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Abstract

Species distribution models (SDMs) are practical tools to assess the habitat suitability of species with numerous applications
in environmental management and conservation planning. The manipulation of the input data to deal with their spatial bias is
one of the advantageous methods to enhance the performance of SDMs. However, the development of a model parameterization
approach covering different SDMs to achieve well-performing models has never been implemented. We integrated input data
manipulation and model tuning for four commonly-used SDMs; generalized linear model (GLM), gradient boosted model (GBM),
random forest (RF), and maximum entropy (MaxEnt), and compared their predictive performance to model geographically
imbalanced biased data of a rare species complex of mountain vipers. Models were tuned up based on a range of model-specific
parameters considering two background selection methods; random and background weighting schemes. The performance of
the fine-tuned models was assessed based on a recently identified localities of the species. The results indicated that although
the fine-tuned version of all models shows great performance in predicting training data (AUC > 0.9 and TSS > 0.5), they
produce different results in classifying out-of-bag data. The GBM and RF with higher sensitivity of training data showed
more different performances. The GLM, despite having high predictive performance for test data, showed lower specificity. It
was only the MaxEnt model that showed high predictive performance and comparable results for identifying test data in both
random and background weighting procedures. Our results highlight that while GBM and RF are prone to overfitting training
data and GLM over-predict non-sampled areas MaxEnt is capable of producing results that are both predictable (extrapolative)
and complex (interpolative). We discuss the assumptions of each model and conclude that MaxEnt could be considered as a
practical method to cope with imbalanced-biased data in species distribution modeling approaches.
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Abstract

Species distribution models (SDMs) are practical tools to assess the habitat suitability of species with
numerous applications in environmental management and conservation planning. The manipulation of the
input data to deal with their spatial bias is one of the advantageous methods to enhance the performance of
SDMs. However, the development of a model parameterization approach covering different SDMs to achieve
well-performing models has never been implemented. We integrated input data manipulation and model
tuning for four commonly-used SDMs; generalized linear model (GLM), gradient boosted model (GBM),
random forest (RF), and maximum entropy (MaxEnt), and compared their predictive performance to model
geographically imbalanced biased data of a rare species complex of mountain vipers. Models were tuned up
based on a range of model-specific parameters considering two background selection methods; random and
background weighting schemes. The performance of the fine-tuned models was assessed based on a recently
identified localities of the species. The results indicated that although the fine-tuned version of all models
shows great performance in predicting training data (AUC > 0.9 and TSS > 0.5), they produce different
results in classifying out-of-bag data. The GBM and RF with higher sensitivity of training data showed more
different performances. The GLM, despite having high predictive performance for test data, showed lower
specificity. It was only the MaxEnt model that showed high predictive performance and comparable results
for identifying test data in both random and background weighting procedures. Our results highlight that
while GBM and RF are prone to overfitting training data and GLM over-predict non-sampled areas MaxEnt
is capable of producing results that are both predictable (extrapolative) and complex (interpolative). We
discuss the assumptions of each model and conclude that MaxEnt could be considered as a practical method
to cope with imbalanced-biased data in species distribution modeling approaches.

Keywords: habitat suitability, model tuning, spatially imbalanced-biased, MaxEnt.

1. Introduction

Species distribution models (SDMs) by combining data of species occurrence and environmental variables
are operative tools to understand the dynamics of biodiversity distribution in space and time. A wealth of
literature exists on the utility of SDMs all aiming at explaining, predicting, and projecting species distribu-
tion (Araújo et al., 2019). In particular identifying geographic distribution and most effective variables in
different geographic scales (Brito et al., 2009; Hemami et al., 2018; Vale et al., 2014), assessing conservation
coverage and efficiency of protected areas (Farhadinia et al., 2015; Lentini and Wintle, 2015; Zupan et al.,
2014), predicting the biological invasion of alien species (Thuiller et al., 2005; Tingley et al., 2014), climate
change-induced range shifts (Thuiller et al., 2011; Waltari and Guralnick, 2009; Yousefi et al., 2017), and
combining its results with phylogenetic analyses to explore species evolutionary history (Ahmadi et al., 2018;
Ahmadzadeh et al., 2016; Boucher et al., 2015; Saladin et al., 2019) are among the most widely-used aspects
of SDMs.

In general, a variety of SDMs with different algorithms has been developed which may lead to different
results for a target species (Elith and Graham, 2009; Merow et al., 2014). Consequently, model manipulation
and comparing their results have been the subject of a significant amount of debate and research (Elith
et al., 2006; Shabani et al., 2016; Wisz et al., 2008). According to Araújo et al. (2019), four aspects of
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SDMs determine the quality of the resulting model, including response variable (i.e. occurrence records of
the species), predictor variables, model building, and model evaluation. An SDM is a process of modeling
and prediction, thus, contains levels of uncertainty that rises from each of the above-mentioned aspects.

At each level, solutions have been proposed to increase the quality of the data and reduce the negative effects
of uncertainty in the output models. For example, in the first step, improving sampling design can reduce bias
and inaccuracy in the geographical distribution of the collected data (Araújo and Guisan, 2006). At this level,
ensuring that the collected data correctly represent the actual distribution of the species (Guillera-Arroita
et al., 2015; Tessarolo et al., 2014) and that the scale of modeling and independent variables are consistent
with sampling precision (Guisan et al., 2007; Wiens et al., 2009), and reducing unbiased recognition of the
taxonomy of the species (Hortal et al., 2008; Rocchini et al., 2011) improve results of an SDM analysis.

An essential hypothesis of statistical methods is that recorded data are independent (i.e. randomly allocated
samples with independent distribution), requiring that the entire area of interest is randomly or systemati-
cally sampled. In practice, available data on the species distribution is spatially biased toward areas easily
assessed and/or better surveyed (Araujo and Guisan, 2006; Boria et al., 2014). A different strategy and
intensity of sampling cause uneven distribution of recorded data, inconsistent with the real spatial ecol-
ogy of the target species. This spatial bias may result in spatial clumpiness, which in turn, leads to the
over-representation of areas with a higher density of input data in the model. This can leads to spatial au-
tocorrelation (SAC) of occurrence points (Dormann et al., 2007) that inflates model accuracy (Veloz, 2009),
and misleads parameter estimates (Kramer-Schadt et al. 2013).

In general, manipulating the input data (Elith et al., 2010; Phillips et al., 2009), and parametrizing the
modeling method (Fithian et al., 2015; Muscarella et al., 2014) are two strategies that have been used to
take into account the bias in SDM efforts. In particular, the bias caused by spatial autocorrelation could
be reduced by spatial filtering (Boria et al., 2014; Kramer-Schadt et al., 2013) and background weighting
schemes, the later is also called ‘target-group background’ (Elith et al., 2010; Phillips et al., 2009). During
spatial filtering, the severity of clumpiness is decreased by removing repeated occurrence points within a
specific radius around them. The idea behind background weighting comes from the fact that presence-
absence models are much less affected by sampling bias compared to presence-only models (Phillips et al.,
2009). It is because in presence-absence models the spatial sampling bias is reflected in both presence and
absence data. Accordingly, background weighting tries to select background data (e.g. pseudo-absences) with
the same bias in occurrence points. This method reduces the bias in a way that favors areas densely sampled
over sparsely sampled areas (Phillips et al., 2009; Shabani et al., 2016). Elith et al. (2010) recommended
this method for invasive species experiencing range shifts in invaded areas, particularly, for those with more
recent invasion.

On the contrary, parametrizing SDMs to obtain a fine-tuned model is an aspect that has been poorly
considered. In almost all cases, the default setting are being used to perform SDMs, especially for complex
machine learning ones (Kass et al., 2021). In addition to increase the possibility of overfitting caused by
noisy data (Merow et al., 2014), default setting decreases model transferability during the projection to novel
environment (Guevara et al., 2018). Applying different levels of the complexity and evaluating the balance
between the bias and variance of models allows to find the optimal model with a justified level of complexinty
(Araujo et al., 2019; Radosavljevic and Anderson, 2014). However, among the few attempts to parametrize
SDMs are tuning the best combination of the primary models to a final ensemble model (Kindt, 2018;
Thuiller et al., 2009) or applying a set of input parameters to fine-tune the MaxEnt model, e.g. the package
ENMeval (Muscarella et al., 2014). The development of new tools, for example h2o platform (Candel et al.,
2016) or caret package (Kuhn, 2021) can bring SDM parametrization into a new focus. However, a holistic
effort in which a wider range of species distribution models are fine-tuned has so far, to our knowledge, not
been implemented in this arena of research.

Using SDMs is particularly pragmatic for scarce species as the results of these methods provide valuable
information for their conservation implementations (Farhadinia et al., 2015; Franklin, 2010) and for iden-
tifying target areas for future sampling (Galante et al., 2018). Notwithstanding, data on scarce species
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mostly suffer spatial bias due to imbalanced sampling surveys (Rebelo and Jones, 2010). In this research,
we evaluated the performance of different SDMs to identify new populations of the rare species of the genus
Montivipera in the mountains of Iran, Turkey, and Armenia. From a phylo-geographic point of view, the
species of this genus due to their rapid ratio of speciation in the recent evolutionary scales show interesting
forms of neo-endemism in the Near and Middle East (Behrooz et al., 2018; Stumpel et al., 2016). This genus
consists of two complex group of species, M. xanthina complex and M. raddei complex. In this research, we
focused on M. raddei complex (MRC) distributed across mountainous landscapes of northeastern Turkey,
Armenia, and Iran. The northern populations of the MRC are well-described and all their potential habitats
are geographically well-sampled. On the contrary, the southern ranges in Iran across the Zagros Mountains
have not proportionally been sampled and some new populations of these species plus a newly defined species
have just recently been identified (Behrooz et al., 2018). Accordingly, the data of the species distribution due
to the different intensity and quality of sampling is geographically imbalanced-biased. Here we integrated
model parametrization and data manipulation to evaluate the proficiency of four correlative SDMs including
generalized linear models (GLM), gradient boosting model (GBM), random forest (RF), and maximum en-
tropy (MaxEnt) for locating recently discoveredMontivipera populations. Models were fine-tuned based on
their intrinsic parameters and the input data was bias-corrected by implementing a background weighting
procedure. We then compared the results with models of random background procedure given the new
populations as out-of-bag data to test the models. In addition to AUC and TSS as two commonly-used mea-
sures of model accuracy, we also depicted the accuracy of the models across the entire gradient of suitability
thresholds to provie a better understanding of the models demeanor to classify spatially imbalanced-biased
data of the species.

2. Materials and Methods

2.1. Montivipera occurrence points

In the current research, we used the most complete dataset of MRC distribution across mountainous land-
scapes of Iran, eastern Turkey, and southern Armenia (Fig. 1). We collected the presence points (n = 91)
throughout the entire range of the species based on direct field research, other herpetologists’ field studies,
and literature review. All the presence points were assessed based on the IUCN range map and spatial
outliers (especially those from the literature) were excluded. Moreover, to cope with the probable spatial
autocorrelation of the occurrence points we removed repeated points within a buffer of 5-km radius which
remained us 82 occurrence points. The coverage of all collected records indicates apparent signs of spatial
bias toward the north and northwestern Iran, eastern Turkey, and Armenia, and sparse sampling across the
Zagros Mountains in western Iran, where new localities were just recently recorded. Therefore, the occur-
rence points were split into training and testing data, using records from northern parts for training and
keeping the newly identified presence data from southern parts as independent evaluation data.

2.2. SDM development

Models were performed using data of species presence points and explanatory variables. Two sets of vari-
ables were considered; climatic and vegetation. For climatic variables, we focused on four primary variables
describing annual mean and variability of climatic conditions including mean annual temperature (meanan-
ultmp), annual precipitation (anulprc), temperature seasonality (tmpseas), and precipitation seasonality
(precseas) all downloaded from WorldClim dataset (Hijmans et al., 2005). For the vegetation variable, we
used the enhanced vegetation index (EVI) of the MODIS products (MOD13A3), and adopted the same
variability in climatic variables for vegetation, e.i., mean annual EVI and EVI seasonality. To do so,
we downloaded monthly-provided 1-kilometer-resolution MOD13A3 for 2015 from EarthExplorer dataset
(https://earthexplorer.usgs.gov), extracted EVI bands in ENVI version 5.1, mosaicked them to cover the
entire study area in one scene, and calculated the annual mean and standard deviation of the 12 monthly-
EVI rasters. We used EVI instead of commonly-used NDVI, because of its potential to minimize canopy
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background variations and maintain sensitivity over dense vegetation conditions (Jiang et al., 2008). The
EVI also copes better with residual atmosphere contamination caused by smoke and sub-pixel thin clouds.
Before SDM analysis, using variance inflation factor (VIF) in ‘usdm’ package (Naimi, 2015), we checked the
multicollinearity of variables and found no variable with VIF greater than 6.

We focused on four SDM methods, GLM, GBM, RF, and MaxEnt, because of their prevalence, well-
performance, and approval over other methods (Elith and Graham, 2009; Phillips et al., 2006; Shabani
et al., 2016), all implemented in R environment v 3.5.2. We first splitted MRC occurrence points to training
and test data and followed a crossvalidation scheme on the training datast to fit the models. This cross-
validated scheme of training data was kept constant for tuning the preliminary models and running the final
version of the models. GLM, GBM and RF were tuned up using the ‘caret’ package (Kuhn, 2021) with
considering different model-specific parameters and the best-fitted model across the then folds was identified
according to their ROC scores. The fine-tuned model with the highest accuracy was then used to generate
the habitat suitability mpas and to predict the test dataset. The GLM was performed using simple and
quadratic terms of explanatory variables and the model selection was based on a stepwise AIC selection
procedure. GBM was fitted with allowing the maximum number of trees up to 2000, with three learning
rates (i.e., shrinkage; 0.001, 0.01, 0.1), three interaction depths (i.e., complexity of the tree, maximum nodes
per tree; 1, 3, and 5), and three values for subsampling fraction (i.e., bag fraction; 0.5, 0.65, and 0.8). The
RF model was fitted with number of trees (ntrees) 500 and 1000, number of variables randomly selected at
each split (i.e., mtry) 1 to 5, and node size 1 and 5. The MaxEnt model was tuned up using the package
ENMeval (Muscarella et al., 2014) with allowing five combination of feature types (fc = L, LQ, LQH, LQHP,
and LQHPT) and regularization multiplier (rm) of 0.5, 1, 1.5, and 2. The best fitted parameters for each
model were then used to predict to the environmental layers and to generate the corresponding habitat
suitability maps. Again the generation of habitat suitability maps was carried on given the constant 10-fold
crossvalidation of the occurrence points, meaning that 10 habitat suitability map was predicted for each
model. The final ensemble habitat suitability map of the four SDM algorithem was generated based on a
proportionaly weighted average of the obtained AUC score of the then repetition.

To address the purpose of our study, background data were selected in two different ways including random
and background weighting. For random we selected 10000 background points spatially at random leaving
cells with MRC occurrence points. To create background weighting data by generating a weighting surface
we gave prominence to those areas having less geographical proximity to others. Following Elith et al. (2010)
we first generated a density raster map from the occurrence points and then allocated 10000 background
points regarding its probability distribution (Fig. 1). This method copes with the bias caused by the
spatially imbalanced-biased data in a way that favors occurrence points of severely sampled areas over those
of sparsely sampled areas (Shabani et al., 2019). Of the 82 occurrence points of MRC, we used 12 newly
sampled records as out-of-bag data to test models’ performance. We used the area under the curve (AUC)
of the receiver operating characteristic (ROC) plot to assess the discrimination capacity of models. AUC
combines specificity and sensitivity (Fielding and Bell, 1997), thus, neglects the relative costs of errors of
omission and commission (Jimenez-Valverde, 2012). Therefore, we also computed true statistic skill (TSS) as
a threshold-dependent measure of classification accuracy calculated as sensitivity + specificity – 1. We used
the package ‘PresenceAbsence’ to evaluate the performance of the models and the threshold ‘10 percintile of
training suitability’ was set to calculate the threshold-dependent measures. In Addition to these traditionally-
used metrics which give an absolute measure of the model performance, we plotted sensitivity and specificity
of the models against an ascending gradient of 100 thresholds to obtain more informative inferences on the
models predictive performance.

3. Results

In total, for each of the random and background weighting schemes we fitted 128 preliminary models based
on the 10 cross-validated folds of the training occurrence points. Since the GLM is inherently a simple
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algorithm, for this method only one set of parameters was trained. Although for both traning and test
dataset the AUC and TSS of this model in BkWt scheme decreased in comparison to random scheme (Table
1 & 2), it successfully classified all the test data, i.e., sensitivity = 1, by using the BkWt scheme. Totally,
GLM obtained AUC of 0.92 and 0.89 and TSS of 0.66 and 0.65 for random and BkWt schemes, respectively
(Table 1). From the multiple combination of the GBM parameters, for the random background selection a
model characterized by shrinkage = 0.01, interaction depth = 5, and ntrees = 1800 showed highest ROC
value (ROC = 1, sensitivity = 1, and specificity = 0.85). For BkWt, the fine-tuned GBM model (ROC =
1, sensitivity = 1, and specificity = 0.64) had shrinkage = 0.01, interaction depth = 5, and ntrees = 2000.
Although for both training and test datasets the AUC and TSS of this model were almost equal (AUC =
0.976 and 0.971 and TSS = 0.59 and 0.58 for random and BkWt schemes, respectively), it lost the ability
to truly predict presence points, i.e., sensitivity, compared to othe models (Table 2). For the RF model, the
fine-tuned model of both random and BkWt schemes was charachterized by ntrees = 1000, and nodesize =
1. However, the mtry was 2 and 3 for random and Bkwt schemes, respectively. Similar to the GBM, RF
obtained almost equal AUC and TSS scores for both training and test datasets (AUC = 0.97 and 0.96 and
TSS = 0.45 and 0.58 for random and BkWt schemes, respectively), but the sensitivity of this model was
low (Table 2). For the MaxEnt model the best-fitted model with the highest AICw of the ENMeval analysis
obtained rm 0.5 and 1.5, and fc LQ and LQHP for random and BkWt schemes, respectively. In the final
habitat suitability maps of the MaxEnt model, the test data had AUC 0.93 and 0.95 and TSS 0.66 and 0.80
for random and BkWt schemes, respectively (Table 2). Overall, the highest TSS score of the test data was
obtained in the MaxEnt model that was fitted based on the BkWt background selection scheme (Table 2).

The predicted suitability maps are shown in Fig. 2. We found a good consistency between the patterns
of occurrence points and suitable habitats. Comparing the spatial pattern of suitable habitats in random
and background weighting methods showed that all models represented different results except for MaxEnt
model in which comparable results were obtained (Fig. 2). Accordingly, we calculated the correlation
coefficient between the two background selection schemes of the four SDM methods revealing that the
highest correlation was obtained for MaxEnt model (r = 0.85), followed by GLM (r = 0.61), GBM (r =
0.45), and RF (r = 0.42). These findings were also confirmed by sensitivity and specificity graphs (Fig. 3).
We found that while the capacity of GBM and RF to predict the training and test background points (i.e.
models’ specificity) was maintained excellent even at higher thresholds, their capability to predict presence
data (i.e. models’ sensitivity) were reduced at lower thresholds. On the contrary, GLM and MaxEnt models
showed good performances to predict presence data, but lost their capacity to classify background data at
lower thresholds especially in the BkWt scheme (Fig. 3). The comparison of the response curves of the
variables between the two bakhground selection schemes indicated identical pattern, however, for GBM and
RF the response curves of the BkWt scheme were more rugged compared to the smoother variation in the
random background selection scheme (Fig. 4).

4. Discussion

In the present study, the performance of different models in predicting spatially biased occurrence data was
evaluated. For this purpose, modeling was performed based four SDMs. A variety of correlative distribution
models have been emerged in recent decades and their performance has been compared in numerous studies
(Elith and Graham, 2009; Merow et al., 2014). These methods, however, are challenged by a number of
methodological problems that make their comparison controversial. Among these issues are providing a
balance between goodness-of-fit and model complexity (Araujo et al., 2019; Warren and Seifert, 2011), and
the spatial bias of the input data and manipulating them for evaluating model performance (Hijmans, 2012;
Phillips et al., 2009). Generally, for most SDMs, particularly for complex machine learning ones, using a
set of default parameters have been recommended based on a comprehensive model tuning [for example see
Phillips & Dudik (2008) for the MaxEnt and Elith et al., (2008) for boosted regression trees]. However,
a blindfold utilization of them may come up with a poorly performing model (Muscarella et al., 2014).
Equally important, is the probable SAC in the input occurrence points which may result in an inflated score
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of the metrics used for model valuation (Dormann et al., 2007; Radosavljevic and Anderson, 2014). Another
problem is the paucity of operative procedures for tuning SDMs that are efficiently effortless and time-saving.
Consequently, in most SDM efforts, while the species, scale, and area of interest are different, the modeling
relies on default setting of the related model.

In the current research, we employed a novel approach that in one hand applyed model-specific parame-
terization, and on the other hand, manipulated a spatially imblanced-biased input data to cope with the
above-mentioned issues. In general, the results showed that the models have high predictive performance
based on AUC and TSS values. However, the geographical pattern of the predicted suitable habitats among
models was different. For example, the area of suitable habitats was greater in GLM in comparison with
other SDMs. Accordingly, for this model lower values of specificity were observed across the different gradi-
ents of suitability thresholds (red curves in Fig. 3). This is intrinsically due to the simple regression-based
nature of this model in which a basic assumption is the normality of the error distribution and its constant
variance (Osborne and Waters, 2002). Thus, those data that are not used as training are well-fitted in the
predicted model. On the other hand, this makes GLM prone to over-prediction across non-sampled areas
leading to lower specificity, i.e., true negative rate, of this model.

On the contrary, we found the best training sensitivity and specificity for decision-tree-based methods, i.e.,
GBM and RF. These models, due to the automatic promotion caused by the model learner, attempt to
improve task classification, as much as possible, leading to the highest discrimination capacity of training
presence/absence dataset (De’ath and Fabricius, 2000; Friedman, 2017). In our case, results indicated
that the RF models for both random and background weighting procedures, while excellently classified the
training dataset, failed to predict out-of-bag ones. Fundamentally, RF and GBM depend on bagging and
boosting algorithms of the tree learner, respectively (Elith et al., 2008; Friedman, 2017). In RF the bagging
algorithm, also called bootstrap aggregation, allows the tree learner repeatedly select a random sample with
replacement of the training set and fits trees to these samples (Breiman, 2001). The trees in RF are run in
parallel and there is no interaction between them while the trees are built. Once all the trees are built, then
an average is taken across all the trees’ predictions (Cutler et al., 2012). Conversely, the trees in boosting
algorithms, e.g. GBM, are trained sequentially, and accordingly, weaker results are boosted or reweighted
over many iterations to have the learner focus more on areas it got wrong, and less on those observations that
were correct (Elith et al., 2008; Friedman, 2017). The risk of deeply-grown trees in random forests comes
at the expense of overfitting the training data set in which predictions have low bias but high variances. In
our modeling approach, we grew the RF model to 1000 trees which is reasonable and comparable to the
similar SDM efforts (Breiman, 2001; Shabani et al., 2016). Altough based on a cross-validated splitting of
the training data we fine-tuned the RF model, it appears that this model still suffers from high variance. In
fact, the strict classification algorithm of the RF model is prone to return low capabilities in predicting out-
of-bag dataset (Elith et al., 2008; Merow et al., 2014). Accordingly, the use of this method in extrapolating
predictions should be taken into account prudently.

Given the random background approach, our results highlight the excellent predictive performance of the
GBM model in which true positive rate, i.e. sensitivity, and true negative rate, i.e. specificity, remained
well-justified across accumulative thresholds. In contrast to the paralleled bagging method of the RF, it is
believed that the boosting manner of the tree learner in GBM reduce the probability of overfitting and allows
well-classifying out-of-bag samples (Elith et al., 2008; Shabani et al., 2016). However, our study revealed
that fitting a GBM model based on a background weighting approach significantly reduces the predictive
performance of this model for identifying out-of-bag data. This highlights the inefficiency of this method
for being used in SDM efforts with imbalanced-biased data where the primary goal is finding probability
distribution over areas that are not comparably sampled.

Unlike the decision-tree-based methods, MaxEnt resulted in a comparable prediction based on both random
and background weighting approaches. This was similar to the results of the GLM model except that for the
latter true negative rates were misplaced at lower thresholds. As mentioned before, the normally-distributed
errors and no trends in residuals relative to the fitted values (Hardin et al., 2007) allow the GLM to be
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interpretably efficient for predicting out-of-bag data. In MaxEnt, as a density estimator algorithm, the
species distribution is represented by a probability distribution that is closest to uniform (Phillips et al.,
2006). This probability distribution is bounded by a set of constraints that are simple functions of the
explanatory variables, called ‘features’, and derived from the species occurrence locations. The primary
assumption of the MaxEnt model is that the mean of each feature is required to be close (within same error
bounds) to the empirical average over the presence sites (Phillips and Dudik, 2008). From a general point
of view, this constraint in MaxEnt could be assumed equivalent to the consistency of error variance in the
GLM method, and as a consequence, bringing consistent results for out-of-bag data is also expectable in the
MaxEnt model. In both GLM and MaxEnt models a maximum likelihood is used to estimate a parametric
exponential distribution of linear combination of features (Phillips et al. 2004). Although GLM could be
fitted by considering quadratic and interactive terms of the explanatory variables, more variation of feature
types in MaxEnt allows fitting more complex models (Phillips et al. 2006). More importantly, while GBM
and RF as complex machine learning methods are more prone to overfitting, the regularization multiplier
in MaxEnt prevents the model to match the input data too closely. Altogether, our results highlight the
efficiency of the MaxEnt model in using the benefits of different modeling methods to produce results that
are both predictable (extrapolative) and complex (interpolative).

Asymmetry in spatially biased model predictions also highlights the need to evaluate model performance
using threshold-dependent sensitivity (true positive rate) and specificity (true negative rate) in addition to
threshold-independent AUC. As criticized by Lobo et al. (2008) and Jimenez-Valverde (2012), modeling
goals and setting highly influence the appropriateness of the AUC for measuring the performance of a
model. AUC inflates the number of false absence data (Lobo et al., 2008), and accordingly, over-represents
predictive performance for rare species (Phillips et al., 2009; Stolar and Nielsen, 2015), as in the case
ofMontivipera species. Moreover, being only as a discrimination measure, AUC doesn’t show goodness-of-fit,
i.e. classification accuracy of the model, and consequently, a model with high AUC value is not necessarily
a well-fitted one (Jimenez-Valverde, 2012). For threshold dependent measures a critical trick is selecting the
best suitability threshold at which the sensitivity and specificity of the resulted model are well-balanced.
Although several thresholds have been suggested to do this, for example see Liu et al. (2005) as a review,
a single suitability threshold provides only a cross-section of the model performance and doesn’t provide a
comprehensive perception of the classification accuracy of the model across a gradient of suitability threshold.
For example, the threshold at which the sensitivity is equal to the specificity, i.e., where their curves cross
on the Fig. 3, is among the widely used suitability thresholds, nevertheless, the corresponding accuracy
measure doesn’t inclusively specify the performance of the model to classify presence and background data.

There are several ways to correct sampling bias, some of which cannot be used in cases where data is
scarce. Spatial filtering may not be helpful when there are only a few presence points (Phillips et al., 2009).
Decreasing clumpiness reduces training sample size and, depending on the heterogeneity of the surrounding
environment and the selected spatial resolution, it may drop some of the information on the species occupation
sites. In addition to spatial filtering and background weighting, a third method called model-based bias
correction has been used (El-Gabbas and Dormann, 2018a) to address spatial bias in occurrence data. In
this method other environmental variables, used as bias covariates, characterize potential sources of sampling
bias. Although this method is confirmed to be useful when dealing with sparse datasets (El-Gabbas and
Dormann, 2018b), it is highly dependent on the selected bias variable that, in turn, intensifies upstream
uncertainty caused by assisting covariates.

It is worth mentioning that bias adjustment and model parameterization depending on the prevalence of the
target species result in varying spatial predictions (Araujo et al., 2019; Pottier et al., 2013). This variation is
most noticeable for common species, and thus, distribution models of rare species that are habitat specialists
may not be very sensitive to spatially-biased occurrence data (Stolar and Nielsen, 2015). Being limited to
a narrow gradient of environmental conditions, specialist species are thus more predictable as well as more
distinguishable, i.e. high values of AUC of their SDMs, because of the high distinctiveness between their
occurrence points and background space. In our case, this tendency was more obvious where narrow-ranged
mountain vipers (Ahmadi et al., 2019) obtained high scores of AUC and TSS. This, to a high extend, justify
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our SDM approach where, due to the sparse data of the mountain vipers, their occurrence points were pooled
into one set. Since they belong to distinct taxonomic levels, e.g. species or sub-species levels, the resulted
SDMs might challenge niche equilibrium assumption (Wiens et al., 2009) and be prone to a inflated niche
breadth (Pearman et al., 2010) where the resulted distribution models show higher levels of over-estimation.
However, niche inflation is more challenging for general species with abundant data (Randin et al., 2006).
Moreover, the narrow-ranged mountain vipers, in general, and the species/sub-species belonging to the
Raddei clade, in specific, show low rates of niche evolution and high degrees of niche conservatism (Ahmadi
et al., 2021) that leads to the occupation of similar ecological conditions in this species.

5. Conclusion

Spatial bias of the input data is one of the main sources of uncertainty in the species distribution modeling
approaches. This issue is particularly important for scarce species with geographically imbalanced biased
data of their distribution ranges. Despite the great emphasis on the importance of model tuning and input
data manipulation in improving SDMs, the performance of different models in using such an approach has
not received much attention. In this research we evaluated the performance of four commonly-used SDMs to
predict imbalanced biased occurrence points based on two methods of background data selection including
random and background weighting. Our result reveals that different models produced dissimilar results for
two background selection schemes. Complex GBM and RF models, due to their interpolative conception,
showed inefficiency in predicting test points, especially for the background weighting mode. The GLM
over-predicted presence areas due to its extrapolative nature. In spite of being a machine learning method,
MaxEnt show a comparable performance in predicting test points in two background selection schemes.
The results of the present study emphasize the proficiency of MaxEnt model in generating reproducible
comparisons particularly when the input data is being completed.
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Tessarolo, G., Rangel, T.F., Araújo, M.B., Hortal, J., 2014. Uncertainty associated with survey design in
Species Distribution Models. Diversity and Distributions 20, 1258-1269.
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Tables

Table 1 The average performance of the models across 10 crossvalidated folds of the training dataset
calculated for random and background weighting (BkWt) schemes. The threshold-dependent measures were
calculated given a 10 percentile of suitability score at the training occurrence points.

Sensitivity Sensitivity Specificity Specificity AUC AUC TSS TSS

Random BkWt Random BkWt Random BkWt Random BkWt
GBM 0.9 0.9 0.955 0.921 0.98 0.964 0.855 0.821
GLM 0.9 0.9 0.894 0.681 0.947 0.838 0.794 0.581
MaxEnt 0.9 0.9 0.887 0.683 0.947 0.828 0.787 0.583
RF 0.9 0.9 0.984 0.956 0.994 0.979 0.884 0.856

Table 2 Results of the model evaluation for random and background weighting (BkWt) schemes. Models
were evaluated based on the 12 newly sampled occurrence points of the MRC. The threshold-dependent
measures were calculated given a 10 percentile of suitability score at the training occurrence points.

Sensitivity Sensitivity Specificity Specificity AUC AUC TSS TSS

Random BkWt Random BkWt Random BkWt Random BkWt
GBM 0.636 0.636 0.953 0.947 0.976 0.971 0.589 0.583
GLM 0.818 1 0.84 0.657 0.917 0.893 0.658 0.647
MaxEnt 0.818 1 0.843 0.804 0.927 0.949 0.661 0.804
RF 0.455 0.636 0.991 0.945 0.97 0.957 0.446 0.581

Figure legends

Figure 1 Geographic distribution of MRC occurrence and background-weighted points. Background-
weighted points were allocated based on a probability distribution of a density raster of training occurrence
points.

Figure 2 Habitat suitability map of the tuned-up models derived from random (Rndm) and background
weighting (BkWt) schemes.

Figure 3 Variation of sensitivity (Sens); the proportion of correctly predicted presence data, and specificity
(Spec); the proportion of correctly predicted pseudo-absence data, across a gradient of suitability thresholds.
Dashed lines indicates test data. Rndm: random and BkWt: background weighting schemes. The black
diamonds indicate the corresponding threshold of the 10 percentile suitability of the training dataset.
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Figure 4 Response curve of the explanatory variables derived from models obtained based on the random
(top) and background weighting (bottem) schemes. Models were fitted in biomod2 package.
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