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1 | INTRODUCTION

Fractional oscillatory differential equation is used to describe many processes in mechanical and technical systems. These
systems are usually used to simulate phenomena in practical problems. As is known to all, fractional oscillatory differential
equations have a wide range of applications in many fields, such as electronic science, polymer, viscoelastic material model,
signal and image processing, etc. Thanks to fractional oscillatory differential equations have important theoretical and practical
significances for research in different fields, there is currently a significant amount of theoretical researches being conducted
on fractional oscillatory differential equations, mainly focusing on initial value problems, boundary value problems, stability,
controllability. We can refer to [[1]]-[S] and the references they contain.

It is of far-reaching significance to study the stability of fractional oscillatory differential equations. Different from other
stabilities (such as Lyapunov stability, asymptotical stability and so on), finite time stability (FTS) studies the conduct of the
trajectory of a system in a limited time interval. It is worth noting that the finite time stability problem needs to give the required
time interval ahead. Lately, the FTS of fractional oscillatory differential equations have been widely studied [6]-[8]] and the
references they contain.

Not long ago, Khusainov and Shuklin [9] firstly put forward a delayed exponential function ef’, which can be used to explore
an explicit solution of a first-order linear delay differential equation. It opened a new era for exploring the explicit solutions
of time-delay differential equations. Based on it, Li and Wang [10]],[11] made further promotions. They constructed a new
delayed Mittag-Leffler type matrix function E TB;Q to gain the representations of Caputo fractional differential equations with
order p € (0, 1). In order to get expressions of’Caputo fractional differential equations with order p € (1,2), Liu, Dong and
Li [12] constructed two fundamental matrices C; and S . Inspired by these papers, Elshenhab and Wang [13]],(14] expanded
on the previous results. They introduced a new fundamental solution H,, ,(Ax®) and two other functions stated in Liu, Dong
and Li [12] to gain the representations of Caputo fractional single-delay differential equations with order p € (1,2). With a
view to exploring the expressions of Caputo fractional multiple-delay differential equations where the linear parts are given by
permutation or nonpermutation matrixes, they adopted Laplace transformation.
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How about the Riemann-Liouville fractional time-delay differential equations? Li and Wang [15]],[[L6] solved the explicit so-
lutions of fractional differential equations with order p € (0, 1) by using the delayed Mittag-Leffler function Z B;j‘ previously
constructed in Caputo. Mahmudov [[17] recently solved the linear nonhomogeneous fractional multi-delay differential equations
of order p € (I — 1,!]. Through reading Mahmudov’s paper, we have the following findings: Firstly, in Mahmudov’s, the lower
limit of integral in the definition of fractional derivative starts at O rather than —:. This leads to a slight difference between Mah-
mudov’s model and our research. Secondly, the multivariate determining matrix function Q,, is obtained by iterative method,
and then the fundamental solution X % b ﬁ is constructed by O, , that is, the basic solution of the equation is given by using the
method of twice construction. The explicit solution obtained by this method is rather complex, which is not conducive to the
subsequent finite-time stability analysis. Through the same way, Mustafa Aydin and Mahmudov [18]],[[19] got the explicit solu-
tions of Caputo fractional single-delayed and multi-delayed differential equations with order p € (0, 1). Thirdly, the conclusions
of Mahmudov’s article were more general and expanded the problem to higher order, which provides further research direction
for our follow-up research. At the end of the article, Mahmudov made clear the deficiencies in the research and put forward
some open questions. It is worth affirming that Mahmudov made a significant step forward in the research of fractional delay
differential equations. However, we only use two newly defined delayed Mittag-Leffler functions constructed once to obtain the
explicit solution, which can be well characterized on every subinterval in this paper. The advantage of this method is that it is
convenient for the subsequent finite-time stability analysis, and it partly solves the remaining public problems.

Generally speaking, constructing the perturbation matrix functions of delayed Mittag-Leffler type or adopting the method of
Mahmudov’s twice constructions are used to derive the fundamental solutions. On the basis of the fundamental solutions, we
can get the exact solution by Laplace transform or the constant variation method. The approach we adopted to in this paper is
the constant variation method (See Remark [3).

In this paper, fractional differential time-delay oscillatory system we investigated has the form

D2 Y(©=aY( -0+ f(9), €. 7].1>0,
Y(¢) = p(5), —1<¢ <0, H
IY (=) =a, RDlY(-t) =01

where RD’ " denotes the Riemann-Liouville fractional derivative of order p € (1,2) , J_z;p denotes the Riemann-Liouville
fractional integral of order 2 — p, J_z;”Y € AC*((-1,0],R™), f : (O, T] — R" is a continuous function, 7 = k1 is a fixed
terminal time ahead, x is a natural number fixed and w € R™" is a constant matrix.

The chief aim of this paper is to explore the explicit solution of system (1). To this end, we firstly explore the homogeneous
fractional differential oscillatory system

kD", Y () =wY (¢ - ceO,T].1>0,
Y(¢) = @(c), -1<¢<0, )
IY (=) =a, RDMY (-t =

The contents and structure of this paper are as follows: The second part describes some definitions and constructs two func-
tions that extended the Mittag-Leffler function. The third part contains the exact solution of system (1). In the fourth part,
some sufficient conditions that the system (1) is FTS are given. Ultimately, an example is given to prove the rationality of the
conclusions.

2 | PRELIMINARIES

In this section, we describe some definitions and constructs two functions that extended the Mittag-Leffler function. Let
keIl ={0,1,2,...,k}, 8 express zero matrix, I express identity matrix and I'(-) is the Gamma function.

Definition 1. (See [2]) The Riemann-Liouville integral of order p € (1,2) of an integrable function f : [—i,+00) — R” is
defined as follows

I’ f)= /(g‘ -8 f(s)ds, ¢> -

T(p)
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Definition 2. (See [2]) The Riemann-Liouville derivative of order p € (1,2) of an integrable function f : [—1,+00) - R” is
defined as follows

D" flo) = /(g - ) f(s)ds, ¢> -1

( p)dc?

Remark 1. If f . [—1,+00) — R" is an integrable function and J_z;" f € AC*([—1, +0),R"), which the second derivative of
J 2;" f is an absolutely continuous function. Then the relation between Riemann-Liouville integrals and derivatives of order
p € (1,2) is as follows

"D, f(o) = —Jf,f'f(g)
The following are two Mittag-Leffler type matrix functions with time delay that we newly define in this paper.

Definition 3. The delayed Mittag-Leffler type matrix function P/;(g) : R —> R™" s defined as

0, -0 <¢g < -,
e —1<¢ <0,
— 2p—
P,;(€)=<IM+1U“l 0<¢<y,

I'(p) r2p)’

Lyl 2p-1 3ol (k1)) o1
1—(€r(’;) + "”_E(zp) + w2 —(gr(’;p) g o L L) ki (r((kjr’)l)p) ,(k—1n<¢ <k

Definition 4. The delayed Mittag-Leffler type matrix function H;(g) : R - R™" js defined as

0, —00 < ¢ < -1,
(D _
(r(p;})z’ s 1<¢ <0,
T G+)°” g~
He) =1 125 + o, 0<c<t,
(c+p~2 ¢ 206072 k (g—(k—Dp&+br-2 _
To) + wF(Zp—l) + w TG D + + w DD’ k-1p<g¢ <Lk

Lemma 1. For P;(g) and Hl’,(g), we acquire

() d—gP;(g) Hi(¢)forall¢ € R\ {—1}.

(i) Pl;(g) is a solution of equation (2), which meets starting conditions P;(g) =1 %, -1<¢ <0, Jf;/’ P;(—1+) = 0 and
RDiij;(—l+) =1.

(iii) H/;(g) is a solution of equation (2), which meets starting conditions H:)(g) =1 (E:;i TR <¢<0, J g ’( —*) =1 and
RDP I H! (—1t) = 0

Proof. It is obvious that we can directly obtain the property (i) by taking the derivative of P(¢) relative to ¢. The approach we
adopted to prove the property (ii) and property (iii) is mathematical induction. Firstly, we prove the property (iii).
stepl. Fork = 1, 0 < ¢ <1, one has

(c + 12 w2
Tp-1)  "T@p-1)

Y =H/()=1
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Applying the p-order Riemann-Liouville derivative on H /’](g), then

Ryp 1 / 1p(19+z)/’2 / - 9202

D’ H(¢) = T2 p)dg2 c—-9 Ir( s dd+ [ (c—9) oy dd
A S / (¢ —N'"PO+ 1) 25119+ @ / (c— 979249
dg2 re- p)F(p dgz rQ-pr'2p—-1)

1

_da 1 o L
_dgzr(z,—p)r‘(p_l) [(G+l) ¢! y) p(g+l)P yp (¢ +0dy

£ o
dg?T2 - p(2p

" / ¢ =)y edy
0

d? 1 d? wc?
=———————"B[2-p,p 1]+— B[2—-p,2p—1]
dg?T2 —p)(p—1) dg?T2-pI'2p—1)
g2
—w——— =wH'(¢ - ).
wl“(p—l) wH (¢ —1)

step2. For k = 2,1 < ¢ < 21, one obtains

[+ g2 2 e =¥
w w

Y(€)=H;,(§)= Tpr—1) r2p-1) IrGp-1)"

Applying the p-order Riemann-Liouville derivative on H;(g), then

DL H©) = frmis /(g 9 ﬂI('g(*’_)”l)zdm/(g R L
/(g §)!-r 2(119(3 )jpl)zds
zwr(ffl) ;;F(z p;vm,a ) / (=9I -
- wr(ipjn ¥ j_;m - ,,1)?2(3,, €T B2 p 3 1]
=wr(ip:21> wz(rga_pl)—zp;)z =wH =0

step3. Assume the conclusion is true when k = U, (U — 1)1 < ¢ < U1, we acquire

p—2 — N\2p-2 — (U -1 Up-2
RD H'()=w 3 +w2(g D wu(g ( ) =wH'(¢ - 7).
ror I(p-1) 2p-1) FUp-1) ’
Fork=U+1,Ur<¢ < (U + 1)1, and
G+ g (i s (6 = U202

YO =H =1 5 - " -7 "7 Twi-D



By elementary calculations, the formula has

p—2 _ N\2p—2 _ _ Up-2
D H(O)=w d +w2(g ) -~-+wU(g W=
' L(p—1) '2p-1) FWUp-1)
1 d* wV+! / -
+ -p U U+2)p— 2d
Te-pac i@ +2p—1 ) €79 = d
¢ 2 -0 v — WU -2
w +w +---+tw
L(p—1) I'2p-1) rWpe-1)
fL & @ yyUtegn U+ 2p— 1]
T2 —p)d2T(U +2)p—1) p g
T ot AT it ) kel
I(p—=1) I'p-1) DU+ Dp-1)
= wH/’;(g —1).

In a word, the property (iii) holds.
The same approach can be used to prove the property (ii). Whenk = U + 1, Ur < ¢ < (U + 1)1, through preliminary
calculations, we gain

¢l L (¢ — 121 y(c— (U - Iy
+ (g) Tt w—"F - 4w
e T(p) T(2p) U
1 d2 wU+! o
UnU+e-14
F(Z p)dc2T(U +2)p + p) /(g x) P =Un x
p=1 _ 201 _ _ Up1
:wg__f_wl&_'_“, w_u(g w -1y
L(p) T'(2p) TUp)
+ 1 ad* wl+! (c— UV B2 — 5 (U +2)p]
F2-p)dg>T((U +2)p~1) :
gr! 26— 1?1 ve1 (€ — Uy U+ho-1
= R — CEEEEY B — Pl _ .
F(p)+w T2y +--+tw (U + Dp) w p(g 1)
The proof is end. ]

3 | EXACT SOLUTIONS

In this section, the approach we adopted to acquire the exact solutions of sysytem (1) is constant variation method. We
first cast about for the display expression Y(¢) of equation (2), then explore the particular solution Y'(¢) of equation (2)
meeting starting condition Y'(0) = 0. In line with the superposition principle in ODEs, we take Y (¢) = Y(¢) + Y (¢)
to represent the explicit solution. Denote @ = {¢p € C((-1,0],R") :J_Z;”(p € AC*(-1,0],R")} and ¥ = {f (S
C((0,T],Rm, f(f Pc—1=0f(0dxle—o = 0}. We introduce a Banach space AC*((—,0],R") = {y : (-,0] —
R”, (% Y)(x) € AC((—1,0],R")} . Clearly, when f € C([0,7],R"), we acquire f € ¥.

Theorem 1. Assume thatk € IT = {0,1,2,....x},1 < p < 2,1 > 0, and ¢ € ®. Then the exact soultion of the fractional
differential system (2) is given by
0
()= Pi(c)b+ H'(¢)a+ / Pc—1= D . o)ndy. ¢ & (-1T]. 3)
Proof. Basedon Lemma Pl;(g) and H;(g) are solutions of equation (2) with their own starting conditions. So the exact soultion

of the fractional differential system (2) should search in the form
0

Y(¢) = Pio)z, + H(9)z, + / Pi(c—1- z(p)dy. 4

-1



6 |

where z; and z, are unknown constant vectors, z(-) is a continuous unknown Riemann-Liouville differentiable vector function
on (—1,0].
Let us assume ¢ € (—1, 0], the integral term in formula (4) can be written in the following form

0 0

9
/ Plc—1—-xz(pdy = / P¢—1-0zCndy + / Plc—1—x)z(xdy.

[3

-1

Due to when y € [¢,0], wecan get¢ —1— y < —1and P;(g —1— y) = 0. The formula (4) can be rewritten into the following
form

<
9(©) =Y (¢) = Py(¢)z; + H)($)z, + / P(c—1—pz(xdy.

For —1 < ¢ <0, through calculating, one has

Y(g) o(5)
9
F(2 B /(g 8)' ’ Pl(19)21+Hl(19)22 /P;(&—z—;()z(;()d;( dd
| (19+z)/’1 | (19+1)/’2
T T2- )/( S TN T(p) 2dd+ F(z /(g R T(p— 1)‘220119
(8 0
e dy|dS
r(z P /(g () z(y)d y
z(c+1) Zy
=—— — B[2-p, — = _BR2-pp-1
re-pr) ot ””]+r(2—p)r(p—1) 2=pp—1l

1 1- -1
—_— —9'PO - ) 'd9|d
=T ) / z(x) / E=9"E-x X

=z,(+1)+2z,+ /(g —x)z(x)d x.

In the light of the initial conditions, the following points hold.
Firstly, by elementary calculations, we get

a=J0Y (=) = I e = lim JZ 7 ()
= lim | 2)(¢+ D)+ 2, + /(g —02(dx | = 2,
Secondly, since ¢ € @, RD””, ](p exists. On the basis of Remarkl it yields the following equation
<
DY () = "D (o) = ng,:”cp(o =z + / 2(0d 1,

then

RDp IY( l+) RDpﬁ- o(— 1+) = hm RDP - () = Z1-



Thirdly, since ¢ € @, RD‘: P exists. On the basis of Remark one shows

2

kD (o) = —J_2,+pfp(€) dT zi(c+D+z+ /(G —0z(d x | = z(9).

After verification, formula (3) does meet equation (2). In addition, it is obvious that the solution of the equation is unique, so

formula (3) is the unique solution of equation (2). This proof is finished.

O

Theorem 2. Letk € IT = {0,1,2,...,x}, f € ¥. The expression of the inhomogeneous system (1) meeting starting condition

Y (¢) =0, ¢ € [—1,0] shows the following form

9
7(§)=/P;(g—z—x)f(1)dx, celo,7].
0

Proof. According to the constant variation method, the solution Y (¢) should satisfy the following form

S
Y() = / P¢—1=e(dy,
0

where g(-) is a continuous unknown vector function and ?(0) =
Applying the p-order Riemann-Liouville derivative on Y'(¢), we acquire the following results.
(i) Whenk =1, 0 < ¢ <1, one shows

ED’ Y)o) =wY(c -1+ f(6) = (5.

On the basis of Definition 2} we obtain

Ry Yo _ 1 1- 1-
D_,+Y(€)—F(2 )d - /(g 9) "Y(19)d19+/(€ 'Y (9)d9
0 .
2
_ et —_ q\l-» Qg _ g —
“Ta-pic / -9 / PO —1-x)g(x)dy [dI
0 0 |
¢ ¢ T
L& / g(0) / (¢ =)' 7P9 —1- 1)dd |dx
“T2-p dg?
7 oo,
= ;d_ 1-p X
~Ta—7 dgzo/g()() /(g 9 ) —=——dI|dy
¢
d? d
= e g —xdy
0
=g(%).
Thus, we gain g(¢) = f(g).
(ii))When k = 2,1 < ¢ < 21, one obtains
¢—1 (il
Ry v _ e _ 1 _ (g_l_)()p_l
DY@ =wY(-D+fO)=w [ P(C-21=g(dy+f(¢)=w TTo)

g(dx + f(g).

®
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Based on Definition 2] we acquire

"D Y (o) =

9

2
- r(zl_p):_gg/g(){) /(G—S)“”P’(&—:—;()d& dy

¢ -
1- —X
F(z 5 dd / ) /(g oI I

c—
21
d—z/gu) /(g—w-ﬂw—(@ =0 9)dy
0

r(2 p) dc? A ['(2p)

(S 9
2 2 9—1— 2p—1
-5 / (€= DRUL + s [sn| [ - oo s ay
0 0

r(z I'2p)
+1

¢
d> (g—l—x)"“
=g +w = d
(9] i / gy Tor2)
0

— 7 — )1
—g(§)+1ﬂ/(g e f) g(xdy.

Thus, we gain g(¢) = f(¢).
(iii) Suppose that the conclusion is valid whenk = U and (U — 1)1 < ¢ < U1
Fork=U+1,U1 < ¢ < (U + 1)1, one shows
¢c—1
R Y@ =wY(-n+fQ)=w / Pl¢—2— )g(p)dy + f(C)

U+1 o

— a1 — y)ar—-1
- Yot [ S+ £

On the basis of Definition [2| we get

9

1 I-p / — =
TG—p) de 2/(g 9) P& —1—x)g(x)dy [dI

0

Y() =

9
1 d? .
= I“(z_p)d_gz/g()() /(§—19)1 pPp(g—l—)()dS dy
0 x

P U+l e ¢
d2 / d2 I (19 —qi— }()(q+l)p—l
=— [(—xexdy + — / g(x) / (c—9) "w! dd|dy
dg? qz‘ Q2 - p)dg? I'(gp+ p)
0 0 +y
U+l Kk
(¢c—qi— )"
=g(g) + w? ———zg(y)dy.
Z{ / I'(gp) Hex

Hence, we get g(¢) = f(¢). The proof is end.
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Remark 2. Compared with previous literatures, we extend the range of f to ¥ in this paper. The original range of f can be
changed from left open and right closed interval to closed interval. Moreover, since our proof adopts mathematical induction,
the solutions are valid in [0, co). Furthermore, our solutions are more universal.

Theorem 3. Letk € IT = {0,1,2,....x},1 < p <2,1> 0,9 € @ and f € ¥. Then the expression of the nonhomogeneous
system (1) shows the following form
0 ¢
Y(c) = Pi(¢)b+ H!(¢)a+ / Pic—1= D’ o) p)dy + / Plc—1-f(dy. ce[0.T].
—1 0

Remark 3. To begin with, we wanted to find the explicit solution by means of Laplace transformation. Through calculation, we
found that the results are complicated. By virtue of the lower limit of integral in the definition of fractional derivative starts at —1,

Z|ERD Y)W =2 [(goey * V) ()] (V)
= 2L [(g2-p * V)_(O)] () = Mgy * Y)_,(0) = (g2, ¥ ¥),(0)
and because of (gz—p * Y')_,(¢), one has
/ (c—o0) / (e / c—o0)
F(z—_p)Y(U)dU = F(z—_p)Y(U)dU + J WY(O’)dG

bt ] bt ]

(82, *Y)_ (&) =

WhenY (¢) = P’(g) one has the following form of integral f . (gr 2" )’ P’(a)d o. This integral cannot be applied to Beta function,

so it is difficult to calculate this integral directly. The approach we adopted to present the accurate solution is constant variation
method here.

Remark 4. Compared with Mahmudov’s,if A =0,d = 1,/ =2 and p € (1, 2), the equation has the following form RDS+ y(@©) =
A,y(¢c — hy) + f(¢) and the solution should be satisfied with the form

¢—h
dg) = X,,©a +X,, (g, + / X, (¢ —r—h)A p(r)dr+ / X, ,(¢c—=n)f(r)dr,
_h]
where X, ,(¢) = Z:”O 2 Q, 1 Uh )M Due to the construction of X, ,(¢) via the multivariate function Q,, which

is a delayed simulation of the polynomial fpormula of the non-commutative matrlxes estimating the stability is still a difficult
problem. Therefore, in the next section, we will use the explicit solution obtained here.

4 | FINITE TIME STABILITY RESULTS

Letk € IT\ {0} = {1,2,..x}. For u > 0, we denote Z, = {Y(-) € C((a,b],R") : (- —a)*Y (") € C(la, b],R")}. Then
Y, = Sup,ees I = )Y QI
Definition 5. (See [8]) The inhomogeneous system (1) is finite time stable concerning {0, [(k — 1)1, ki],1,6,1}, 6 < n, iff
[l@ll <6, |la]l < 6 and ||b|| < &, imply the solution of system (1) satisfying ||Y||Z“ <.
Lemma 2. For¢ € ((k— 1), ki],k € IT \ {0}, 1 < p <2 and y > 0, we obtain
@ llt¢ =& =D*P YOI < (¢ + L E, (lwlls + 7).
(i) I¢ = (e = DO*H(OIl < ¢"7°E, ,_i (@ ll¢?).
Proof. For ¢ € ((k — D)1, k], in the light of Definition 3] and Definition 4] we obtain
)

(c+v! ¢! 2 (¢ =¥ x (6 = (= Dot
— — H pt L - 2 .
I = (& = D' PON < (6 +1) [ o 1Pl 17 e, I e 1)
c+v! (c+p>! 26> (R
e e i R

<G+ E, (lwll(c + ).
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(i)

, ¢+ g2 We=0P2 (e = (k= D2
||(g—<k—1>z>”Hp<g>||s<g—<k—1>z)”[ o )+|| I, =p PP T+ ol o=
gp—Z gZp 2 ) g3p 2 X g(k+1)p—2
=< [np— b e, o Y lhre o I e, -
<™ 2E,  (lwlie.
This proof is end. O
Lemma 3. For¢ € ((k— 1), ki],k € I \ {0} and 1 < p < 2, one obtains
od k(6 = (k= Dt
/IIP(g—l—;()IId;( Z s [ - =207 = 6 = = 0]+ o S EZ O
Proof. For ¢ € ((k — 1)r,kr], in the light of Definition[3] one acquires
¢—ki
[z =1z = / IIP(G—I—)()IId)H/IIP(G—I—x)IId)(
-1 c—ki
e 1 2p—1 kp—1
(6= 2 (c—1— P 16— &= Di—p) P-]
< = £ - d
= / [ t I,y Tt F((k Dp+ )
0
= (c—1— ! 16— (= i ){)k”“]
+/[ I Y7 B i N (P s R
e (k+1)p—1
— — +1)p—
I'kp +p)
c-0" c—1=0¥"' k_1<c—(k—1>z—x>kﬂ-1]
S/ N S Y B N sy
e (k+1)p—1
k(g_kl_)() +1o—
d
/ A TP
e (k+1) 1 1
(¢ —ki— z)(+Dr- / el \
< K — D= p)ir-lyg
_/||w|| oo Z o = 2y
e= =D S ! NP — (e (0 — 1
S P Ty ZFWH) —(g=20" = (¢ — (g - H*].

This proof is end.

Lemma 4. For¢ € ((k — 1)i,ki], k € IT \ {0} and 1 < p < 2, one acquires
k

¢
il -
P (c—1— dv < B (c—gnuthr,
[ -i- < Xty
0
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Proof. For ¢ € ((k — 1)1, k1], in the light of Definition 3] one has

< ¢—ki
(c— xp! (c—1— 2P o1 (6 = (k= 1 — gy
Plc—1— dy < _ =2 A L.
O/II ‘o — 1= )(_0/[ o Il el S e
N D N (e N
=l ) ]d“_/k [ r I
¢—
—(k— 1) — 5 )kr-1 1 21
ot €= D= 0 ] /[(g L Ty S
F(—Dp+9) I'(p) T+ )
[ =y
=
_—d
Y] T ¥
c—1
-, T [E=1= ! (G =kim g
/ () +/' T2p) d"+"'+/” TG+ ¥
0 0 0
||
@+Dr=1g. < — gntbr
Zp((q+1),,)/(€ at=7) d Zr((q+1)p+1)(€ a0
This proof is end. O

Before presenting the finite time stability results, we put forward the following assumptions:
[Q]1RD’ ¢ € C((=1,0],R" and M = sup_,_ o [(RD”,. o))l < co.
[Q,] Assume that £ € C([0,7],R") and || f|l¢ = maxoc <7 [I £ ()| < oo.

For convenience of representation, we define
w1 (©) = ¢+ 1™ E, (lwli(s + 1),
WZ(Q) = gp+M_2Ep,p—l(“w“gp)s

— k (e=(k=D)n**1» k —_ —(c—(g—-
¥a(©) = 1P D5 + T s 5 6= @= 207 — (¢ = (= D)),
Va(©) = oo mamin € — a0,

9=0 T((g+1)p+1)
Theorem 4. Assume thatk € IT \ {0}, 1 < p < 2,1 > 0, u > 0, [Q,] and [Q,] hold. Equation (1) is finite time stable with
regard to {0, [(k — 1)1, ki],1,6,1} as long as

sup {8 [ (&) + a(©)] + (6 = G = D [Mus(©) + If lews©)] < (©)

(k—1)1<¢<ki
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Proof. By using the Lemmas 2] [3|and @] one obtains
IYllz, = sup [l(¢—CG&=DYOl

(k—1)y<g<ki
< sup {Il(é‘ — &= D PPl + (s — & — D" H (¢)all

(k—1)<¢<ki

0
+ / i = e = D Py(s — 1= DINED. .o)(0lld x

S
+ [ e =@ 00 == Al |
0

< sup {8l = = D PUOI+8liGe = (& = Dy O

(k—1n<g<ki
0

+G == Dm [ 1P —1- pldy

5
#e =G DSl [ IR =1 pllax )
0

< s {5[1© +wa©)] + (€ = (= D [Mys©) + If lewa(s)] | <

(k—1)<¢<ki
This proof is end. O

S | INSTANCE

In this section, an instance is given to verify the rationality of the theoretical results.

Example 5.1. Assume that p = 1.8,1=0.15,k =4, y = 0.6 and 7 = 0.6. Consider

RDIS Y(¢) = wY (s —0.15) + f(c), 0 < ¢ < 0.6,

P(©) = (¢ + 0157, ()T 015 <¢ <0,

7
T2 Y (=0.157) =a=0, @

0.8 —h =
RDYS Y(=0.15") =b =0,
045 0 .
where Y(¢) = (Y1), Y20 @ = | 77 5> LS = (5.6

Based on the Theorem[3]and ¢ € (0, 0.6], the solution of system (7) shows the following form
0

<
Y (o) =P’ ()b + H)(9)a + / PP =015 - (D' s o) (p)dx + / PP —-015- ) f(ndy,
-0.15 0

where
0 0

/ Pl —0.15- DS L o)ndy = / Pl —0.15-p)

2.64 0.2
<m2) (¢ +0.15)%2B[3, 0.2]> iy
-0.15 -0.15

3.52 1.2
22 (6 +0.15)' 2 B[4,0.2]

By elementary calculations, one shows M = sup_g 5., ||(RDI_'315+ o)l = 5.5891, |lg|| = 02267, ||=| = 0.5
and || fllc = 0.396. Furthermore, supyss<.<o6¥1(§) < w(0.6) = 0.7727, suppus<.<o6 ¥2(6) < w,(0.6) = 038171,
SUPg 45<c<0.6 ¥3(6) < w3(0.6) = 0.1214 and supg 45«06 W4($) < w4(0.6) = 0.2399.

Assume that 6 = 0.23 and = 0.62, the system (7) is finite time stable on [0, 0.6]. In the light of Figure 1, we can make a
decision that Theorem [4|is valid and reasonable, thanks to ||Y'(0.6)|| z, = 0.17794 < n = 0.62. That is to say, in a fixed time
interval [0, 0.6], the state function Y (¢) will not exceed this threshold # = 0.62.
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0.18

0.16

0.14 -

012

0 L L 1 1 1 1
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

g

Figure 1 The norm of the state vector of system (7) with p = 1.8, 1= 0.15 and 7 = 0.6.

6 | CONCLUSION

In this paper, we derived the exact solutions of Riemann-Liouville type linear nonhomogengous fractional differential oscil-
lating syetems with order p € (1, 2) through the two newly defined delayed perturbations of Mittag-Leffler matrix functions and
constant variation method. Ultimately, in the light of the exact solutions, we further study the finite time stability. Due to the
good properties of our solution, we can continue to study other stability and controllability problems in the subsequent research.
Through our method, the public problems left by Mahmudov in 2022 were partially solved.
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