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Abstract

Innovations in ancient DNA (aDNA) preparation and sequencing technologies have exponentially increased the quality and

quantity of aDNA data extracted from ancient biological materials. The additional temporal component from the incoming

aDNA data can provide improved power to address fundamental evolutionary questions like characterising selection processes

that shape the phenotypes and genotypes of contemporary populations or species. However, utilising aDNA to study past

selection processes still involves considerable hurdles such as how to eliminate the confounding effect of genetic interactions in

the inference of selection. To circumvent this challenge, in this work we extend the method introduced by He et al. (2022) to

infer temporally variable selection from the data on aDNA sequences with the flexibility of modelling linkage and epistasis. Our

posterior computation is carried out through a robust adaptive version of the particle marginal Metropolis-Hastings algorithm

with a coerced acceptance rate. Moreover, our extension inherits their desirable features like modelling sample uncertainties

resulting from the damage and fragmentation of aDNA molecules and reconstructing underlying gamete frequency trajectories

of the population. We assess the performance and show the utility of our procedure with an application to ancient horse samples

genotyped at the loci encoding base coat colours and pinto coat patterns.
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1. Introduction1

Natural selection is one of the primary mechanisms of evolutionary changes and is responsible2

for the evolution of adaptive features (Darwin, 1859). A full understanding of the role of selection3

in driving evolutionary changes needs accurate estimates of the underlying timing and strength4

of selection. With recent advances in sequencing technologies and molecular techniques tailored5

to ultra-damaged templates, high-quality time serial samples of segregating alleles have become6

increasingly common in ancestral populations, (e.g., Mathieson et al., 2015; Loog et al., 2017;7

Fages et al., 2019; Alves et al., 2019). The additional temporal dimension of the ancient DNA8

(aDNA) data has the promise of boosting power of estimating population genetic parameters, in9

particular for the pace of adaptation, as the allele frequency trajectory through time itself gives10

us valuable information collected before, during and after genetic changes driven by selection.11

See Dehasque et al. (2020) for a detailed review of the inference of selection from aDNA.12

The temporal component provided by the incoming aDNA data spurred the development of13

statistical approaches for the inference of selection from time series data of allele frequencies in14

the last fifteen years (see Malaspinas, 2016, for a detailed review). Most existing approaches are15

built upon the hidden Markov model (HMM) framework of Williamson & Slatkin (1999), where16

the population allele frequency is modelled as a hidden state evolving under the Wright-Fisher17

model (Fisher, 1922; Wright, 1931), and the sample allele frequency drawn from the underlying18

population at each given time point is modelled as a noisy observation of the population allele19

frequency (see Tataru et al., 2017, for an excellent review of statistical inference in the Wright-20

Fisher model based on time series data of allele frequencies). However, such an HMM framework21

can be computationally infeasible for large population sizes and evolutionary timescales owing to22

a prohibitively large amount of computation and storage required in its likelihood calculations.23

To our knowledge, most existing methods tailored to aDNA depend on the diffusion limit of24

the Wright-Fisher model. By working with the diffusion limit, its HMM framework permits effi-25

cient integration over the probability distribution of the underlying population allele frequencies26

and hence the calculation of the likelihood based on the observed sample allele frequencies can27

be completed within a reasonable amount of time (e.g., Bollback et al., 2008; Malaspinas et al.,28

2012; Steinrücken et al., 2014; Schraiber et al., 2016; Ferrer-Admetlla et al., 2016; He et al.,29

2020b,c; Lyu et al., 2022; He et al., 2022). These approaches have been successfully applied in30
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aDNA studies, e.g., the method of Bollback et al. (2008) was used in Ludwig et al. (2009) to31

analyse the aDNA data associated with horse coat colouration and showed that positive selec-32

tion acted on the derived ASIP and MC1R alleles, suggesting that domestication and selective33

breeding contributed to changes in horse coat colouration.34

Despite the availability of a certain number of statistical methods for the inference of selec-35

tion from genetic time series, their application to aDNA data from natural populations remains36

limited. Most existing methods were developed in the absence of genetic interactions like linkage37

and epistasis, with the exception of e.g., He et al. (2020b). In He et al. (2020b), local linkage38

and genetic recombination were explicitly modelled, which has been demonstrated to contribute39

to significant improvements in the inference of selection, in particular for tightly linked loci. Ig-40

noring epistasis can also cause severe issues in the study of selection since the combined effects41

of mutant alleles may be impossible to predict according to the measured individual effects of a42

given mutant allele (Bank et al., 2014). As an example, horse base coat colours (i.e., bay, black43

and chestnut) are primarily determined by ASIP and MC1R, and the derived ASIP and MC1R44

alleles have been shown to be selectively advantageous with ancient horse samples through ex-45

isting approaches (e.g., Bollback et al., 2008; Malaspinas et al., 2012; Steinrücken et al., 2014;46

Schraiber et al., 2016; He et al., 2020c). However, this is not sufficient enough to conclude that47

black horses were favoured by selection as alleles at MC1R interact epistatically with those at48

ASIP, i.e., the presence of at least one copy of the dominant ancestral allele at MC1R, and the49

resulting production of black pigment, is required to check the action of alleles at ASIP (Corbin50

et al., 2020).51

To circumvent this issue, in this work we introduce a novel Bayesian method for the inference52

of selection acting on the phenotypic trait, allowing the intensity to vary over time, from data on53

aDNA sequences, with the flexibility of modelling genetic linkage and epistatic interaction. Our54

method is built upon the two-layer HMM framework of He et al. (2022), and our key innovation55

is to introduce a Wright-Fisher diffusion that can model the dynamics of two linked genes under56

phenotypic selection over time to be the underlying Markov process, which permits linkage and57

epistasis. To remain computationally feasible, our posterior computation is carried out with the58

particle marginal Metropolis-Hastings (PMMH) algorithm introduced by Andrieu et al. (2010),59

where we adopt the adaption strategy proposed by Vihola (2012) to tune the covariance structure60

3



of the proposal to achieve a given acceptance rate. Also, our approach inherits certain desirable61

features from He et al. (2022) like modelling sample uncertainties resulting from the damage62

and fragmentation of aDNA molecules and reconstructing underlying frequency trajectories of63

the gametes in the population.64

We reanalyse the aDNA data associated with horse base coat colours and pinto coat patterns65

from Wutke et al. (2016) to show the applicability of our method on aDNA data, where base coat66

colours (bay, black and chestnut) are controlled by the ASIP and MC1R genes with epistatic67

interaction while pinto coat patterns (solid, sabino and tobiano) are determined by the KIT1368

and KIT16 genes with tight linkage. We compare our results with those produced through the69

approach of He et al. (2022) to demonstrate the necessity of modelling linkage and epistasis in the70

inference of selection. We test our approach with extensive simulations for each phenotypic trait71

to show that our procedure can deliver accurate selection inferences from genotype likelihoods.72

2. Materials and Methods73

In this section, we construct a Wright-Fisher model to characterise two linked genes evolving74

under phenotypic selection over time first and then derive its diffusion limit. Working with the75

diffusion approximation, we extend the approach of He et al. (2022) to infer temporally variable76

selection from the data on aDNA sequences while modelling linkage and epistasis.77

2.1. Wright-Fisher diffusion78

We consider a population of randomly mating diploid individuals represented by alleles at79

loci A and B evolving under selection with discrete non-overlapping generations. At each locus,80

there are two possible allele types, labelled A0, A1 and B0, B1, respectively, resulting in four81

possible haplotypes on both loci, A0B0, A0B1, A1B0 and A1B1, labelled haplotypes 00, 01, 1082

and 11, respectively. We attach the symbols A0 and B0 to the ancestral alleles, which we assume83

originally exist in the population, and we attach the symbols A1 and B1 to the mutant alleles,84

which we assume arise only once in the population. Given the absence of sex effects, this setup85

gives rise to 10 possible (unordered) genotypes AiBj/Ai′Bj′ , which correspond to at most 1086

distinct phenotypes Pij,i′j′ . Phenotypes Pij,i′j′ and Pi′j′,ij are identical in our notation.87

We incorporate viability selection into the population dynamics and assume that the viability88

is only determined by the phenotype. Viabilities of all genotypes at loci A and B per generation89
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are assigned 1 + sij,i′j′ , where sij,i′j′ is the selection coefficient of the Pij,i′j′ phenotype with90

sij,i′j′ ∈ [−1,+∞) and sij,i′j′ = si′j′,ij . In what follows, we let the selection coefficient s00,00 = 091

unless otherwise noted, and then sij,i′j′ denotes the selection coefficient of the Pij,i′j′ phenotype92

against the P00,00 phenotype.93

2.1.1. Wright-Fisher model94

Let X
(N)
ij (k) denote the gamete frequency of haplotype ij at generation k ∈ N and X(N)(k)95

be the vector of the four gamete frequencies. To incorporate non-constant demographic histories,96

we assume that the population size changes deterministically, with N(k) denoting the number97

of diploid individuals in the population at generation k. In the Wright-Fisher model, we assume98

that gametes are randomly chosen from an effectively infinite gamete pool reflecting the parental99

gamete frequencies at each generation. We therefore have100

X(N)(k + 1) |X(N)(k) = x ∼ 1

2N(k)
Multinomial(2N(k),p), (1)

where p is the vector of parental gamete frequencies. Under the assumption of random mating,101

we can further express the vector of parental gamete frequencies as102

pij = (1− r)x′ij + r(

1∑
j=0

x′ij)(

1∑
i=0

x′ij) (2)

for i, j ∈ {0, 1}, where103

x′ij =

∑1
i′,j′=0(1 + sij,i′j′)xi′j′xij∑1

i,j=0

∑1
i′,j′=0(1 + sij,i′j′)xi′j′xij

,

and r denotes the recombination rate of the A and B loci located on the same chromosome, i.e.,104

the fraction of recombinant offspring showing a crossover between the two loci per generation. If105

the A and B loci are located on separate chromosomes, we let the (artificial) recombination rate106

r = 0.5 (i.e., free recombination). The two-locus Wright-Fisher model with selection is defined107

as the Markov process X(N) evolving with transition probabilities in Eq. (1) in the state space108

ΩX(N) = {x ∈ {0, 1/(2N), . . . , 1}4 :
∑1

i,j=0 xij = 1}.109

2.1.2. Diffusion approximation110

We study the two-locus Wright-Fisher model with selection through its diffusion limit due111

to the complicated nature of its transition probability matrix, in particular for large population112

5



sizes or evolutionary timescales. More specifically, we measure time in a unit of 2N0 generations,113

denoted by t, where N0 is an arbitrary reference population size fixed through time, and assume114

that the selection coefficients and recombination rate are all of order 1/(2N0). As the reference115

population size N0 approaches infinity, the scaled selection coefficients αij,i′j′ = 2N0sij,i′j′ and116

the scaled recombination rate ρ = 4N0r are kept constant, and the ratio of the population size117

to the reference population size N(t)/N0 converges to a function, denoted by β(t). Notice that118

the assumption will be violated if the A and B loci are located on separate chromosomes, i.e.,119

r = 0.5, but we shall nevertheless use this scaling to find the drift term in the diffusion limit. We120

will plug the unscaled recombination rate r into the resulting system of stochastic differential121

equations (SDE’s) and use that as our diffusion approximation.122

Let ∆X
(N)
ij (k) denote the change in the gamete frequency of haplotype ij over generation k.123

With standard techniques of diffusion theory (see, e.g., Karlin & Taylor, 1981), we can formulate124

the infinitesimal mean vector µ(t,x) and the infinitesimal (co)variance matrix Σ(t,x) as125

µij(t,x) = lim
N0→∞

2N0 E[∆X
(N)
ij ([2N0t]) |X(N)([2N0t]) = x]

= lim
N0→∞

2N0(pij − xij)

Σij,i′j′(t,x) = lim
N0→∞

2N0 E[∆X
(N)
ij ([2N0t])∆X

(N)
i′j′ ([2N0t]) |X(N)([2N0t]) = x]

= lim
N0→∞

2N0

2N([2N0t])
pij(δii′δjj′ − pi′j′) + 2N0(pij − xij)(pi′j′ − xi′j′)

for i, j, i′, j′ ∈ {0, 1}, where δ denotes the Kronecker delta function and [ · ] is used to represent126

the integer part of the value in the brackets.127

To obtain the expression for the infinitesimal mean vector µ(t,x), we compute the limit of128

the expected change in the gamete frequency of haplotype ij within a single generation as the129

reference population size N0 goes to infinity. The only terms that survive after taking the limit130

are the first order terms in the Taylor expansion of the sampling probability pij in Eq. (2) with131

respect to the selection coefficients sij,i′j′ and the recombination rate r. The infinitesimal mean132

vector µ(t,x) can then be written down as133

µij(t,x) = xij

1∑
i′,j′=0

αij,i′j′xi′j′ − xij
1∑

i′,j′=0

1∑
i,j=0

xijαij,i′j′xi′j′ − (−1)δij
ρ

2
(x00x11 − x01x10) (3)
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for i, j ∈ {0, 1}. Note that we take the scaled recombination rate to be ρ = 2N0 (i.e., the (ar-134

tificial) recombination rate r = 0.5) if the A and B loci are located on separate chromosomes.135

Such a strong recombination term serves to uncouple the two genes located on separate chromo-136

somes. The infinitesimal (co)variance matrix Σ(t,x) corresponds to the standard Wright-Fisher137

diffusion on four haplotypes (see, e.g., He et al., 2020a). That is, we have138

Σij,i′j′(t,x) =
xij(δii′δjj′ − xi′j′)

β(t)
(4)

for i, j, i′, j′ ∈ {0, 1}.139

Combining the Wright-Fisher diffusion with the infinitesimal mean vector µ(t,x) in Eq. (3)140

and the infinitesimal (co)variance matrix Σ(t,x) in Eq. (4), we achieve the following system of141

SDE’s as our diffusion approximation of the Wright-Fisher model in Eq. (1)142

dXij(t) = µij(t,X(t))dt+

1∑
i′,j′=0

√
Xij(t)Xi′j′(t)

β(t)
dWij,i′j′(t) (5)

for i, j ∈ {0, 1}, where Wij,i′j′ denotes an independent standard Wiener process with Wij,i′j′(t) =143

−Wi′j′,ij(t). This anti-symmetry requirement implies Wij,ij(t) = 0, and the (co)variance matrix144

for the Xij ’s is exactly the infinitesimal (co)variance matrix Σ(t,x) in Eq. (4). We refer to the145

diffusion process X evolving in the state space ΩX = {x ∈ [0, 1]4 :
∑1

i,j=0 xij = 1} that solves146

the system of SDE’s in Eq. (5) as the two-locus Wright-Fisher diffusion with selection.147

2.2. Bayesian inference of selection148

Suppose that the available data are always sampled from the underlying population at a finite149

number of distinct time points, say t1 < t2 < . . . < tK , measured in units of 2N0 generations.150

We assume that Nk individuals are drawn from the underlying population at the k-th sampling151

time point, and for individual n, let rl,n,k be, in this generic notation, all of the reads at locus152

l for l ∈ {1, 2}. The population genetic quantities of our interest are the selection coefficients153

sij,i′j′ for i, j, i′, j′ ∈ {0, 1}. Recall that our setup gives rise to at most 10 distinct phenotypes154

(i.e., at most 9 distinct selection coefficients). For simplicity, we use ϑ to represent all distinct155

selection coefficients to estimate.156
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2.2.1. Hidden Markov model157

We extend the two-layer HMM framework introduced by He et al. (2022) to model genetic158

linkage and epistatic interaction, where the first hidden layer X(t) characterises the gamete fre-159

quency trajectories of the underlying population over time through the Wright-Fisher diffusion160

in Eq. (5), the second hidden layer G(t) represents the genotype of the individual in the sample,161

and the third observed layer R(t) denotes the data on ancient DNA sequences (see Figure 1).162

We let x1:K = {x1,x2, . . . ,xK} be the frequency trajectories of the gametes in the underly-163

ing population at the sampling time points t1:K and g1:K = {g1, g2, . . . , gK} be the genotypes of164

the individuals drawn from the underlying population at the sampling time points t1:K , where165

gk = {g1,k, g2,k, . . . , gNk,k
} and gn,k = {g1,n,k, g2,n,k} with gl,n,k ∈ {0, 1, 2} being the number of166

mutant alleles at locus l in individual n at sampling time point tk. Based on the HMM frame-167

work illustrated in Figure 1, the posterior probability distribution for the selection coefficients168

and population gamete frequency trajectories can be expressed as169

p(ϑ,x1:K | r1:K) =
∑
g1:K

p(ϑ,x1:K , g1:K | r1:K),

where170

p(ϑ,x1:K , g1:K | r1:K) ∝ p(ϑ)p(x1:K | ϑ)p(g1:K | x1:K)p(r1:K | g1:K) (6)

and r1:K = {r1, r2, . . . , rK} with rk = {r1,k, r2,k, . . . , rNk,k} and rn,k = {r1,n,k, r2,n,k}.171

The first term of the product in Eq. (6), p(ϑ), is the prior probability distribution for the172

selection coefficients. We can adopt a uniform prior over the interval [−1,+∞) for each selection173

coefficient if our prior knowledge is poor.174

The second term of the product in Eq. (6), p(x1:K | ϑ), is the probability distribution for175

the population gamete frequency trajectories at all sampling time points. As the Wright-Fisher176

diffusion is a Markov process, we can decompose the probability distribution p(x1:K | ϑ) as177

p(x1:K | ϑ) = p(x1 | ϑ)
K−1∏
k=1

p(xk+1 | xk;ϑ),

where p(x1 | ϑ) is the prior probability distribution for the population gamete frequencies at the178

initial sampling time point, set to be a flat Dirichlet distribution over the state space ΩX if our179
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prior knowledge is poor, and p(xk+1 | xk;ϑ) is the transition probability density function of the180

Wright-Fisher diffusion X between two consecutive sampling time points for k = 1, 2, . . . ,K−1,181

solving the Kolmogorov backward equation (or its adjoint) associated with the Wright-Fisher182

diffusion in Eq. (5).183

The third term of the product in Eq. (6), p(g1:K | x1:K), is the probability distribution for184

the genotypes of all individuals in the sample given the population gamete frequency trajectories185

at all sampling time points. With the conditional independence from our HMM framework (see186

Figure 1), we can decompose the probability distribution p(g1:K | x1:K) as187

p(g1:K | x1:K) =

K∏
k=1

p(gk | xk) =

K∏
k=1

Nk∏
n=1

p(gn,k | xk),

where p(gn,k | xk) is the probability distribution for the genotypes gn,k of sampled individual n188

given the gamete frequencies xk of the population. Under the assumption that all individuals189

in the sample are drawn from the population in their adulthood (i.e., the stage after selection190

but before recombination in the life cycle, see He et al. (2017)), the probability of observing the191

sampled individual genotypes gn,k = (i+ i′, j + j′) given the population gamete frequencies xk192

can be calculated with193

p(gn,k | xk) =



(1 + sij,i′j′)xi′j′,kxij,k∑1
i,j=0

∑1
i′,j′=0(1 + sij,i′j′)xi′j′,kxij,k

, if i+ i′ 6= 1 and j + j′ 6= 1

(1 + s00,11)2x11,kx00,k + (1 + s01,10)2x10,kx01,k∑1
i,j=0

∑1
i′,j′=0(1 + sij,i′j′)xi′j′,kxij,k

, if i+ i′ = 1 and j + j′ = 1

(1 + sij,i′j′)2xi′j′,kxij,k∑1
i,j=0

∑1
i′,j′=0(1 + sij,i′j′)xi′j′,kxij,k

, otherwise

(7)

for i, j, i′, j′ = 0, 1.194

The fourth term of the product in Eq. (6), p(r1:K | g1:K), is the probability of observing the195

reads of all sampled individuals given their corresponding genotypes. Using the conditional in-196

dependence from our HMM framework, as shown in Figure 1, we can decompose the probability197

p(r1:K | g1:K) as198

p(r1:K | g1:K) =

K∏
k=1

p(rk | gk) =

K∏
k=1

Nk∏
n=1

p(rn,k | gn,k) =

K∏
k=1

Nk∏
n=1

2∏
l=1

p(rl,n,k | gl,n,k),

9



where p(rl,n,k | gl,n,k) is the probability of observing the reads rl,n,k of sampled individual n at199

locus l given its genotype gl,n,k, known as the genotype likelihood, which is commonly available200

with aDNA data.201

2.2.2. Adaptive particle marginal Metropolis-Hastings202

Similar to He et al. (2022), we carry out our posterior computation by the PMMH algorithm203

(Andrieu et al., 2010) that enables us to jointly update the selection coefficients and population204

gamete frequency trajectories. More specifically, we estimate the marginal likelihood205

p(r1:K | ϑ) =

∫
ΩK

X

p(x1:K | ϑ)p(g1:K | x1:K)p(r1:K | g1:K) dx1:K

through the bootstrap particle filter (Gordon et al., 1993), where we generate the particles from206

the Wright-Fisher SDE’s in Eq. (5) by the Euler-Maruyama scheme. The product of the average207

weights of the set of particles at the sampling time points t1:K yields an unbiased estimate of208

the marginal likelihood p(r1:K | ϑ), denoted by p̂(r1:K | ϑ). The population gamete frequency209

trajectories x1:K are sampled once from the final set of particles with their relevant weights.210

Although the PMMH algorithm has been shown to work well in He et al. (2022), in practice,211

its performance depends strongly on the choice of the proposal. In this work, due to the increase212

in the number of selection coefficients required to be estimated, choosing an appropriate proposal213

to ensure computational efficiency becomes challenging. To resolve this issue, we adopt a random214

walk proposal with covariance matrix Γ, denoted by q( · | ϑ; Γ), the Gaussian probability density215

function with mean vector ϑ and covariance matrix Γ, and under ideal conditions, the optimal216

choice of the covariance matrix Γ is a rescaled version of the covariance matrix of the posterior217

(Roberts & Rosenthal, 2001). Given that the covariance matrix of the posterior is commonly218

not available in advance, we adopt the adaptation strategy (Vihola, 2012) that can dynamically219

align the covariance matrix of the proposal with that of the posterior based on accepted samples.220

More specifically, we prespecify a target acceptance rate, denoted by A∗, and a step size sequence221

(decaying to zero), denoted {ηi}i≥1, where the superscript denotes the iteration. The covariance222

matrix is updated by following the iteration formula223

Γi = Γi−1 + ηi(Ai −A∗)(ϑi − ϑi−1)(ϑi − ϑi−1)ᵀ

‖ϑi − ϑi−1‖2
(8)
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with the covariance matrix Γ1 (e.g., Γ1 = σ2I) and selection coefficients ϑ1 ∼ p(ϑ), where224

ϑi ∼ q(ϑ | ϑi−1; Γi−1)

and225

Ai =
p(ϑi)

p(ϑi−1)

p̂(r1:K | ϑi)
p̂(r1:K | ϑi−1)

q(ϑi−1 | ϑi; Γi−1)

q(ϑi | ϑi−1; Γi−1)
. (9)

Such an adaptation strategy can also coerce the acceptance rate. In practice, the target accep-226

tance rate is set to A∗ ∈ [0.234, 0.440], and the step size sequence is defined as ηi = i−γ with227

γ ∈ (0.5, 1] (Vihola, 2012). See Luengo et al. (2020) and references therein for other adaptation228

strategies.229

For the sake of clarity, we write down the robust adaptive version of the PMMH algorithm230

for our posterior computation:231

Step 1: Initialise the selection coefficients ϑ and population gamete frequency trajectories x1:K :232

Step 1a: Draw ϑ1 ∼ p(ϑ).233

Step 1b: Run a bootstrap particle filter with ϑ1 to get p̂(r1:K | ϑ1) and x1
1:K .234

Step 1c: Initialise Γ1.235

Repeat Step 2 until enough samples of the selection coefficients ϑ and population gamete fre-236

quency trajectories x1:K have been attained:237

Step 2: Update the selection coefficients ϑ and population gamete frequency trajectories x1:K :238

Step 2a: Draw ϑi ∼ q(ϑ | ϑi−1; Γi−1).239

Step 2b: Run a bootstrap particle filter with ϑi to get p̂(r1:K | ϑi) and xi1:K .240

Step 2c: Update Γi through Eqs. (8) and (9).241

Step 2d: Accept ϑi and xi1:K with Ai and set ϑi = ϑi−1 and xi1:K = xi−1
1:K otherwise.242

With sufficiently large samples of the selection coefficients ϑ and population gamete frequency243

trajectories x1:K , we produce the minimum mean square error (MMSE) estimates for the selec-244

tion coefficients ϑ and population gamete frequency trajectories x1:K through calculating their245

posterior means.246

As in He et al. (2022), our procedure can allow the selection coefficients sij,i′j′ to change over247

time (piecewise constant), e.g., let the selection coefficients sij,i′j′(t) = s−ij,i′j′ if t < τ otherwise248

sij,i′j′(t) = s+
ij,i′j′ , where τ is the time of an event that might change selection, e.g., the times of249
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plant and animal domestication. The only modification required is to simulate the population250

gamete frequency trajectories x1:K according to the Wright-Fisher diffusion with the selection251

coefficients s−ij,i′j′ for t < τ and s+
ij,i′j′ for t ≥ τ , respectively. In this setup, we propose a scheme252

to test the hypothesis whether selection changes at time τ for each phenotypic trait, including253

estimating their selection differences, through computing the posterior p(∆sij,i′j′ | r1:K) from254

the PMMH samples of the selection coefficients s−ij,i′j′ and s+
ij,i′j′ , where ∆sij,i′j′ = s+

ij,i′j′−s
−
ij,i′j′255

denotes the change in the selection coefficient at time τ . Note that our method can handle the256

case that the events that might change selection are different for different phenotypic traits (i.e.,257

the time τ could be taken to be different values for different phenotypic traits).258

3. Results259

In this section, we employ our approach to reanalyse the published ancient horse DNA data260

from earlier studies of Ludwig et al. (2009), Pruvost et al. (2011) and Wutke et al. (2016), where261

they sequenced 201 ancient horse samples in total ranging from a pre- to a post-domestication262

period for eight loci coding for horse coat colouration. In particular, we perform the inference of263

selection acting on the base coat colour controlled by ASIP and MC1R and the pinto coat pat-264

tern determined by KIT13 and KIT16. Extensive simulation studies, supporting the accuracy265

of our methodology, are available in the supplement.266

As Wutke et al. (2016) only provided called genotypes for each gene (including missing calls),267

we use the same scheme as in He et al. (2022) to convert to corresponding genotype likelihoods.268

More specifically, we take the genotype likelihood of the called genotype to be 1 and those of the269

remaining two to be 0 if the genotype is called, and otherwise, all possible (ordered) genotypes270

are assigned equal genotype likelihoods (normalised to sum to 1). Genotype likelihoods for each271

gene can be found in Table S1.272

In what follows, we set the average length of a generation of the horse to be eight years and273

use the time-varying size of the horse population estimated by Der Sarkissian et al. (2015) (see274

Figure S1) with the reference population size N0 = 16000 (i.e., the most recent population size)275

like Schraiber et al. (2016) unless otherwise noted. Since the flat Dirichlet prior for the starting276

population gamete frequencies is more likely to produce low linkage disequilibrium, we generate277

the starting population gamete frequencies x1 through the following procedure:278
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Step 1: Draw y1, y2 ∼ Uniform(0, 1).279

Step 2: Draw D ∼ Uniform(max{−y1y2,−(1− y1)(1− y2)},min{y1(1− y2), (1− y1)y2}).280

Step 3: Set x1 = ((1− y1)(1− y2) +D, (1− y1)y2 −D, y1(1− y2)−D, y1y2 +D).281

Note that y1 and y2 denote the starting population frequencies of the mutant allele at the two282

loci, respectively, and D is the coefficient of linkage disequilibrium. We run our adaptive PMMH283

algorithm with 1000 particles and 20000 iterations, where we set the target acceptance rate to284

A∗ = 0.4 and define the step size sequence as ηi = i−2/3 for i = 1, 2, . . . , 20000. We divide each285

generation into five subintervals in the Euler-Maruyama scheme. We discard a burn-in of 10000286

iterations and thin the remaining iterations by keeping every fifth value.287

3.1. Horse base coat colours288

The horse genes ASIP and MC1R are primarily responsible for determination of base coat289

colours (i.e., bay, black and chestnut). The ASIP gene is located on chromosome 22, whereas290

the MC1R gene is located on chromosome 3. At each locus, there are two allele types, labelled291

A and a for ASIP and E and e for MC1R, respectively, where the capital letter represents the292

ancestral allele and the small letter represents the mutant allele. See Table 1 for the genotype-293

phenotype map at ASIP and MC1R for horse base coat colours. Notice that MC1R is epistatic294

to ASIP (Rieder et al., 2001).295

3.1.1. Wright-Fisher diffusion for ASIP and MC1R296

Let us consider a horse population represented by the alleles at ASIP and MC1R evolving297

under selection over time, which induces four possible haplotypes AE, Ae, aE and ae, labelled298

haplotypes 00, 01, 01 and 11, respectively. We take the relative viabilities of the three pheno-299

types, i.e., the bay, black and chestnut coat, to be 1, 1 + sb and 1 + sc, respectively, where sb is300

the selection coefficient of the black coat against the bay coat and sc is the selection coefficient301

of the chestnut coat against the bay coat. See Table 2 for the relative viabilities of all genotypes302

at ASIP and MC1R.303

We measure time in units of 2N0 generations and scale the selection coefficients αb = 2N0sb,304

αc = 2N0sc and recombination rate ρ = 4N0r, respectively. Let Xij(t) be the gamete frequency305

of haplotype ij at time t, which satisfies the Wright-Fisher SDE’s in Eq. (5). More specifically,306
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the drift term µ(t,x) can be simplified with the genotype-phenotype map shown in Table 2 as307

µ00(t,x) = −αbx10(x00x11 + x00x1∗)− αcx00x∗1x∗1 −
ρ

2
(x00x11 − x01x10)

µ01(t,x) = −αbx10(x01x11 + x01x1∗) + αcx01x∗0x∗1 +
ρ

2
(x00x11 − x01x10)

µ10(t,x) = −αbx10(x10x11 + x10x1∗ − x1∗)− αcx10x∗1x∗1 +
ρ

2
(x00x11 − x01x10)

µ11(t,x) = −αbx10(x11x11 + x11x1∗ − x11) + αcx11x∗0x∗1 −
ρ

2
(x00x11 − x01x10),

where we take the scaled recombination rate to be ρ = 2N0 since the two genes are located on308

separate chromosomes.309

3.1.2. Selection of horse base coat colours310

We use our method to test the null hypothesis that no change occurred in selection acting on311

base coat colours when horses became domesticated (in approximately 3500 BC) and estimate312

their selection intensities and changes. We restrict our study to the period from the start of the313

Holocene epoch (around 9700 BC) onwards and assume that the respective mutations occurred314

at both ASIP and MC1R before 9700 BC. Given that ASIP and MC1R are located on separate315

chromosomes, we generate the initial population gamete frequencies by following the procedure316

described above but fix the coefficient of linkage disequilibrium to zero. The resulting posteriors317

for the selection coefficients and underlying phenotype frequency trajectories of the population318

are shown in Figure 2, and their estimates as well as the 95% highest posterior density (HPD)319

intervals are summarised in Table S2.320

Our estimate for the selection coefficient of the black coat is 0.0003 with 95% HPD interval321

[−0.0047, 0.0053] from the beginning of the Holocene epoch and 0.0003 with 95% HPD interval322

[−0.0028, 0.0036] after horses became domesticated. Our estimate for the change in the selection323

coefficient is around 0 with 95% HPD interval [−0.0072, 0.0060]. The posteriors for the selection324

coefficients s−b and s+
b and their difference ∆sb are all approximately symmetric about 0, which325

implies that the black coat was selectively neutral over the Holocene epoch, and no change took326

place in selection of the black coat from a pre- to a post-domestication period. Our estimate for327

the underlying frequency trajectory of the black coat illustrates that it keeps roughly constant328

through time, although with a slight decrease after horses were domesticated.329

In the pre-domestication period, our estimate for the selection coefficient of the chestnut coat330
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is −0.0055 with 95% HPD interval [−0.0162, 0.0061]. Although the 95% HPD interval contains331

0, we still find that the chestnut coat was most probably selectively deleterious (with posterior332

probability for negative selection being 0.818). In the post-domestication period, our estimate333

for the selection coefficient of the chestnut coat is 0.0136 with 95% HPD interval [0.0090, 0.0184],334

suggesting that the chestnut coat was positively selected (with posterior probability for positive335

selection being 1.000). Combining our estimate for the change in the selection coefficient being336

0.0191 with 95% HPD interval [0.0051, 0.0297], we observe sufficient evidence to support that a337

positive change took place in selection of the chestnut coat when horses were domesticated. Our338

estimate for the underlying frequency trajectory of the chestnut coat reveals a slow fall from the339

beginning of the Holocene epoch and then a significant rise after horses became domesticated.340

We also provide the results produced with a flat Dirichlet prior for the starting population341

gamete frequencies (see Figure S2 and Table S3). The results for selection acting on the black342

and chestnut coats are consistent with those shown in Figure 2.343

3.2. Horse pinto coat patterns344

The horse genes KIT13 and KIT16 are mainly responsible for determination of pinto coat345

patterns (i.e., tobiano and sabino), both of which reside on chromosome 3, 4668 base pairs (bp)346

apart, with the average rate of recombination 10−8 crossover/bp (Dumont & Payseur, 2008).347

At each locus, there are two allele types, labelled KM0 for the ancestral allele and KM1 for the348

mutant allele at KIT13 and sb1 for the ancestral allele and SB1 for the mutant allele at KIT16,349

respectively. See Table 3 for the genotype-phenotype map at KIT13 and KIT16 for horse pinto350

coat patterns. Note that the coat pattern, called solid, refers to a coat that neither tobiano nor351

sabino is present, and the coat pattern, called mixed, refers to a coat that is a mixture between352

tobiano and sabino.353

3.2.1. Wright-Fisher diffusion for KIT13 and KIT16354

We now consider a horse population represented by the alleles at KIT13 and KIT16 evolving355

under selection over time. Such a setup gives rise to four possible haplotypes KM0sb1, KM0SB1,356

KM1sb1 and KM1SB1, labelled haplotypes 00, 01, 01 and 11, respectively. We take the relative357

viabilities of the four phenotypes, i.e., the solid, tobiano, sabino and mixed coat, to be 1, 1+sto,358

1+ssb and 1+smx, respectively, where sto is the selection coefficient of the tobiano coat against359
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the solid coat, ssb is the selection coefficient of the sabino coat against the solid coat, and smx360

is the selection coefficient of the mixed coat against the solid coat. See Table 4 for the relative361

viabilities of all genotypes at KIT13 and KIT16.362

We measure time in units of 2N0 generations and scale the selection coefficients αto = 2N0sto,363

αsb = 2N0ssb, αmx = 2N0smx and recombination rate ρ = 4N0r, respectively. Let Xij(t) be the364

gamete frequency of haplotype ij at time t, which follows the Wright-Fisher SDE’s in Eq. (5).365

In particular, the drift term µ(t,x) can be simplified with the genotype-phenotype map shown366

in Table 4 as367

µ00(t,x) = −αtox00(x10(x00 + x∗0)− x10)− αsbx00(x01(x00 + x0∗)− x01)

− αmxx00(2x01x10 + x11 − x2
11)− ρ

2
(x00x11 − x01x10)

µ01(t,x) = −αtox01x10(x00 + x∗0)− αsbx01(x01(x00 + x0∗)− x0∗)

− αmxx01((2x01x10 + x11 − x2
11)− x10) +

ρ

2
(x00x11 − x01x10)

µ10(t,x) = −αtox10(x10(x00 + x∗0)− x∗0)− αsbx10x01(x00 + x0∗)

− αmxx10((2x01x10 + x11 − x2
11)− x01) +

ρ

2
(x00x11 − x01x10)

µ11(t,x) = −αtox11x10(x00 + x∗0)− αsbx11x01(x00 + x0∗)

− αmxx11((2x01x10 + x11 − x2
11)− (1− x11))− ρ

2
(x00x11 − x01x10).

3.2.2. Selection of horse pinto coat patterns368

We apply our method to test the null hypothesis that no change took place in selection acting369

on horse pinto coat patterns when the medieval period began (in around AD 400) and estimate370

their selection intensities and changes. We restrict our study to the period from the beginning371

of horse domestication (around 3500 BC) onwards and assume that the respective mutations372

occurred at both KIT13 and KIT16 before 3500 BC. To our knowledge, the mixed coat has never373

been found in the horse population, and we therefore fix the selection coefficient smx = −1 over374

time. The resulting posteriors for the selection coefficients and underlying phenotype frequency375

trajectories of the population are illustrated in Figure 3, and their estimates as well as the 95%376

HPD intervals are summarised in Table S4.377

Our estimate for the selection coefficient of the tobiano coat is 0.0177 with 95% HPD interval378

[0.0082, 0.0287] from the beginning of horse domestication and −0.0581 with 95% HPD interval379
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[−0.1016,−0.0222] in the Middle Ages. Our estimates reveal sufficient evidence to support that380

the tobiano coat was positively selected after horses were domesticated but became negatively381

selected in the Middle Ages. Our estimate for the change in the selection coefficient is −0.0758382

with 95% HPD interval [−0.1284,−0.0355], which illustrates that a negative change took place383

in selection of the tobiano coat when the Middle Ages started. Our estimate for the underlying384

frequency trajectory of the tobiano coat indicates that the frequency of the tobiano coat grows385

substantially after horses were domesticated and then drops sharply during the medieval period.386

Our estimate for the selection coefficient of the sabino coat is 0.0206 with 95% HPD interval387

[−0.0050, 0.0517] before the Middle Ages, which shows compelling evidence of positive selection388

acting on the sabino coat (with posterior probability for positive selection being 0.945). However,389

we see that the frequency of the sabino coat declines slowly from the start of horse domestication390

until the loss of the sabino coat in approximately 120 BC (i.e., the earliest time that the upper391

and lower bounds of the 95% HPD interval for the frequency of the sabino coat are both zero),392

probably resulting from that the sabino coat was somewhat out-competed by the tobiano coat393

under the tight linkage between KIT13 and KIT16.394

Note, we only present the resulting posterior for the selection coefficient s−sb. This is because395

our results show that the sabino coat became extinct before the medieval period (see Figure 3h).396

Without genetic variation data, the PMMH algorithm fails to converge in reasonable time for397

the selection coefficient s+
sb, which however has little effect on estimation of the remaining three398

(see Figure S3, where we repeatedly run our procedure to estimate the selection coefficients s−to,399

s+
to and s−sb with different prespecified values of the selection coefficient s+

sb that are uniformly400

drawn from [−1, 1]).401

We also provide the results produced with a flat Dirichlet prior for the starting population402

gamete frequencies (see Figure S4 and Table S5) and that we co-estimate the selection coefficient403

of the mixed coat (see Figure S5 and Table S6). Our estimate for the selection coefficient of the404

mixed coat is −0.5621 with 95% HPD interval [−0.9645,−0.2262] before the Middle Ages. Such405

strong negative selection resulted in a quick loss of the mixed coat right after the domestication406

of the horse, which we can also find from our estimate for the underlying frequency trajectory of407

the mixed coat. The results for selection acting on the tobiano and sabino coats are consistent408

with those shown in Figure 3.409
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4. Discussion410

To overcome a fundamental limitation of He et al. (2022), which did not aim to model genetic411

interactions, we presented a novel Bayesian approach for inferring temporally variable selection412

from the data on aDNA sequences with the flexibility of modelling linkage and epistasis in this413

work. Our method was mainly built upon the two-layer HMM framework of He et al. (2022), but414

we introduced a Wright-Fisher diffusion to describe the underlying evolutionary dynamics of two415

linked genes subject to phenotypic selection, which was modelled through the differential fitness416

of different phenotypic traits with a genotype-phenotype map. Such an HMM framework allows417

us to account for two-gene interactions and sample uncertainties resulting from the damage and418

fragmentation of aDNA molecules. Our posterior computation was carried out through a robust419

adaptive PMMH algorithm to guarantee computational efficiency. Unlike the original version of420

the PMMH of Andrieu et al. (2010), the adaption rule of Vihola (2012) was introduced to tune421

the covariance structure of the proposal to obtain a coerced acceptance rate in our procedure.422

Moreover, our method permits the reconstruction of the underlying population gamete frequency423

trajectories and offers the flexibility of modelling time-varying demographic histories.424

We reanalysed the horse coat colour genes, e.g., the ASIP and MC1R genes associated with425

base coat colours and the KIT13 and KIT16 genes associated with pinto coat patterns, based426

on the ancient horse samples from previous studies of Ludwig et al. (2009), Pruvost et al. (2011)427

and Wutke et al. (2016). Our findings match the earlier studies that the coat colour shift in the428

horse is considered as a domestic trait that was subject to early selection by humans (Hunter,429

2018), e.g., ASIP and MC1R, and human preferences have significantly changed over time and430

across cultures (Wutke et al., 2016), e.g., KIT13 and KIT16. Our results were validated with431

simulations that mimicked the ancient horse samples (see File S2, including Figures S6 and S7432

and Tables S9 and S10, where simulation studies on performance evaluation can also be found).433

For base coat colours, we conclude that there is not enough evidence available to reject the434

null hypotheses that the black coat was selectively neutral from a pre- to a post-domestication435

period and no change occurred in selection of the black coat when horses became domesticated.436

However, our results provide sufficient evidence to support that the chestnut coat was effectively437

neutral or experienced weak negative selection until the beginning of horse domestication and438

then became favoured by selection. We see strong evidence of such a positive change in selection439
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of the chestnut coat occurring when horse domestication started, which matches the findings in440

previous studies that selection for noncamouflaged coats might not have taken place until after441

horses were domesticated (see Larson & Fuller, 2014, and references therein).442

For pinto coat patterns, we show strong evidence of positive selection acting on the tobiano443

and sabino coats before the Middle Ages. However, the frequency of the sabino coat continuously444

decreased from domestication until none was left (before the Middle Ages), probably because the445

sabino coat was somewhat out-competed by the tobiano coat under tight linkage. The tobiano446

coat became negatively selected during the Middle Ages. Our findings match the archaeological447

evidence and historical records that spotted horses experienced early selection by humans but448

the preference changed during the Middle Ages (see Wutke et al., 2016, and references therein).449

To demonstrate the improvement attainable through modelling genetic interactions, we show450

the resulting posteriors for the ASIP and MC1R genes in Figure 4 and the KIT13 and KIT16451

genes in Figure 5, respectively, which are produced through the method of He et al. (2022) with452

the same settings as adopted in our adaptive PMMH algorithm. We summarise the results for453

horse base coat colours and pinto coat patterns with their 95% HPD intervals in Tables S7 and454

S8, respectively. Moreover, additional simulation studies are left in File S3, including Figures S8455

and S9 and Tables S11 and S12, to further illustrate the improvement resulting from modelling456

linkage and epistasis.457

For base coat colours, we see from Figure 4 that the resulting posteriors for ASIP are similar458

to those shown in Figure 2, which indicate that black horses were selectively neutral over the459

Holocene epoch and no change occurred in selection of the black coat when horse domestication460

started. However, since the method of He et al. (2022) ignores epistatic interaction, some geno-461

types are incorrectly attributed to the black coat, which could alter the result of the inference462

of selection. As illustrated in Figure 4, the resulting posteriors for MC1R suggest that chestnut463

horses experienced positive selection from the start of the Holocene epoch onwards (with poste-464

rior probabilities for positive selection being 0.636 in the pre-domestication period and 1.000 in465

the post-domestication period, respectively). The evidence of a positive change that took place466

in selection of the chestnut coat when horses were domesticated is no longer sufficient (i.e., the467

posterior probability is 0.430 for a positive change).468

For pinto coat patterns, as illustrated in Figure 5, we see that tobiano horses were favoured469
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by selection since horse domestication started (with posterior probability for positive selection470

being 0.969) but became negatively selected during the Middle Ages (with posterior probability471

for negative selection being 0.983). We also find sufficient evidence against the null hypothesis472

that no change took place in selection of the tobiano coat when the medieval period started (with473

posterior probability for a negative change being 0.987). Our results for KIT13 are compatible474

with those shown in Figure 3, but our results for KIT16 are not. We observe from Figure 5 that475

sabino horses experienced negative selection from domestication until extinction that occurred476

during the Middle Ages (see Figure 5h), which means that a continuous decline in sabino horses477

from domestication onwards was as a result of negative selection. However when we take genetic478

linkage into account, we find from Figure 3 that sabino horses were favoured by selection before479

the Middle Ages, and such a decline was probably triggered by the sabino coat being somewhat480

out-competed by the tobiano coat.481

Our extension inherits desirable features of He et al. (2022) along with their key limitation482

that all samples were assumed to be drawn after the mutant allele was created at both loci. Since483

allele age is usually unavailable, we have to restrict our inference to a certain time window, e.g.,484

from the time after which the mutant alleles at both loci have been observed in the sample or485

the time before which we assume that the mutant alleles at both loci have already existed in the486

population, which could bias the result of the inference of selection. An important consideration487

is that backward-in-time simulation of the Wright-Fisher diffusion (see Griffiths, 2003; Coop &488

Griffiths, 2004) is expected to resolve this issue. Moreover, how to extend our work to deal with489

the case of multiple interacting genes (Terhorst et al., 2015) and estimate selection coefficients490

and their timing of changes (Shim et al., 2016; Mathieson, 2020) will also be the topic of future491

investigation.492
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Figure 1: Graphical representation of the two-layer HMM framework extended from He et al. (2022) for the data
on ancient DNA sequences.
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Figure 2: Posteriors for selection of horse base coat colours before and from horse domestication (starting from
3500 BC) and underlying frequency trajectories of each phenotypic trait in the population, (a)-(d) for the black
coat and (e)-(h) for the chestnut coat, respectively. The samples drawn before 9700 BC, the starting time of the
Holocene, are excluded. DOM stands for domestication.
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Figure 3: Posteriors for selection of horse pinto coat patterns before and from the medieval period (starting from
AD 400) and underlying frequency trajectories of each phenotypic trait in the population, (a)-(d) for the tobiano
coat and (e)-(h) for the sabino coat, respectively. The samples drawn before 3500 BC, the starting time of horse
domestication, are excluded. EMA stands for Early Middle Ages.
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Figure 4: Posteriors for selection of horse base coat colours before and from horse domestication (starting from
3500 BC) and underlying frequency trajectories of each phenotypic trait in the population produced through the
method of He et al. (2022), (a)-(d) for the black coat and (e)-(h) for the chestnut coat, respectively. The samples
drawn before 9700 BC, the starting time of the Holocene, are excluded. DOM stands for domestication.
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Figure 5: Posteriors for selection of horse pinto coat patterns before and from the medieval period (starting from
AD 400) and underlying frequency trajectories of each phenotypic trait in the population produced through the
method of He et al. (2022), (a)-(d) for the tobiano coat and (e)-(h) for the sabino coat, respectively. The samples
drawn before 3500 BC, the starting time of horse domestication, are excluded. EMA stands for Early Middle
Ages.
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MC1R
E/E E/e e/e

ASIP
A/A bay bay chestnut
A/a bay bay chestnut
a/a black black chestnut

Table 1: The genotype-phenotype map at ASIP and MC1R for horse base coat colours.
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AE Ae aE ae

AE 1 1 1 1
Ae 1 1 + sc 1 1 + sc
aE 1 1 1 + sb 1 + sb
ae 1 1 + sc 1 + sb 1 + sc

Table 2: Relative viabilities of all genotypes at ASIP and MC1R.
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KIT16
sb1/sb1 sb1/SB1 SB1/SB1

KIT13
KM0/KM0 solid sabino sabino
KM0/KM1 tobiano mixed mixed
KM1/KM1 tobiano mixed mixed

Table 3: The genotype-phenotype map at KIT13 and KIT16 for horse pinto coat patterns.
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KM0sb1 KM0SB1 KM1sb1 KM1SB1

KM0sb1 1 1 + ssb 1 + sto 1 + smx
KM0SB1 1 + ssb 1 + ssb 1 + smx 1 + smx
KM1sb1 1 + sto 1 + smx 1 + sto 1 + smx
KM1SB1 1 + smx 1 + smx 1 + smx 1 + smx

Table 4: Relative viabilities of all genotypes at KIT13 and KIT16.
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