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Abstract 

A supply chain disruption is an unanticipated event that disrupts the flow of materials in a supply chain. In 

recent times, supply chain disruptions continue to impact enterprise operations in different ways some 

includes higher prices, shortages among high-end consumer products, reduced service level, and increasing 

delivery lead time. In order to reduce the negative impact organizations may take proactive actions that 

hedge against such market uncertainties. Different approaches that appear in the literature to address the 

problem of supply chain considering disruption fall into one of the following categories: proactive and 

reactive. While the former methods suggest different approaches to generating robust and resilient supply 

chain structures, the latter ensures that the supply chain recovers effectively.  

In this work, we proposed a two-stage stochastic programming model for a four-echelon supply chain 

problem considering possible disruptions at the nodes (supplier and facilities) as well as the connecting 

transportation modes and operational uncertainties in form of uncertain demands. The first stage decisions 

are supplier choice, capacity levels for manufacturing sites and warehouses, inventory levels, transportation 

modes selection,  and shipment decisions  for the certain periods, and the second stage anticipates the cost 

of meeting future demands subject to the first stage decision.  Comparing the solution obtained for the two-

stage stochastic model with a multi-period deterministic model shows that the stochastic model makes a 

better first stage decision to hedge against the future demand. This study demonstrates the managerial 

viability of the proposed model in decision making for supply chain network in which both disruption and 

operational uncertainties are accounted for.  

1. Introduction and Literature Review 

Recent events worldwide have caused fundamental changes in consumer behavior and supply chain entity 

dynamics. These changes on the other hand have knocked supply chain network off balance causing 

disruptions. Disruptions in supply processes pose significant threats to business operations1 and can lead to 

increased operational cost, loss of profits, and damage the company's reputation2. Hedging against 

disruption is a call for concern in the supply chain community and there is evident that superior contingency 

planning can significantly mitigate the effects of disruptions. Developing a model that considers robust 

alternatives for supply chain is germane.  

The nature of the global market has been forcing enterprises to expand their supply chain network 

consequently making the structure more complex and more susceptible to threats in the form of risks and 

uncertainties3–5. These risks are categorized into two: operational or disruptive6. The operational risks are 

due to uncertain parameters between the supply chain entities. Works in the literature have addressed 

mainly operational uncertainties7–10. Such uncertainties are due to supply-demand coordination events and 

may result from inadequate coordination between supply chain entities, thus leading to imperfect 

information and failed processes. Disruption uncertainties on the other hand results from man-made/natural 

disaster, pandemics, etc. Generally speaking, the supply chain disruptions are caused by events that are 

neither planned nor anticipated. These events are external to the supply chain network and deforms the 

existing supply chain topology11,12. We argue that in order to ensure that the supply chain achieves a balance 

between the total operating cost and service level, a supply chain network should be designed and operated 



with buffers to hedge against disruptions. This way the supply chain network can adapt to evolving 

supply/demand at the operational level and manage uncertainty effectively. Some strategies to incorporate 

buffers into supply chain includes (i) making the supply chain more flexible by expanding capacities and 

increasing sourcing options (alternative suppliers and backup suppliers); (ii) enhancing collaborations 

between supply chain entities by sharing information to improve forecasts and using clients' locations to 

store extra inventory; and (iii) improving the network's agility by introducing product commonality and 

holding reserve inventory.  These not only help to keep supply chain functional during a disruption, but it 

also helps to prevent future delays. 

Works of literature have pointed out the vulnerability of today's supply chains to disruptions and the need 

for a systematic analysis of supply chain vulnerability, security, and resiliency1,6,13.  Furthermore, strategies 

to manage disruptions can be categorized into three main groups: mitigation strategies, recovery strategies 

and the passive acceptance approach14. The mitigation strategies are proactive measures and act in advance, 

irrespective of whether disruptions actually occur examples of such strategy include increasing amount of 

safety stock, multiple sourcing, capacity expansion and multimodal transportation options, while recovery 

strategies generally take actions after the occurrence of a disruption some of these strategies are alternative 

sourcing, rerouting of products, alternative inventory locations, outsourcing productions, and cooperation 

among supply chain entities. The third group accepts the risk of disruptions without any action. Such 

strategy may be appropriate when the mitigation or recovery cost outweighs their potential advantages.   

Broadly speaking, the review of supply chain disruption frameworks can be grouped under simulation 

approaches and mathematical programming approaches11,15. The simulation approach has been used to 

study how different supply chain entities interact, and it provides dynamic details and behaviors of a 

network over time. The decisions are made from logical rules of each supply chain entity. There are notable 

studies on simulation of supply chain network under disruptions16–22, these studies have given insights into 

best ways to manage disruptions and the potential benefits of such actions. Conversely, mathematical 

programming follows an analytical approach to make decisions using various optimization tools. This 

review focuses on the mathematical frameworks for supply chain models under disruption. Three 

dimensions are considered for the discussion of the mathematical frameworks: the first is the disruption 

management strategies which includes mitigation, recovery, or passive acceptance23,24. The second 

dimension is the nature of the model’s formulation which corresponds to a Mixed Integer Programming 

(MIP) that could be linear or non-linear. The final dimension of the formulation is how the disruption is 

incorporated into the model. This could be deterministic or stochastic. In the deterministic formulation the 

disrupted entities are not considered while solving the optimization problem while the stochastic 

formulation treats the entities as random variables 25,26. For an excellent review of literature Snyder et al 25 

gave a summary for models used in the study of supply chain disruptions.  

In a mathematical model, the supply chain network is viewed as a set of interconnected nodes or supply 

chain entities that are connected by directed arcs or the logistic chains. Disruptions can either happen to the 

arcs or the nodes. It is worth noting the works of Sawik27–31, who developed an integrated approach for 

portfolio optimization under disruption. The stochastic programming model was used to integrate supplier 

selection, demand allocation, and customer order scheduling in a multi-echelon supply chain. The model 

was further improved by jointly optimizing supplier, production, and distribution. Namdar et al.32  solved a 

stochastic MILP and  considered sourcing options, collaborations, and visibility as strategies. Results 

indicates that the information sharing in this case buyers’ warning capabilities plays a vital role in enhancing 

supply chain resilience. A bi-objective stochastic MILP was considered in Yoon et al.33, the mitigation 

strategies considered was supplier selection. Moreover, the authors suggested that a combination of 

upstream and downstream risk mitigation strategies should be considered with supplier selections rather 



than considering these decisions independently. Using a bi-objective two-stage stochastic programming 

model,  Torabi et al 34 developed a MILP model to address supplier selection and order allocation problem. 

To enhance the resilience level, the model applies several proactive strategies, suppliers’ business 

continuity plans, fortification of suppliers, and contracting with backup suppliers. Jahani et al.35 used a two-

stage MIP model to study the impact of capacity/inventory disruption on a supplier's cost when the supplier 

has different service agreements with customers. The model can assist suppliers in determining their 

capacity level and location, allocating capacity to customers, and negotiating service level terms. Lim et al 
36 considered a facility location problem in the presence of random disruption, they investigated the impact 

of misestimating the disruption probability and misestimating the correlation degree. Results indicate that 

the impact of disruption is much significant. Gholami-Zanjani et al.37 applied stochastic 

programming/robust optimization to study the resilient supply chain design and inventory decisions, 

considering food product-specific characteristics and potential disruptions. The model allows the analysis  

of three resilient strategies to hedge against ripple effects for food supply chain network. Rezapour38 

proposed a supply chain network design problem under competition and disruption. The model is designed 

to find the most profitable network and risk mitigation policies. Sadeghi et al.39 developed a multi-objective 

model for designing a supply chain network, considering resilience and sustainability, and used a robust 

scenario-based stochastic programming approach for potential disruption scenarios. This approach allows 

the average performance of the supply chain in each objective to improve. Azad et al40 studied the design 

of a supply chain network in the presence of random disruption in capacity of distribution center and 

transportation modes. Conditional value at risk approach was used to control the risk of the decisions made 

in the presence of disruptions. The central theme of the mathematical programming approaches and 

simulations methods used in the literature has been to address the disruptions in a proactive or reactive 

manner.  It is interesting to note that both strategies have its pros and cons. Interested readers are directed 

to the review articles by  Kamalahmadi and  Parast 41,42,  Shekarian12,  Ivanov et al11,13, and Snyder et al25. 

Despite the useful insights on ways supply chain can adapt to disruption situations, there are some 

shortcomings some of them are that most papers consider single source of disruptions, and the papers that 

considers multiple source of disruption focuses on nodes (supplier, facility or demands), address operational 

uncertainties, and include recovery costs in the model. Decisions are made with information about future 

disruptions and uncertain information about the operational parameter. To this end, we develop a multi-

product supply chain disruption model with uncertain demand. The purpose is to tackle operational and 

disruptive uncertainties at the same time. In particular, the model would incorporate the following:  hedging 

against disruptions with alternative sourcing options;  increased capacity utilization, outsourcing of 

products and multi-modal transportation options; adopting inventory policies that models the safety stock 

as well as alternative warehouse options; addressing the operational uncertainties using the two-stage 

formulations, and adopting a cost structure that ensures economy of scale.  

To determine the efficacy of the stochastic model, a deterministic model is solved using the expected 

operational parameters. The results as well as the decisions are compared. The rest of the paper is organized 

as follows. Section 2 discusses the problem statement and the model development.  The case study in section 

3 demonstrates the performance of the model and solution framework. Section 4 discusses the results and 

section 5 concludes the paper.   

2. Problem statement and theoretical framework  

2.1. Problem Statement  

The problem considers a multi-products customer-driven supply chain network which produces variety of 

products (𝑝 ∈ 𝑃 ) to meet the need of customer zones (𝑐 ∈ 𝐶 ). A comprehensive notation can be found in 

the appendix.  Each product is typically composed of different raw materials (𝑟 ∈ 𝑅). And these materials 



are sourced from different suppliers (𝑠 ∈ 𝑆) with different capacities. As shown in Figure 1, the supply 

chain network consists of four echelons and can be represented by a directed graph with four sets of nodes: 

the supplier nodes (𝑠 ∈  𝑆), the manufacturing facilities ( 𝑓 ∈  𝐹 ), the warehouses ( 𝑤 ∈  𝑊) and the 

customer zones ( 𝑐 ∈  𝐶) . The arcs represent the connecting links between nodes and embedded in each 

arc are (𝑚 ∈ 𝑀) modes of transportation.  The reliability of each transportation nodes differs and affects 

the cost of using the transportation mode.  The topology of the supply chain is such that during disruption, 

there are strategies to ensure robust delivery for its entities (nodes and arcs).  

Following a discrete time paradigm, the horizon considered is discretized into 𝑇 planning periods denoted 

by 𝑡 ∈ { 1, . . . , |𝑇|}.  The supplier sets contain a set of main supplier that can supplier raw material r  𝑠 ∈

𝑆𝒶
𝑟 ⊂ 𝑆 and backup suppliers 𝑠 ∈ 𝑆𝒷

𝑟 ⊂ 𝑆. It should be noted that within the sets of main suppliers there are 

alternative suppliers for raw material 𝑟. And there are backup suppliers for all raw materials as well. Such 

a strategy ensures that raw materials are delivered, irrespective of the disruption. Also, the main suppliers 

are preferred for two main reasons, the cost of supply 𝛼𝑠 is lower and the quality of raw material 𝛾𝑟𝑠 is 

better. Thus, the backups are only used when main suppliers are disrupted. At the manufacturing facility 

nodes, each manufacturing facility operates at a fixed cost of 𝛼𝑓
𝐹𝐶, and a unit production cost of 𝛼𝑓

𝑣. The 

former can be attributed to utilities, labor, and other operational costs. Additionally, each facility has a 

potential for expansion where extra capacity 𝑢 ∈ 𝑈 with capacity 𝐶𝑓
𝑢 is added to the main production line. 

This comes at a cost of 𝛼𝑓
𝑢. Products that cannot be met are outsourced so as to reduce the backorder.  At 

the warehouse nodes,  there are two sets of warehouses: the main warehouses 𝑤 ∈ 𝑊𝑎  ⊂ 𝑊 owned by the 

enterprise and the backup warehouses 𝑤 ∈ 𝑊𝒷 ⊂ 𝑊 located at the customer locations. Similar expansion 

approach applied at the manufacturing nodes is available at the main warehouses as well. Thus, using extra 

units comes at an extra cost of 𝛼𝑤
𝑢 . Furthermore, the unit cost of storing inventory in the warehouse is 𝛼𝑤

𝐼𝑛𝑣, 

This cost is higher for the backup warehouses. Within the supply chain network, products and raw materials 

are transported between adjacent nodes through the multi-modal arcs with 𝑚 available transportation 

modes. Each arcs modes incurs a cost 𝛼𝑖𝑗
𝑚 where (𝑖, 𝑗) ∈ {(𝑠, 𝑓), (𝑓, 𝑤), (𝑤, 𝑐)} .  

The set of time periods is divided into two subsets: one that is certain and the uncertain time period. At the 

beginning of the certain period, customer demands for products 𝑑𝑝𝑐𝑡. The demands for the uncertain periods 

are forecasted from a distribution 𝑑̂𝑝𝑐𝑡(𝜃) ~ 𝑁(𝜇𝑝, 𝜎𝑝). During each time periods, raw materials are 

ordered from suppliers to production facilities and manufactured products sent to the warehouse. At the 

warehouse there are decisions on quantities of products to ship to customers as well as the quantity to keep 

as inventory based on the adopted inventory policy. At the end of the certain products, products are 

delivered to the customers from the warehouses or by outsourcing. The unsatisfied demands are considered 

to be lost sales and a backorder penalty cost 𝛼𝑝
𝑝𝑒𝑛

 is incurred.  It should be noted that other parameters in 

the supply chain such as material costs, quality of raw materials and transportation costs can also be 

uncertain, but we have assumed that they have low variability thus, the expected values for these parameters 

will suffice. For the case of other parameters, we sample from a uniform distribution 𝓅 ~ 𝑈(𝑙𝑏, 𝑢𝑏), and 

the expected values calculated. This expected value is used. Which is precisely the midpoint of the intervals.  

 



  

 

Figure 1: Four Echelon Supply Chain Network with Demands Fluctuations 

The nodes and arcs of in the supply chain network are susceptible to disruptions and each entity reacts to 

disruption in unique ways. At the supplier nodes, when the main suppliers for a particular material are 

disrupted or unable to meet the demands for raw materials, the backup suppliers are used. Each non-

disrupted manufacturing facility can expand its capacity in order to manage the disruptions at the 

manufacturing facility nodes. Also, there are options to outsource products to keep the customer service 

level high. The warehouses that are undisrupted controls the disruption at the warehouse nodes by adopting 

similar capacity expansion technique. Alternatively, inventory can be stored in the warehouses at the 

customer’s location.  Due to the multi-mode operation of the arcs connecting the adjacent nodes, disruptions 

in the arcs are managed by redistributing materials and transporting through the undisrupted arcs. The re-

distribution is done to satisfy the objective.   

It should be highlighted that the problem under consideration here takes the supply chain architecture as 

fixed by a higher-level (strategic level), and this design incorporates buffers to hedge against disruptions. 

The primary goal of the problems is to solve a tactical supply chain problem under uncertainty while also 

considering disruptions. This invariably requires balancing resource supply, production levels, and storage 

levels to uncertain product demand in an optimal way, while taking capacity utilization, resource 

availability, and disruption forecasts into account. The main decisions are raw material quantities from 

suppliers, production levels at manufacturing sites, capacity utilizations at the warehouses and 

manufacturing sites and transportation modes and quantities for each link in the supply chain network. The 

overall goal is to minimize the total cost and maintain a high service level. Thus, we want to utilize nodes 

at minimum cost in the network structure and find the flow path that transfers commodities at the lowest 

cost.  

2.2. Model Development   

In this section, we introduce the mathematical model for the supply chain under demand uncertainty and 

the disruption. We have adopted a two-stage stochastic modeling paradigm to hedge against the operational 

uncertianty and integrated an approach to help hedge against the supply chain disruption. In what follows, 

we describe the modeling assumptions , followed by the detailed formulation  



Modeling assumptions  

Disruption is any event that affects the supply chain topology. In order to capture the nature of disruptions, 

as well as operational uncertainties, we have made some modeling assumptions as follows:  

1. Operational parameters are assumed to follow a known distributions, the demand uncertainty follows 

a normal distribution, to account for disruption, it assumed that the variance of the distribution is high. 

For other parameters, a uniform distribution is sampled, and their expected values is used.  

2. All supply chain entities can exist in two states: normal state and disrupted state. The entity is fully 

functional in the normal state, while the entities cannot function in the disrupted state. 

3. Disruption can occur to all nodes (suppliers, facilities, and warehouses) and arcs (transportation routes 

between nodes), and in each disruption case, a subset of nodes and/or arcs are disrupted; once this 

happens, total capacity is lost.  

4. Disruption of each node occurs independently; the interval is determined by the geometric distribution, 

which is the discrete counterpart of the exponential distribution.  

5. In the event of disruptions, available measures provide alternatives, which come at extra costs to 

operations. These are discussed below:  

a. When a manufacturing facility node is disrupted, products manufacturing can be outsourced, 

and recovery is amortized till the facility gets back to normal operation  

b. When transport arcs are disrupted, the transportation is redistributed, but the recovery fee is 

still present till the arc comes back to normal operation.  

c. When the warehouse nodes are disrupted, products are stored in the customer location for a 

specified cost.  

d. When supplier nodes are disrupted, alternate suppliers/backup suppliers are used to hedge 

against raw material demands.  

6. A recovering facility cannot be disrupted until after full recovery.  

To quantify the time the disruption happens, we assumed that the amount of time before disruption happens 

is random, and the interval duration between disruptions follows a geometric distribution25. It should be 

noted that the choice of geometric distribution is because we have used a discrete-time model. The 

geometric distribution is a discrete probability distribution that represents the probability of the number of 

successive failures before success is obtained in Bernoulli trial43,44. The underlying assumption in using this 

distribution is that the average time between events is known, but the events' disruptions themselves are 

spaced at random. It is possible to have back-to-back disruptions, but we can also go weeks between 

disruptions due to randomness. Thus, we assume that the waiting time until the disruption is geometrically 

distributed with a parameter  (the average rate of occurrence), and the waiting times between each disruption 

are independent and geometrically distributed. The discretization of the time horizon considered is done 

according to time interval for possible disruption event. At each period, Bernoulli trial is performed, and if 

the trial leads to a success, then we have a disruption, otherwise there is no disruption. It should be noted 

that this procedure is done independently for all supply chain entities (nodes and arcs). 

Model Formulation  

The overall objective of the problem is to make feasible decisions on raw material and products flow 

through arcs and nodes to satisfy the customer demands in an optimal fashion. The optimality in this case 

is defined as the decisions that minimizes the entire supply chain cost such decisions has to be feasible,i.e. 

satisfy the constraints at each supply chain node. In what follows we discuss the mathematical formulation 

of the objective function as well as the constraints.  

Objective Function:  



Following a two-stage approach, the goal is to minimize the expected costs.  This cost consists of the 

summations of all costs incurred, which are cost of raw materials, production of products, materials flow 

across all nodes, storage  and the penalties incurred for unment demands. Quantitatively, this is shown in 

equation (1a). The breakdown of each costs in equation (1a) is shown in equation (1b)- (1h). 

  

min 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡  
 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡 = 𝔼 [

𝑆𝑢𝑝𝑝𝑙𝑦 𝐶𝑜𝑠𝑡 (𝜃) + 𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡(𝜃) +

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡(𝜃) + 𝑂𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 (𝜃) + 

𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝐶𝑜𝑠𝑡(𝜃)
]    

 

𝑆𝑢𝑝𝑝𝑙𝑦𝐶𝑜𝑠𝑡 (𝜃) =  ∑ ∑ (𝑠𝑢𝑝𝐶𝑜𝑠𝑡𝑠,𝑡(𝜃) +  𝑠𝑇𝐶𝑜𝑠𝑡𝑠,𝑡  (𝜃))

𝑇

𝑡

𝑆

𝑠

   

𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝜃) =  ∑ ∑ (𝑤ℎ𝐶𝑜𝑠𝑡𝑤,𝑡(𝜃) +  𝑤𝑇𝐶𝑜𝑠𝑡𝑤,𝑡(𝜃))

𝑇

𝑡

𝑊

𝑤

 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝜃) =  ∑ ∑ (𝑓𝑇𝐶𝑜𝑠𝑡𝑓,𝑡(𝜃) +  𝑓𝑇𝐶𝑜𝑠𝑡𝑓,𝑡(𝜃))

𝑇

𝑡

𝐹

𝑓

   

𝑂𝑢𝑡𝑠𝑜𝑢𝑟𝑖𝑛𝑔𝐶𝑜𝑠𝑡 (𝜃) =    ∑ 𝑜𝑢𝑡𝐶𝑜𝑠𝑡𝑡

𝑇

𝑡

(𝜃) 

𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟 𝐶𝑜𝑠𝑡(𝜃) =  ∑ ∑ ∑(𝐵𝑝𝑐𝑡(𝜃) × 𝛼𝑝
𝑝𝑒𝑛

)

𝑇

𝑡

𝐶

𝑐

𝑃

𝑝

 

 

 

 

 

 

 

 

 

 

(1a)  

𝑠𝑢𝑝𝐶𝑜𝑠𝑡𝑠,𝑡(𝜃) =  ∑ ∑ ∑(𝑄𝑟𝑠𝑓𝑚𝑡(𝜃) × 𝛼𝑟𝑠)

𝑀

𝑚

𝐹

𝑓

𝑅

𝑟

 ∀𝑠 ∈ 𝑆 , 𝑡 ∈ 𝑇 (1𝑏) 

𝑠𝑇𝐶𝑜𝑠𝑡𝑠,𝑡(𝜃) =  ∑ ∑ ∑ 𝑄𝑟𝑠𝑓𝑚𝑡(𝜃) × 𝛼𝑚
𝑠𝑓

𝑀

𝑚

𝐹

𝑓

𝑅

𝑟

          ∀𝑠 ∈ 𝑆; 𝑡 ∈ 𝑇 (1𝑐) 

𝑤ℎ𝐶𝑜𝑠𝑡𝑤,𝑡(𝜃) = (∑ 𝐼𝑝𝑤𝑡

𝑃

𝑝

(𝜃) ×  𝛼𝑤
𝑖𝑛𝑣) +   (∑ 𝑦𝑤,𝑡

𝑢 × 𝛼𝑤
𝓊

𝓊

)  + ( 𝛼
𝑤| 𝑤∈𝑊𝒹
𝑟𝑒𝑐 ) ∀ 𝑤 ∈ 𝑊 ; 𝑡 ∈ 𝑇 (1𝑑) 

𝑤𝑇𝐶𝑜𝑠𝑡𝑤,𝑡(𝜃) =  ∑ ∑ ∑ 𝑄𝑝𝑤𝑐𝑚𝑡(𝜃)

𝑀

𝑚

× 𝛼𝑚
𝑤𝑐

𝐶

𝑐

𝑃

𝑝

         ∀ 𝑤 ∈ 𝑊; 𝑡 ∈ 𝑇 (1𝑒) 

𝑓𝑎𝑐𝐶𝑜𝑠𝑡𝑓,𝑡(𝜃) = (∑ ∑ 𝑄𝑝𝑓𝑤𝑚𝑡(𝜃) × 𝛼𝑓
ℴ𝑝

𝑀

𝑚

𝑊

𝑤

) + (∑ 𝑦𝑓𝑡
𝑢 × 𝛼𝑓

𝓊 

𝒰

𝑢

) + (𝛼
𝑓| 𝑓∈𝐹𝒹
𝑟𝑒𝑐 )   (1𝑓) 

𝑓𝑇𝐶𝑜𝑠𝑡𝑓,𝑡(𝜃) =  ∑ ∑ ∑ 𝑄𝑝𝑓𝑤𝑚𝑡(𝜃)

𝑀

𝑚

𝑊

𝑤

𝑃

𝑝

×  𝛼𝑚
𝑓𝑤

      ∀  𝑓 ∈ 𝐹; 𝑡 ∈ 𝑇 (1𝑔) 

𝑜𝑢𝑡𝐶𝑜𝑠𝑡𝑡(𝜃) =  ∑ ∑ 𝑄𝑝𝑐𝑡(𝜃) × 𝛼𝑜

𝐶

𝑐

𝑃

𝑝

    ∀ 𝑡 (1ℎ) 

 



The cost of raw materials supplied is captured by equation (1b) where 𝑄𝑟𝑠𝑓𝑚𝑡(𝜃) represents the quantity of 

raw materials 𝑟 from supplier 𝑠 to manufacturing facility 𝑓 transported by mode 𝑚, at time period 𝑡 .  

similarly, equation (1c) shows the cost of transportation from supplier to manufacturing facility.  Equations 

(1d) and (1e) represents the cost incurred at the warehouse nodes and transportation costs for shipping to 

the customers respectively. 𝐼𝑝𝑤𝑡(𝜃) is the inventory amount of product 𝑝 stored in the warehouse 𝑤 at the 

end of time period p, 𝑦𝑤,𝑡
𝑢  is a binary variable that is 1 when the unit 𝑢 is used in warehouse 𝑤 at time 

period t. The last term in equation (1d) is the cost of recovery. At the manufacturing facilities, 𝑄𝑝𝑓𝑤𝑚𝑡(𝜃) 

is the quantity of products 𝑝 from facility 𝑓 to warehouse 𝑤 using mode 𝑚 at time period 𝑡.  Equation(1f) 

shows the cost of production and recovery cost incurred by disrupted facilities. In a similar fashion as the 

warehouse the 𝑦𝑓𝑡
𝑢  is a binary variable that is 1 when unit u is used in the facility 𝑓 at time period 𝑡. Finally, 

the (1h) is used to calculate the cost of outsourcing productions and 𝑄𝑝𝑐𝑡(𝜃) is the quantity of outsourced 

products 𝑝 delivered to customers 𝑐 at the end of the time period 𝑡.  

Constraints 

Flow Balances: The flow balance ensures continuity between the nodes through arcs. This balances are 

written for all nodes and are described by equations (2𝑎), (2𝑏), and (2𝑐).  The uncertainty in the demand 

for products p from customer locations c propagates to the continuity balance at the customer side as shown 

in equation (2a). The inventory of balance at the warehouse is shown in equation (2b). The balance ensures 

that the inventory at the beginning of the time period and at the end of the time is balanced by the quantity 

of products coming to the warehouse and that leaving the warehouse at the end of the time period. At the 

manufacturing sites, the quantity of products manufactured depends on the materials supplied from the 

suppliers and the corresponding yield of the raw materials. This is shown by equation (2c).  

𝒹𝑝𝑐𝑡(𝜃) − ∑ ∑ 𝑄𝑝𝑤𝑐𝑚𝑡(𝜃)

𝑀

𝑚

𝑊

𝑤

+   𝑄𝑝𝑐𝑡(𝜃) = ℬ𝑝𝑐𝑡(𝜃)     ∀𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶 , 𝑡 ∈ 𝑇     
 

(2𝑎) 

𝐼𝑝𝑤𝑡(𝜃) = 𝐼𝑝𝑤𝑡−1 (𝜃) + ∑ ∑ 𝑄𝑝𝑓𝑤𝑚𝑡

𝑀

𝑚

𝐹

𝑓

 (𝜃) −  

∑ ∑ 𝑄𝑝𝑤𝑐𝑚𝑡

𝑀

𝑚

(𝜃)

𝐶

𝑐

  ∀𝑝 ∈ 𝑃, 𝑤 ∈ 𝑊 , 𝑡 ∈ 𝑇                  

 

 

(2𝑏) 

 

 

 

 

∑ ∑ 𝑄𝑝𝑓𝑤𝑚𝑡(𝜃)

𝑀

𝑚

𝑊

𝑤

 =  ∑ ∑ 𝑄𝑟𝑠𝑓𝑚𝑡(𝜃)

𝑀

𝑚

𝑆

𝑠

∗  𝛾𝑟𝑝    ∀ 𝑓 ∈ 𝐹 ,  𝑟 ∈ 𝑟,  𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇  
 

(2𝑎) 

 

Warehouse Disruptions:  For the warehouses, there are main warehouses and retailer location sites that are 

used as backup warehouses. Only the main warehouse can be disrupted and expanded.  The capacity of the 

undisrupted warehouses 𝑊𝒶
𝑛 can be increased. Equations (3𝑎) ensure the selection and feasible expansion 

of undisrupted warehouses by fixing the disrupted warehouses capacity 𝑊𝒶
𝒹 to zero and ensuring that there 

is no expansion for the conventional model. 𝑦𝑤𝑡
𝑢  is a binary variable which determines if expansion unit 𝑢 

is used in warehouse 𝑤 at time period 𝑡 Following that, equations (3𝑏) imply fixed capacity of the 

undisrupted warehouses which is to be used before considering the backup warehouse 𝑊𝒷 located at the 

retailer locations. Equations (3𝑐)  − (3𝑑) ensure that the inventory is within the utilized capacity range, 

while equation (3𝑒) enforces that materials stored at a customer location should service only that customer 

where 𝐼𝑝𝑤𝑡(𝜃) is the inventory of product 𝑝 in warehouse 𝑤 at time period 𝑡;  𝑄𝑝𝑤𝑐𝑚𝑡(𝜃) is the quantity of 

product from warehouse 𝑤 to customer 𝑐  using transportation mode 𝑚 at time period t. The safety stock 



for the warehouses that are non-disrupted is modeled by equations (3𝑓) and (3𝑔). According to equation 

(3𝑓) the minimum inventory which is reviewed every period must be proportional to the standard deviation 

of the products and the replenishment lead time. This equation is valid for the case where demand for 

products is assumed independent and identically distributed45 where 𝑧 is the cumulative normal distribution 

coefficient for a given service level required. In this paper we have assumed a value of 1.65 and this means 

we keep a safety stock to obtain a service level of 95%.   

𝑦𝑤,𝑡
𝓊 − 𝑦𝑤,𝑡

𝓊′
≥ 0                ∀  𝑢 < 𝑢′ ; 𝑤 ∈  𝑊 ;  𝑡 ∈ 𝑇 

𝑦𝑤,𝑡
𝑢=1 = {

1,                       ∀ 𝑤 ∈ 𝑊𝒶
𝑛; 𝑡 ∈ 𝑇 

0,           ∀𝑤 ∈ 𝑊𝒶
𝒹; 𝑡 ∈ 𝑇 ; 𝑡 < 𝑡𝑅

 

(3𝑎) 

𝑦𝑤,𝑡
𝑢=1 − 𝑦𝑤′,𝑡 ≥ 0                                     ∀ 𝑤 ∈ 𝑊𝒶

𝓃;    𝑤′ ∈ 𝑊𝒷;   𝑡 ∈ 𝕋 (3𝑏) 

∑ 𝐼𝑝𝑤𝑡

𝑃

𝑝

(𝜃) ≤ ∑ 𝑦𝑤,𝑡
𝓊

𝒰

𝓊

× 𝐶𝑎𝑝𝑤𝓊          ∀𝑤 ∈ 𝑊𝒶
𝓃  ;  𝑡 ∈ 𝑇   

 

(3𝑐) 

∑ 𝐼𝑝𝑤𝑡(𝜃)

𝑃

𝑝

≤ 𝑦𝑤,𝑡 × 𝐶𝑎𝑝𝑤          ∀ 𝑤 ∈ 𝑊𝒷   ;  𝑡 ∈ 𝑇   
 

(3𝑑)  

∑ 𝑄𝑝𝑤𝑐𝑚𝑡(𝜃) ∶= 0

𝑀

𝑚

   ∀ 𝑤 = 𝑐;   𝑤 ∈ 𝑊𝒷 ;  𝑡 ∈ 𝕋              
 

(3𝑒) 

𝐼𝑝𝑤𝑡
𝑠𝑠 = 𝑧√𝐿 × 𝜎𝑝  (3𝑓)  

𝐼𝑝𝑤𝑡(𝜃) ≥   𝐼𝑝𝑤𝑡
𝑠𝑠    ∀𝑤 ∈ 𝑊𝒶

𝓃 ∀𝑝 ∈ 𝑃  (3𝑔)  

 

Facility Disruption: At the facility nodes, equation (4𝑎) restricts operations to only non-disrupted facilities 

𝑦𝑓,𝑡
𝑢  is a binary variable which determines if unit 𝑢 in facility 𝑓 is in use, 𝐹𝓃, and ensures that facilities that 

are non-disrupted operate in full mode before expansion consideration. Thus, equation (4𝑎) enforces 

feasible integer selection. In equation (4𝑏), 𝑄𝑝𝑓𝑤𝑚𝑡 is the quantity of product from facility 𝑓 to 

warehouse 𝑤 using transportation mode 𝑚 at time period t , and 𝐶𝑎𝑝𝑓𝑢 expresses the total capacity of unit 𝑢 

in facility 𝑓; the equation enforce that the amount produced does not exceed the design capacities and 

equation (4𝑐) sets restrictions on the amount of products that can be outsourced, in the equation 𝐶0 shows 

the maximum amount that can be outsourced, and 𝑄𝑝𝑐𝑡 is the quantity of outsourced products transported 

to customer at the time periods.   

𝑦𝑓,𝑡
𝑢 − 𝑦𝑓,𝑡

𝑢′
≥ 0                ∀  𝑢 < 𝑢′ ; 𝑓 ∈  𝐹 ;  𝑡 ∈ 𝑇 

𝑦𝑓,𝑡
𝑢=1 = {

1,                                    ∀ 𝑓 ∈ 𝐹𝓃;  𝑡 ∈ 𝑇 

0,                       ∀ 𝑓 ∈ 𝐹𝑑;  𝑡 ∈ 𝑇 , 𝑡 < 𝑡𝑅
} 

(4𝑎) 

∑ ∑ ∑ 𝑄𝑝𝑓𝑤𝑚𝑡(𝜃)

𝑀

𝑚

𝑊

𝑤

𝑃

𝑝

≤ ∑ 𝑦𝑓,𝑡
𝓊

𝒰

𝓊

× 𝐶𝑎𝑝𝑓𝓊          ∀  𝑓 ∈  𝐹 ;  𝑡 ∈ 𝑇   
 

(4𝑏) 

∑ 𝑄𝑝𝑐𝑡(𝜃)

𝑝

≤ 𝐶𝑜                                              ∀𝑐 ∈ 𝑐,  𝑡 ∈ 𝑇 (4𝑐)  

 

Supplier Disruption:  At the supplier nodes, the main suppliers that are undisrupted, 𝑆𝒶,𝑡
𝓃  ,  are selected 

before considering backup suppliers, equation (5a) ensures these selections. Once the selections of suppliers 

are done, equation (5𝑏) limits the capacity of these suppliers.  



𝑦𝑠,𝑡 − 𝑦𝑠′,𝑡 ≥ 0     ∀ 𝑠 ∈  𝑆𝒶,𝑡
𝓃  ;   𝑠′ ∈ 𝑆𝒷 , 𝑡 ∈ 𝑇  

𝑦𝑠,𝑡 = {
1, ∀ 𝑠 ∈  𝑆𝒶,𝑡

𝓃  

0, ∀ 𝑠 ∈  𝑆𝒶,𝑡
𝒹 } 

(5𝑎) 

∑ ∑ 𝑄𝑟𝑠𝑓𝑚𝑡

𝑀

𝑚

(𝜃)

𝐹

𝑓

≤ 𝑦𝑠𝑡 × 𝐶𝑎𝑝𝑠                  ∀𝑠 ∈ 𝑆, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 

 (5𝑏)  

 

Transportation Capacity: the transportation links are multimodal, and each mode can be disrupted; 

whenever this happens, flow is redistributed between the available arc modes.  Each of the transportation 

modes is limited by capacity 𝑡𝐶𝑎𝑝𝑚
𝑖𝑗

     as shown in equations (4𝑎) − (4𝑐) for all the links.   

∑ 𝑄𝑟𝑠𝑓𝑚𝑡(𝜃)

𝑅

𝑟

≤ 𝑦𝑚,𝑡
𝑠𝑓

× 𝑡𝐶𝑎𝑝𝑚
𝑠𝑓

     ∀𝑠 ∈ 𝑆; 𝑓 ∈ 𝐹 ; 𝑚 ∈ 𝑀 ;  𝑡 ∈ 𝑇 (6𝑎) 

∑ 𝑄𝑝𝑓𝑤𝑚𝑡(𝜃)

𝑃

𝑝

≤ 𝑦𝑚,𝑡
𝑓𝑤

× 𝑡𝐶𝑎𝑝𝑚
𝑓𝑤

       ∀𝑓 ∈ 𝐹; 𝑤 ∈ 𝑊 ; 𝑚 ∈ 𝑀 ;  𝑡 ∈ 𝑇 (6𝑏) 

∑ 𝑄𝑝𝑤𝑐𝑚𝑡(𝜃)

𝑃

𝑝

≤ 𝑦𝑚,𝑡
𝑤𝑐 × 𝑡𝐶𝑎𝑝𝑚

𝑤𝑐           ∀𝑤 ∈ 𝑊; 𝑐 ∈ 𝐶 ; 𝑚 ∈ 𝑀 ;  𝑡 ∈ 𝑇 (6𝑐)  

 

The model described above is referred to as the proposed model. The solutions obtained from the proposed 

model are compared with that of the nominal model. In the nominal model, there are no mitigation 

strategies, i.e., no outsourcing, no expansion possibility in the facilities (manufacturing facilities and 

warehouses), and no option for inventory storage at the customer locations.  

After every optimization step, three metrics are used to quantify the efficiency of the solution, as shown in 

equations (7𝑎) − (7𝑐). 

𝑢𝑛𝑖𝑡𝐶𝑜𝑠𝑡𝑡(𝜃)  =
𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑡(𝜃)

(∑ ∑ (∑ ∑ 𝑄𝑝𝑤𝑐𝑚𝑡
𝑀
𝑚 (𝜃)𝑊

𝑤 +   𝑄𝑝𝑐𝑡(𝜃))𝐶
𝑐

𝑃
𝑝 )

 
(7𝑎) 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑒𝑣𝑒𝑙𝑡(𝜃)  =  
(∑ ∑ (∑ ∑ 𝑄𝑝𝑤𝑐𝑚𝑡(𝜃)𝑀

𝑚
𝑊
𝑤 +  𝑄𝑝𝑐𝑡(𝜃))𝐶

𝑐
𝑃
𝑝 )

∑ ∑ 𝑑𝑝𝑐𝑡(𝜃) 𝑝𝑐
 

(7𝑏) 

𝑆𝐶𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑡(𝜃) =   
(∑ ∑ (∑ ∑ 𝑄𝑝𝑤𝑐𝑚𝑡(𝜃)𝑀

𝑚
𝑊
𝑤 )𝐶

𝑐
𝑃
𝑝 )

∑ ∑ 𝑑𝑝𝑐𝑡𝑝𝑐 (𝜃)
 

(7𝑐) 

 

Equation (7𝑎) represents the cost of supplying one unit of product to the customer, which determines the 

profit an enterprise makes if the selling price is fixed or determines the main price to deliver to customers 

if there is a limit on profit margin. Thus, lower unit cost indicates that the supply chain achieves service 

level at a low cost, and the higher unit cost indicates that the supply chain achieves service level at a higher 

cost; the latter happens when most demands are outsourced; disruption also increases unit costs. Equation 

(7𝑏) quantifies the service level, which is the fraction of the demand that the supply chain meets. Finally, 

equation (7𝑐) shows the supply chain efficiency, which reflects the demand the supply chain meets without 

outsourcing. In what follows we discuss the assumptions for the disruptions.  



2.3 Solution Procedure:  

Two-Stage Stochastic Model  

The developed model in section 2.2 involves both integer variables and continuous variables as well as 

operational parameters that are uncertain. Considering the length of the time periods, the available 

information about the uncertainty in the future period and the availability of disruption considerations. A 

two-stage stochastic optimization is chosen to solve the problem. This can be expressed as shown in 

equation (8). 

min
𝑥,𝑦𝑠𝑐

{
𝒄𝑇𝑥1  + 𝔼[𝒇𝑇𝑥2

𝑠𝑐]

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑥1 ∈ 𝒳1 ;  𝑥2
𝑠𝑐 ∈ 𝒳2 

 }   

 

(8)  

 

where the variables 𝑥1and 𝑥2 represent the first and the second stage decisions, respectively, and 𝒳1 and 

𝒳2 captures their feasible space. These are defined by equations (2) to (6). It should be noted that the 

decisions includes both binary decisions and continuous decisions. The flow of the solution procedure is 

such that the disruption profile and the certain demands for the certain period are first realized, for the 

uncertain period the demands are forecasted, and disruption profiles are also predicted. This information is 

used to solve the two-stage stochastic model. Based on the structure of information, the integer decisions 

determine the arrangement of nodes, and the continuous variables are constrained by this arrangement. The 

decisions in the first stage include the integer decisions on the configuration of the facilities for all periods, 

the amount of products flowing across the adjacent nodes at the certain period, and the inventory stored at 

the end of the certain period,. The second stage decisions, which are adjusted with respect to the uncertainty 

realized thus far, includes the products flowing across adjacent nodes for all possible scenarios of the 

uncertain period, and inventory policies to be adopted for all scenarios These second stage decisions 

determine the recourse cost, which is the second term in equation (8).   

Rolling Horizon strategy  

The purpose of the rolling horizon simulation is to examine the outcomes of implementing solution over a 

planning period. The solution to each time period captures only the spatial decisions of the supply chain; 

the effect of these decisions is further examined across the planning horizon using by the rolling horizon 

strategy, thus, accessing the spatial and temporal decisions of the supply chain. This strategy is applied to 

both the stochastic model and the deterministic model.  

As shown in Figure 2, at the beginning of a planning period, the demand for the period and the disruption 

forecasts are available. The demand for the rest of the prediction horizon is uncertain and available in form 

of random variable. The prediction horizon is all time period considered in the problem.  The model is 

solved considering all the prediction horizon, and the decisions for the current planning periods are 

implemented. The current state of the supply chain is passed to the next time period. This state includes the 

predetermined decisions from implementing the policies in the previous time period and act as the initial 

conditions.  At the beginning of the next time period, the demands for that period and disruption forecasts 

are realized, while the demands for the following time periods in the prediction horizon are random 

variables. This process is repeated until the end of the time horizon under consideration. The difference 

between the implementation of the rolling horizon in this paper and others is the simultaneous consideration 

of the disruption events and the demand uncertainty. At each time period, there is a realized demand and 

also realized disruptions. This disruption affects the state of the supply chain thus a new configuration must 

be adopted.  

 



 

Figure 2: Rolling Horizon Strategy 

3. Case Study  

In this section, we discuss a case study to explore the behavior of the proposed model in terms of the way 

decisions are made. For the case study, the deterministic model, and the two-stage stochastic model are 

solved under similar conditions and the results are compared. The behavior of a model implies the decisions 

made to keep efficiency and service level of supply chain high at optimal cost, as well as the computational 

efficiency.  

The case study Figure 3, shown in is a generic four-echelon supply chain where three products are 

manufactured using two raw materials. There are six suppliers are available for the raw materials, four 

actual suppliers and two backup suppliers. Furthermore, the enterprise operates four manufacturing 

facilities, two warehouses, and supplies products to five customer zones. In addition to the available 

warehouses, products can be stored in the customer locations as well, in this case products are sent from 

the manufacturing facilities directly to the customer locations to be stored. This brings the total number of 

warehouses to seven. For the actual warehouses, when undisrupted, the enterprise runs inventory policies 

to keep a safety stock. The flows between the supply chain entities are managed by multi-modal arc.  

t = 2
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(Solution Implemented) Certain Periods Predicted Periods
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
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
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Figure 3: Supply Chain Topology for Case study 

The problem considers one month for every period thus the demand for a month is known apriori and make 

a forecast of the next four time periods to hedge against the future uncertainty. At the beginning of every 

time period, the demand for products is realized and there is an available forecast for future product 

demands. The goal is to make optimal tactical decisions amidst the disruption to minimize the total cost of 

operation for the certain period in the supply chain network, as well as hedge against the operational 

uncertainty for subsequent periods. The decisions made are the quantity of flow of each materials between 

adjacent nodes, production amount at each manufacturing site -which is a direct indicator of the use of the 

expansion, the inventory amount, quantity of products delivered to the customer from the supply chain 

network itself, the outsourced demands and the unmet demands. In the next section, we discuss the results 

obtained.  

4. Results and Discussions 

In this section, we discuss the results obtained from the case study. All computations were done on a PC 

with intel® core™ i7 -10510U, 2.30GHz, and 16GB of RAM. To investigate how the proposed model 

responds to disruption and operational uncertainty, we compare the results obtained from the two-stage 

model with the deterministic model. Twenty demand scenarios were sampled for each product for the 

uncertain periods and five time periods considered with only the first time period being certain. For the 

deterministic model, the expected values of the scenarios were used, and the stochastic model makes use 

of all scenarios. Both models were formulated and solved in GAMS/CPLEX (v 38.2.1). The deterministic 

model contains 6851 constraints, 8809 continuous, and 2262 binary variables, while the two-stage model 

63781 constraints, 67139 continuous variables and 2262 discrete variables. The deterministic model 

obtained solutions to the model in 25 seconds and the two-stage model solves in 260 seconds. Table 1 

shows the detailed breakdown of the metrics for both models. The total cost is the cost obtained from the 

optimization problem, while the implemented cost is the cost that is actually incurred in a certain period. 

The service level and supply chain efficiency indicate the fraction of demand satisfied and the fraction of 

demand that the supply chain satisfied without outsourcing. The cost per period shows the average cost for 

manufacturing all products. As noticed from Table 1, the total cost and implemented costs were higher for 

the stochastic model and so is the service level and supply chain efficiency. The costs incurred are a 
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consequence of two major factors: the integer decisions for the selections within the available nodes 

(manufacturing sites and warehouses) and arcs (transportation modes); and the decisions on the degree to 

which the selected nodes and arcs are used.  Figure 4 and Figure 5 show the disrupted and non-disrupted 

facilities as well as the selected ones for the manufacturing sites and the warehouses, respectively. Table 2 

shows the breakdown of the implemented cost as well as the difference in the results obtained.  

Table 1: Metrics to compare the deterministic and stochastic solution 

Metrics Deterministic Stochastic  

Total Cost 200498 235659 

Implemented Cost 34696.1 31215.4 

Service Level 0.800844 0.987366 

Cost Per Period 65.5602 47.8408 

SC Efficiency 0.710049 0.896572 

Time (sec) 25 260 

 

 
Figure 4:  Manufacturing Site Selections for (a) Deterministic model; and (b) Stochastic two-stage model 

 
Figure 5: Warehouse Selections for (a) Deterministic model; and (b) Stochastic two-stage model 

The facility selections shown in Figure 4 and Figure 5, indicate that the stochastic solution selects higher 

capacity utilization for facilities both for manufacturing sites and warehouses. The decision for this 

selection is to minimize both costs of operating the nodes at the certain time period as well as minimizing 

the recourse cost for the unrealized demand scenarios. For the deterministic model, the results only select 

facilities to hedge against the certain demands and the average of all the possible scenarios. The 

consequence of this selection is increased fixed cost of each node as well as operating cost at the nodes 

while the advantage is reflected in the higher values for the service level and the supply chain efficiency. 

Table 2 shows that the stochastic solution suggests higher costs for all other cost components except the 

backorder cost and the outsourcing costs. It is worth noting that the higher level of inventory suggested by 



the stochastic model is a way to hedge against future demands based on the forecast. The two-stage 

stochastic model selects more warehouses when compared with the deterministic solution, consequently, 

incurs higher cost for inventory. Each model selects inventory policy so as to hedge against the variability 

in the future demands. In the stochastic model, there are twenty possible demand scenarios while the 

deterministic model has just one scenario which is the average of all the twenty scenarios available to the 

stochastic model. Thus, the higher inventory selected is a more robust approach because for all possible 

future scenarios and would play a bigger part in implemented cost in the future.    

Table 2: Breakdown of Implemented cost for the deterministic and two-stage stochastic model 

 
Implemented Cost 

 

Deterministic Stochastic Difference 

Supplier Cost 1763.49 2664.03 900.54 

Facility 10989.7 16287.3 5297.6 

Outsourcing 3222.08 3222.08 0 

Inventory 228.437 1044.47 816.033 

Transportation 4612.3 7079.21 2466.91 

Backorder cost 13880.1 918.37 -12961.73 

 

 

Figure 6:Solution for rolling horizon (a) Total Cost; (b) Unit Cost; (c) Service level; (d) Supply Chain 

efficiency 

The inventory level plays a major role in meeting the product demands for future time periods by reducing 

production level for future time periods, augmenting the amount of products that is manufactured and/or 

reducing the quantity of products that is outsourced. Ultimately, this ensures a total cost reduction  and 

delivery time in future time periods when the uncertain demands are realized. In the two-stage model the 

inventory is a key variable in balancing the recourse cost and the first stage cost.  To show the advantage 

of the inventory policy adopted by the stochastic model, the rolling horizon procedure is used to show the 

dynamics of how both models makes spatial-temporal decisions. Figure 6 shows the metrics used to 



compare the deterministic and stochastic solution across all time periods, while Figure 7 shows the 

contributions of the implemented cost. As seen in the Figure 6 the stochastic model obtains a higher service 

level, supply chain efficiency and a lower unit cost of production for most of the time periods. However, 

the total cost for all time period is always greater than that of the deterministic model. These results are 

similar to that of Figure 4. In Figure 7,  the variation across the time periods reflects the variability in the 

demands, while the stack areas in the single periods shows the response to demands and disruption for that 

time period. Thus, high disruption level will cause demands to explore other alternatives thus increasing 

the overall supply chain cost.  

According to Figure 7, within each time period, comparing individual cost components with the 

deterministic model shows that the cost incurred to achieve high production level is greater for the stochastic 

model, and the backorder cost is greater for the deterministic model. The results obtained for the stochastic 

model balances the total cost with the recourse cost for all scenarios considered. Thus, solution takes into 

consideration the demand volatility of the uncertain time periods, which in turn increases the activity levels 

at the nodes for the certain time periods. The advantage of this increased activity level is reflected in the 

service levels and the supply chain efficiency. It is also worth mentioning that the inventory amount in each 

period is greater for the stochastic models. These helps to hedge against the uncertainty in the demands for 

the future time periods.  

 

Figure 7:Implemented cost for the rolling horizon.  The text on each bar (det = deterministic mode, and 

sto = stochastic model) 

5. Conclusions  

In this article, a model for resilient supply chain network is formulated to deal with disruptions and 

operational uncertainty. Disruptions are taken as breakdown of supply chain network entities (nodes or 

arcs) and demand uncertainty is considered at the operational level. The main objective is to minimize the 

total cost of operating the supply chain and the decisions made are the flows between the nodes through 

arcs such that the demands are met. Further metrics used to characterize the quality of solution obtained are 

the service level, supply chain efficiency and the cost per unit product.   

A deterministic multi-period model and a two-stage stochastic model compared in terms of the decisions 

made by each of them. The stochastic model outperforms the deterministic model on the basis of the service 



level achieved in the certain time period and the decisions to hedge against future uncertainty. We further 

used the rolling horizon framework to study the spatial temporal decisions made by these models and the 

results indicates that the stochastic model is better.  

Although the stochastic model shows a better performance, there is still room for improvement, in future 

we propose to incorporate risks measures into the stochastic model to ensure that the decisions made are 

less conservative. Additionally, we can further extend the study to a multi-objective settings that addresses 

problems on lag and delivery times.  Furthermore, we have assumed once an entity is disrupted, the full 

capacity is lost, this assumption can also be relaxed in future and the degree of disruption can be determined. 

Also, although the proposed model shows a superior performance in the operational phase, at the strategic 

level, the initial investment cost for the proposed structure is greater than the traditional supply chain 

networks because of the extra investment cost required for the expansion’s spaces. For this, we argue that 

the potential benefit of such investment outweighs the high cost. Further work can be done for supply chain 

design will substantiate using the economic model (ROI model) of breakthrough period.  
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