

4

3

)
(4n)

.
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Assume that the roots of PLA
(x) = 0 are 0 = ξ1 < ξ2 ≤ ξ3 ≤ · · · ≤ ξ3n+2, and 0 < γ1 ≤ γ2 ≤ γ3 ≤

· · · ≤ γ3n+2 are the roots of PLS
(x) = 0. By Lemma 2.3, we can get

Kf∗(Ln) = 2(19n− 4)
( 4n∑
i=2

1

ξi
+

4n∑
i=1

1

γi

)
.

Since Ls is a diagonal matrix. Obviously, its diagonal elements 1, 4
3 and 6

5 correspond to the eigenvalues

of Ls respectively. Then it can be clearly obtained

4n∑
i=1

1

γi
=

21n− 1

6
. (4.7)

Let

PLA
(x) = det(xI − LA) = x4n + b1x

4n−1 + · · ·+ b4n−1x, b4n−1 6= 0,

i.e., 1
ξ2
, 1
ξ3
, · · · , 1

ξ4n
are the roots of the following eqution

b4n−1x
4n−1 + b4n−2x

4n−2 + · · ·+ b1x+ 1 = 0.

Based on the Vieta
′
s theorem of PLA

(x), we can get

4n∑
i=2

1

ξi
=

(−1)4n−2b4n−2
(−1)4n−1b4n−1

.

Similarly, we can get another two interesting facts.

Theorem 4.1. (−1)4n−1b4n−1 = 25
9 (38n− 8)( 4

125 )n.

Proof. Let sp = detFp, then we have s1 = 2
3 , s2 = 1

3 , s3 = 2
15 , s4 = 4

75 , s5 = 8
375 , s6 = 4

375 , s7 =
8

1875 , s8 = 16
9375 , and 

s4p = 4
5s4p−1 −

4
25s4p−2;

s4p+1 = 4
5s4p −

4
25s4p−1;

s4p+2 = s4p+1 − 1
5s4p;

s4p+3 = 4
5s4p+2 − 1

5s4p+1.

After further simplification, the transformation form of the above formula is obtained.
s4p = 5

3 · (
4

125 )p, 1 ≤ p ≤ n;

s4p+1 = 2
3 · (

4
125 )p, 0 ≤ p ≤ n− 1;

s4p+2 = 1
3 · (

4
125 )p, 0 ≤ p ≤ n− 1;

s4p+3 = 2
15 · (

4
125 )p, 0 ≤ p ≤ n− 1.

Similarly, we have t1 = 2
3 , t2 = 4

15 , t3 = 2
15 , t4 = 4

75 , t5 = 8
375 , t6 = 16

1875 , t7 = 4
1875 , t8 = 16

9375 , and
t4p = 2

5 t4p−1 −
2
5 t4p−2;

t4p+1 = 4
5 t4p −

4
25 t4p−1;

t4p+2 = 4
5 t4p+1 − 4

25 t4p;

t4p+3 = t4p+2 − 1
5 t4p+1.

10



Therefore, the transformation form of the above formula is obtained.
t4p−4 = 5

3 · (
4

125 )p, 1 ≤ p ≤ n;

t4p−3 = 2
3 · (

4
125 )p, 0 ≤ p ≤ n− 1;

t4p−2 = 4
15 · (

4
125 )p, 0 ≤ p ≤ n− 1;

t4p−1 = 2
15 · (

4
125 )p, 0 ≤ p ≤ n− 1.

Since the (−1)3n+1b3n+1 is the total of all the principal minors of order 3n+ 1 of LA, we have

(−1)4n−1b4n−1 =

4n∑
i=2

detNLA[i] + s4n + t4n

=

n∑
q=1

detNLA[4q] +

n−1∑
q=1

detNLA[4q + 1] +

n−1∑
q=0

detNLA[4q + 2]

=

n∑
q=0

detNLA[4q + 3] + s4n + t4n +

n∑
q=1

s4(q−1)+3t4(n−q)+1

=

n−1∑
q=1

s4qt4(n−q) +

n−1∑
q=0

s4q+1t4(n−q−1)+3 +

n−1∑
q=0

s4q+2t4(n−q−1)+2 + s4n + t4n

=
1

45
(38n− 8)(

4

125
)n.

The proof of Theorem 4.1 completed.

Theorem 4.2. (−1)4n−2b4n−2 = 1
3240 (14520n3 + 4599n2 − 1496n+ 3)( 4

125 )n.

Proof. We observe that the sum of all the principal minors of order 4n of LA is the (−1)4n−2b4n−2, then

(−1)4n−2b4n−2 =
∑

1≤s<t≤4n

detLA[s, t] · fs−1 · f
′

4n−t. (4.8)

By Eq.(4.8), we know that the result of detLA[s, t] will change with the values of s and t. Then we

can get the following twenty cases.

Case 1. i = 4s, j = 4t, 1 ≤ s < t ≤ n,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 1√

5

− 2√
5

1 − 1√
5

− 1√
5

4
5 − 2

5

. . .

− 2
5

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1 − 1√
5

− 2√
5

4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s−1)

= 10(t− s)
( 4

125

)t−s
.
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Case 2. i = 4s, j = 4t+ 1, 1 ≤ s ≤ t ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 1√

5

− 1√
5

1 − 1√
5

− 1√
5

4
5 − 2

5

. . .

− 2
5

4
5 − 1√

5

− 1√
5

1 − 1√
5

− 1√
5

4
5 − 2

5

− 2
5

4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s)

= [4(t− s) + 1]
( 4

125

)t−s
.

Case 3. i = 4s, j = 4t+ 2, 1 ≤ s ≤ t ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 1√

5

− 1√
5

1 − 1√
5

− 1√
5

4
5 − 2

5

. . .

− 1√
5

1 − 1√
5

− 1√
5

4
5 − 2

5

− 2
5

4
5 − 2

5
− 2

5
4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s+1)

=
4

5
[2(t− s) + 1]

( 4

125

)t−s
.

Case 4. i = 4s, j = 4t+ 3, 1 ≤ s ≤ t ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 1√

5

− 1√
5

1 − 1√
5

− 1√
5

4
5 − 2

5

. . .

− 1√
5

4
5 − 2

5

− 2
5

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s+2)

=
1

5
[4(t− s) + 3]

( 4

125

)t−s
.
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Case 5. i ≡ 0, j = 4n, 1 ≤ s ≤ t,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 1√

5

− 2√
5

1 − 1√
5

− 1√
5

4
5 − 2

5

. . .

− 2
5

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1 − 1√
5

− 2√
5

4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4n−4s−1)

= 10(n− s)
( 4

125

)n−s
.

Case 6. i = 4s+ 1, j = 4t, 0 ≤ s < t ≤ n,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − 1√
5

− 1√
5

4
5 − 2

5

− 2
5

4
5 − 2

5
. . .

− 2
5

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1 − 1√
5

− 1√
5

4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s−2)

=
25

4
(4t− 4s− 1)

( 4

125

)t−s
.

Case 7. i = 4s+ 1, j = 4t+ 1, 0 ≤ s < t ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − 1√
5

− 1√
5

4
5 − 2

5

− 2
5

4
5 − 2

5
. . .

− 2
5

4
5 − 1√

5

− 1√
5

1 − 1√
5

− 1√
5

4
5 − 2

5

− 2
5

4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s−1)

= 10(t− s)
( 4

125

)t−s
.
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Case 8. i = 4s+ 1, j = 4t+ 2, 0 ≤ s < t ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − 1√
5

− 1√
5

4
5 − 2

5

− 2
5

4
5 − 2

5
. . .

− 2√
5

1 − 1√
5

− 1√
5

4
5 −− 2

5

− 2
5

4
5 − 2

5
− 2

5
4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s)

= (4t− 4s+ 1)
( 4

125

)t−s
.

Case 9. i = 4s+ 1, j = 4t+ 3, 0 ≤ s ≤ t ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − 1√
5

− 1√
5

4
5 − 2

5

− 2
5

4
5 − 2

5
. . .

− 1√
5

4
5 − 2

5

− 2
5

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s+1)

= (2t− 2s+ 1)
( 4

125

)t−s
.

Case 10. i ≡ 1, j = 4n+ 1, 0 ≤ s ≤ n,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − 1√
5

− 1√
5

4
5 − 2

5

− 2
5

4
5 − 2

5
. . .

− 2
5

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1 − 1√
5

− 1√
5

4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4n−4s−2)

=
25

4
(4n− 4s− 1)

( 4

125

)n−s
.

Case 11. i = 4s+ 2, j = 4t, 0 ≤ s < t ≤ n,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 2

5
− 2

5
4
5 − 2

5
− 2

5
4
5 − 2

5
. . .

− 2
5

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1 − 1√
5

− 1√
5

4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4l−4s−3)

= 25(2t− 2s− 1)
( 4

125

)t−s
.
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Case 12. i = 4s+ 2, j = 4t+ 1, 0 ≤ s < t ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 2

5
− 2

5
4
5 − 2

5
− 2

5
4
5 − 2√

5

. . .

− 1√
5

1 − 1√
5

− 1√
5

4
5 − 2

5

− 2
5

4
5 − 2

5
− 2

5
4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s−2)

= 5(4t− 4s− 1)
( 4

125

)t−s
.

Case 13. i = 4s+ 2, j = 4t+ 2, 0 ≤ s < t ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 2

5
− 2

5
4
5 − 2

5
− 2

5
4
5 − 1√

5

. . .

− 1√
5

1 − 2√
5

− 1√
5

4
5 − 2

5

− 2
5

4
5 − 2

5
− 2

5
4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s−1)

= 8(t− s)]
( 4

125

)t−s
.

Case 14. i = 4s+ 2, j = 4t+ 3, 0 ≤ s ≤ t ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 2

5
− 2

5
4
5 − 2

5
− 2

5
4
5 − 1√

5

. . .

− 1√
5

4
5 − 2

5

− 2
5

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s)

= (4t− 4s+ 1)
( 4

125

)t−s
.

Case 15. i ≡ 2, j = 4n+ 2, 0 ≤ s ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 2

5
− 2

5
4
5 − 2

5
− 2

5
4
5 − 2

5
. . .

− 2
5

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1 − 1√
5

− 1√
5

4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4n−4s−3)

= 25(2n− 2s− 1)
( 4

125

)n−s
.
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Case 16. i = 4s+ 3, j = 4t, 0 ≤ s < t ≤ n,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1 − 1√
5

. . .

− 2
5

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1 − 1√
5

− 1√
5

4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s−4)

=
125

4
(4t− 4s− 3)

( 4

125

)t−s
.

Case 17. i = 4s+ 3, j = 4t+ 1, 0 ≤ s < t ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

4
5 − 1√

5

. . .

− 2
5

4
5 − 1√

5

− 1√
5

1 − 1√
5

− 1√
5

4
5 − 1√

5

− 2
5

4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s−3)

= 25(2t− 2s− 1)
( 4

125

)t−s
.

Case 18. i = 4s+ 3, j = 4t+ 2, 0 ≤ s < t ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1 − 1√
5

. . .

− 1√
5

1 − 1√
5

− 1√
5

4
5 − 2

5

− 2
5

4
5 − 2

5
− 2

5
4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s−3)

=
25

3
(4t− 4s− 1)

( 4

125

)t−s
.
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Case 19. i = 4s+ 3, j = 4t+ 3, 0 ≤ s < t ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1 − 1√
5

. . .

− 1√
5

4
5 − 2

5

− 2
5

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4t−4s−1)

= 10(l − k)
( 4

125

)t−s
.

Case 20. i ≡ 3, j = 4t, 0 ≤ s ≤ n− 1,

detψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1 − 1√
5

. . .

− 2
5

4
5 − 2

5
− 2

5
4
5 − 1√

5

− 1√
5

1 − 1√
5

− 1√
5

4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4n−4s−4)

=
125

4
(4n− 4s− 3)

( 4

125

)n−s
.

Therefore, we can get

(−1)4n−2b4n−2 =
∑

1≤p<q≤4n

detLA[i, j] · si−1 · t4n−j

= E1 + E2 + E3 + E4,

where

E1 =
∑

1≤s<t≤n

detNLA[4s, 4t] +
∑

1≤s≤t≤n−1

detNLA[4s, 4t+ 1]

+
∑

1≤s≤t≤n−1

detNLA[4s, 4t+ 2] +
∑

1≤s≤t≤n−1

detNLA[4s, 4t+ 3]

+
∑

1≤s≤n

detNLA[4s, 4n]

=
1

18
(227n3 + 347n2 − 574n+ 4)

( 4

125

)n−1
.

E2 =
∑

0≤s<t≤n

detNLA[4s+ 1, 4t] +
∑

0≤s<t≤n−1

detNLA[4s+ 1, 4t+ 1]

+
∑

0≤s≤t≤n−1

detNLA[4s+ 1, 4t+ 2] +
∑

0≤s≤t≤n−1

detNLA[4s+ 1, 4t+ 3]

+
∑

0≤s≤n

detNLA[4s+ 1, 4n]

=
1

72
(908n3 + 3431n2 + 523n)

( 4

125

)n
.
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E3 =
∑

0≤s<t≤n

detNLA[4s+ 2, 4t] +
∑

0≤s<t≤n−1

detNLA[4s+ 2, 4t+ 1]

+
∑

0≤s<t≤n−1

detNLA[4s+ 2, 4t+ 2] +
∑

0≤s≤t≤n−1

detNLA[4s+ 2, 4t+ 3]

+
∑

0≤s≤n

detNLA[4s+ 2, 4n]

=
1

45
(454n3 + 1375n2 − 1079n)

( 4

125

)n
.

E4 =
∑

0≤s<t≤n

detNLA[4s+ 3, 4t] +
∑

0≤s<t≤n−1

detNLA[4s+ 3, 4t+ 1]

+
∑

0≤s<t≤n−1

detNLA[4s+ 3, 4t+ 2] +
∑

0≤s<t≤n−1

detNLA[4s+ 3, 4t+ 3]

+
∑

0≤s≤n

detNLA[4s+ 3, 4n]

=
1

81
(92n3 + 561n2 − 611n)

( 4

125

)n−1
.

Hence

(−1)4n−2b4n−2 = E1 + E2 + E3 + E4 =
1

3240
(14520n3 + 4599n2 − 1496n+ 4)

( 4

125

)n
.

The proof of Theorem 4.2 completed.

Let 0 = ξ1 < ξ2 ≤ ξ3 ≤ · · · ≤ ξ3n+2 are the eigenvalues of LA, we can get the following exact equation

4n∑
i=2

1

ξi
=

(−1)4n−2b4n−2
(−1)4n−1b4n−1

=
1

72
(
14520n3 + 4599n2 − 1496n+ 8

38n− 8
).

Theorem 4.3. Set L6,4,4
n be the derivative [n]pheylenes, and the expression of the multiplicative degree-

Kirchhoff index is

Kf∗(Ln) =
29040n3 + 8996n2 − 3198n+ 8

144
.

Proof. Together with Eq.(4.7), Theorems 4.1 and 4.2, one can get

Kf∗(Ln) = 2(19n− 4)
( 4n∑
i=2

1

ξi
+

4n∑
i=1

1

γi

)
= 2(19n− 4)

[ 1

72
(
14520n3 + 4599n2 − 1496n+ 8

38n− 8
) +

21n− 1

6

]
=

29040n3 + 8996n2 − 3198n+ 8

144
.

The result as desired.

The multiplicative degree-Kirchhoff indices of Ln from L1 to L15, see Table 2.

Then we want to calculate the Gutman index of Ln.
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Table 2: The multiplicative degree-Kirchhoff indices of L1, Ln...L15.
Ln Kf∗(Ln) Ln Kf∗(Ln) Ln Kf∗(Ln) Ln Kf∗(Ln) Ln Kf∗(Ln)
L1 241.98 L4 13817.44 L7 72077.4 L10 207691.9 L13 45333.08
L2 1818.86 L5 26659.15 L8 107073.9 L11 275733.2 L14 565307
L3 5940.68 L6 45675.81 L9 151875.4 L12 357209.6 L15 694348.2

Theorem 4.4. Suppose that L6,4,4
n be the dicyclobutadieno derivative of [n]phenylenes and the graph

Ln be obtained from the transformation of the graph L6,4,4
n , then

lim
n→∞

Kf∗(Ln)

Gut(Ln)
=

1

4
.

Proof. Consider dij for all vertices, we divide the vertices of Ln into the following four categories.

Case 1. Vertex 4i− 2(i = 1, 2, · · · , n) of Ln:

f4i−2 = 2

n∑
i=1

[
4× 4× 2 + 2× 3× 4× (4i− 3) + 2× 3× 4× (4n− 4i+ 2) + 2

i−1∑
t=1

4× 4× 4× (i− t)

+2

n∑
t=i+1

4× 4× 4× (t− i) + 2

i∑
t=2

4× 5× (4i− 4t+ 1) + 2

n∑
t=i+1

4× 5× (4t− 4i− 1)

+2

i∑
t=2

4× 5× (4i− 4t+ 2) + 2

n∑
t=i+1

4× 5× (4t− 4i− 2) + 2

i−1∑
t=1

4× 5× (4i− 4t− 1)

+2

n∑
t=i

4× 5× (4t− 4i+ 1)
]

=
10

3
n(56n2 − 24n+ 37).

Case 2. Vertex 4i− 1(i = 2, 3, · · · , n) of Ln:

f4i−1 = 2

n∑
i=1

[
5× 5× 1 + 2× 3× 5× (4i− 1) + 2× 3× 5× (4n− 4i+ 1) + 2

i∑
t=1

5× 4× (4i− 4t+ 1)

+2

n∑
t=i+1

5× 4× (4t− 4i− 1) + 2

i∑
t=2

5× 5× (4i− 4t+ 3) + 2

n∑
t=i+1

5× 5× (4t− 4i− 3)

+2

i∑
t=2

5× 5× (4i− 4t+ 2) + 2

n∑
t=i+1

5× 5× (4t− 4i− 2) + 2

i−1∑
t=1

5× 5× 4× (i− t)

+2

n∑
t=i+1

5× 5× 4× (t− i)
]

=
10

3
n(152n2 − 48n− 29).
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Case 3. Vertex 4i(i = 2, 3, · · · , n) of Ln:

f4i = 2

n∑
i=1

[
5× 5× 1 + 2× 3× 5× (4i− 1) + 2× 3× 5× (4n− 4i+ 1) + 2

i∑
t=1

5× 4× (4i− 4t+ 2)

+2

n∑
t=i+1

5× 4× (4t− 4i− 2) + 2

i∑
t=2

5× 5× (4i− 4t+ 5) + 2

n∑
t=i+1

5× 5× (4t− 4i− 3)

+2

i∑
t=2

5× 5× (4i− 4t+ 1) + 2

n∑
t=i+1

5× 5× (4t− 4i− 3) + 2

i−1∑
t=1

5× 5× 4× (i− t)

+2

n∑
t=i+1

5× 5× 4× (t− i)
]

=
10

3
n(140n2 − 48n+ 43).

Case 4. Vertex 4i− 3(i = 2, 3, · · · , n) of Ln:

f4i−3 = 2

n∑
i=2

[
5× 5× 1 + 2× 3× 5× (4i− 4) + 2× 3× 5× (4n− 4i+ 4) + 2

i−1∑
t=1

5× 4× (4i− 4t− 1)

+2

n∑
t=1

5× 4× (4t− 4i+ 1) + 2

i−1∑
t=2

5× 5× (4i− 4t) + 2

n∑
t=i+1

5× 5× (4t− 4i)

+2

i−1∑
t=1

5× 5× (4i− 4t− 2) + 2

n∑
t=i+1

5× 5× (4t− 4i+ 2) + 2

i−1∑
t=1

5× 5× (4i− 4t+ 1)

+2

n∑
t=1

5× 5× (4t− 4i+ 1)
]

=
10

3
n(136n2 − 6n+ 71).

According to Eq.(1.3), the Gutman index of Ln is

Gut(Ln) =
f4i + f4i−1 + f4i−2 + f4i−3

2

=
10

3
n(242n2 − 63n+ 61).

Therefore, combining with Kf∗(Ln) and Gut(Ln), we have

lim
n→∞

Kf∗(Ln)

Gut(Ln)
=

1

4
.

The result as desired.

Finally, we want to get the complexity of Ln.

Theorem 4.5. For the graph Ln, we have

τ(Ln) = 23n+2 · 33n−2

Proof. Based on Lemma 2.4, we can get

8n∏
i=1

di

4n∏
i=2

αi

4n∏
j=1

βj = 2(19n− 4) · τ(Ln)
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Note that

8n∏
i=1

di = 34 · 42n · 56n−4

4n∏
i=2

αi =
25

9
· (38n− 8) · ( 4

125
)n

4n∏
j=1

βj = (
4

3
)2 · (6

5
)3n−2

Hence,

τ(Ln) = 23n+2 · 33n−2

The proof is over.

Thus we can get the complexity of Ln from W1 to W10 which are listed in Table 3.

Table 3: The complexity of W1,W2...W10.
G τ(G ) G τ(G )
W1 96 W6 45137758519296
W2 20736 W7 9749755840167936
W3 4478976 W8 2105947261476274176
W4 967458816 W9 454884608478875222016
W5 208971104256 W10 98255075431437047955456

5. Conclusion

In this paper, the linear chain network with n hexagons and 2n − 1 squares is considered. We

have devoted to calculate the (multiplicative degree) Kirchhoff index, Wiener indexGutman index and

complexity. In the meantime, we deduced that the ratio of (multiplicative degree) Kirchhoff index of to

(Gutman) Wiener index is nearly a quarter when n tends to infinty. Furthermore, we got some important

rules of L6,4,4
n . These rules also apply to some other graphs.
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