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Abstract

Questions: Traditional clustering methods generally assume data are structured as discrete hyper-spheroidal
clusters to be evaluated by measures of central-tendency. If vegetation data do not conform to this model,



then vegetation data may be clustered incorrectly. What are the implications for cluster stability and
evaluation if clusters are of irregular shape or density?

Location: Southeast Australia

Methods: We define mis-classification as the placement of a sample in a cluster other than its nearest neigh-
bour and hypothesise that: i) optimising homogeneity incurs the cost of higher rates of mis-classification; and
ii) misclassification varies with thematic scale. We comparied the performance of an algorithm (Chameleon)
which operates on interconnectivity and thus is sensitive to the shape and distribution of clusters with that
of three traditional algorithms over varying scales.

Results: Chameleon-derived solutions had lower rates of misclassification and only marginally higher het-
erogeneity than those of k-means in the range 15-60 clusters, but their metrics converged at finer thematic
scales. Solutions derived by agglomerative clustering had the best metrics (and divisive clustering the worst)
but both produced inferior high-level solutions clusters to those of Chameleon by merging distantly-related
clusters.

Conclusions: Our results suggest that Chameleon may have an advantage over traditional algorithms at
thematic scales at which data exhibit discontinuities and variable structure, potentially producing more
stable solutions (due to lower rates of mis-classification), but scoring lower on traditional metrics of central-
tendency. Chameleon’s advantages are less obvious in the partitioning of continuous data, however its
graph-based partitioning protocol facilitates hierarchical integration of solutions.

Introduction

Vegetation classification is the process of delimiting types of vegetation on the basis of their relative ho-
mogeneity and distinctness from other types (van der Maarel & Franklin 2013). Classification facilitates
not only the description of vegetation, but also the study of its relationships with the environment and
attendant interacting, co-dependant organisms. Vegetation classification is thus a first step to the classifi-
cation of ecosystems (sensu Tansley 1935), and vegetation typologies have come to underpin a wide variety
of conservation and natural resource management applications including the selection of protected areas,
ecosystem risk assessment and market-based mechanisms such as biodiversity offsets (Bland et al. 2019).
Despite a relatively short history, the science has spawned a wide range of schools (Whittaker 1978, van
der Maarel & Franklin 2013). Increasingly however, vegetation classification centres on the clustering of
quantitative plot samples (De Céceres et al ., 2015; 2018). When recorded with systematic procedures, plot
samples have the advantage of allowing observations from different sources to be consolidated over time,
while computer-generated clustering solutions confer a degree of objectivity in the elucidation of patterns.

The utility of clustering in the development of vegetation classifications is beyond question, although it is
complicated by three inter-related problems. First, excepting simulated datasets, there is no agreed external
point of reference with which clustering solutions can be compared. Instead, solutions based on field data
must be evaluated on internal criteria (Aho et al . 2008), either geometric (eg cluster homogeneity) or non-
geometric (eg species/cluster fidelity). Since these vary in the way they weight particular characteristics of
the solution, the best clustering solution may depend on its application. Second, the hyper-spatial structure
of vegetation data is generally unknown. The choice of both clustering algorithm and evaluation metrics
therefore requires a user-supplied model which usually (but not invariably (Ahoet al . 2008)) means clusters
are assumed to be spheroidal, if only because the majority of operators default to a few well-tested algorithms
(Kent 2011). This is problematic, because algorithms which seek to optimise central tendency can generate
sub-optimal solutions when applied to data with irregular structure, and internal metrics which assume a
spheroidal model may not be appropriate measures of cluster quality. Third, biases in the both the geographic
and environmental distribution of samples means that cluster metrics are often optimised for data which
sample the range of floristic variation either unevenly or incompletely. That is, biases may induce irregularities
in data structure even if assemblages in the field form a continuum. It is not surprising then, that clustering
solutions are notoriously idiosyncratic and highly sensitive to data structure, transformations, choices of
algorithm and resemblance measures (Tichyet al ., 2014).



The potential limitations of assuming a spheroidal model to data of irregular structure are illustrated in
Figure 1. The data are points on a cartesian plain, normally and randomly distributed around each of six
pre-defined centroids. The k-means algorithm fails to retrieve the underlying data structure; in i) incorrectly
splitting cluster C while merging clusters D and F; and ii) incorrectly splitting clusters C and F to partially
merge with clusters A and D, respectively. The resulting solutions appear what Barton et al . (2019) termed
‘unnatural’, although they conceded the vagueness (sensu Regan et al, 2002) of the assignation, relying as it
does on an appeal to the human eye. Less subjectively, the solution is ‘incorrect’, for example in Figure 1(ii)
in assigning samples that are co-located in space in the region of centroid C to different groups, while drawing
in remotely-located samples from the region of centroid A. The implication is there is a high likelihood of
alternative solutions arising as further data are added, or if the clustering algorithm is changed or supplied
different parameters.

The problem illustrated in Figure 1 arises primarily to the insensitivity of the algorithm to variations in the
density of points, however a failure to recover ‘natural’ or ‘correct’ clusters of irregular shape has similarly
been documented in a wide range of algorithms operating on assumptions of central tendency (Karypis 1999,
Zhao & Karypis 2005, Han et al . 2012, Barton et al . 2019). The core principle underpinning algorithms
which seek to retrieve clusters of irregular shape and/or density is sample inter-connectivity. That is, cluster
membership depends on interconnections among sample (based on pairwise similarity) rather than shared
proximity to an artificial centroid or medoid. Schmidtlein et al . (2010), for example, noted two vegetation
samples with no species in common could nevertheless share cluster membership provided they were connec-
ted in a chain of close neighbours. This implies clusters generated by an algorithm sensitive to irregular
data structure are likely to be more heterogeneous than those derived with reference to a spheroidal model,
particularly at thematic scale where discontinuities and variation in sample density exist.

Potential irregularities in data structure are rarely accounted for in vegetation classification. Schmidtlein
et al . (2010) documented a promising approach, however our investigations of their ISOMAP algorithm
suggested its “brute force” approach is too computationally demanding for a dataset many thousands of
samples (Schmidtlein et al . (2010) investigated datasets ranging in size up to 305 samples and warned
users of ISOMAP that the algorithm is slow, and not to complain!). Chameleon (Karypis et al., 1999, see
methods for a detailed description) is one of several alternative algorithms designed to recover clusters of
variable shape which may, therefore, reproduce landscape scale relationships more faithfully than traditional
clustering techniques (Han et al ., 2012). Chameleon assesses both interconnectivity and closeness of objects
as a basis for determining merging decisions, an approach which results in fewer “wrong” decisions than
algorithms that consider only one or the other (Karypiset al ., 1999). Focussing on interconnectivity allows the
algorithm to adapt automatically to the characteristics of the clusters (density and hyperspatial distribution),
rather than relying on a static model (eg discrete spherical clusters). Therefore, provided they are strongly
interconnected, samples spanning a compositional continuum can be retrieved as a single cluster even if
the distribution of samples along the continuum is uneven, because Chameleon is relatively insensitive to
variations in hyperspatial density (Han et al ., 2012).

We suggest that a failure to take account of the underlying structure of vegetation data is likely to be one
factor contributing to idiosyncrasies among clustering solutions, however the affect is likely to be dependent
on the expression and nature of discontinuities in the data structure. We postulate that accounting for
data structure is more likely to be important at broad thematic scales (as represented by the points in
Figure 1 collectively) because discontinuities are likely to arise both naturally (eg between regions which
share few species), due to variable data coverage (De Céceres et al ., 2018, Gellieet al . 2018) or because
environmental gradients are discontinuous in geographic space (Austin 2013). Conversely, there may be
no disadvantage in assuming a spheroidal model where clustering essentially amounts to partitioning a
continuum (ie partitioning the individual clusters in Figure 1). In this paper, we investigate two hypotheses:
i) that an algorithm sensitive to hyperspatial irregularities in the density and arrangement of samples will
produce clusters which are likely to be more ‘correct’ (in the sense that samples are co-located with their close
neighbours), but at the cost of poorer internal metrics relative to algorithms that seek to optimise around
central tendency; and ii) Differences between the respective algorithms will decline with decreasing thematic



scale of cluster solutions. To test these hypotheses, we used a large regional data set of 7541 plot samples
to compare the performance of traditional clustering algorithms (k-means, hierarchical agglomerative and
divisive) with the Chameleon algorithm using both internal metrics (homogeneity, indicator species) and the
concept of ‘correctness’ which we apply as the misclassification rate: the proportion of samples which do not
cluster with their nearest neighbour.

Methods
The Chameleon algorithm

Chameleon models the feature space as a k-nearest neighbour graph (sparse graph) with samples forming
vertices connected by links that are proportional to pairwise similarity between samples (Figure 2). The user
specifies the number of links between samples (neighbourhood range) and then in the first phase, links are
progressively dissolved (in order of increasing similarity) until a user-specified number of sub-partitions has
formed. In this partitioning phase the algorithm seeks to minimise the summed length of all links hence
minimising the affinity between samples in different sub-partitions (Karypis, 1999). Sub-partitions are then
(optionally) merged using a hierarchical agglomerative clustering algorithm to resolve the number of groups
required of the solution. An advantage of this approach is that it encapsulates the concept of environmental
/compositional continua by weighting cluster interconnectivity over homogeneity. That is, samples that are
distantly related may still share a cluster if they are linked by strongly interconnected neighbours. One of
the key features of the Chameleon algorithm is that the structure of inter-sample relationships is preserved
through the partitioning phase because co-membership of sub-partitions is dependent on pairwise inter-
sample connectivity. In contrast, traditional algorithms merge or split samples progressively and the outcome
at each step depends on comparing samples with intermediate clusters, the compositional characteristics of
which are artificial and reflect the range of the samples merged (Han et al ., 2012).

Study Area

The study area encompassed the South East Highlands and Australian Alps Bioregions of the state of NSW,
Australia (Thackway & Creswell, 1995), an area of 96,089 km? encompassing mountains and plateaus of
the Great Dividing Range. Average annual precipitation ranges from 460 — 2,344 mm and mean annual
temperatures are 3 — 16° C. The area is underlain by a complex series of heavily folded metamorphosed
sedimentary rocks deposited from the Ordovician to Devonian periods and interspersed with numerous
granite intrusions and, to a much lesser extent, basalts deposited in the Paleogene.

Primary factors influencing the distribution of vegetation formations in our study area include temperature,
rainfall, topography, soils and drainage (Jenny, 1983; Costin, 1954; Beadle, 1981; Keith, 2004). Alpine as-
semblages are restricted to elevations more than 1830 m above sea level where winter temperature minima
fall below the physiological tolerance of trees (Keith, 2004). Tree cover progressively increases with decre-
asing elevations severity of winter conditions declines. Sub-alpine grassy woodlands occupy the sub-alpine
tracts, characteristically with short gnarled trees and a large compliment of cold-tolerant species also found
in the alpine zone. On the southwest flank of the Great Divide, sub-alpine woodlands grade into tall wet
sclerophyll forests, sustained by high orographic rainfall originating in south-westerly air flows. To the east,
depending on soils lithology texture and fertility, sub-alpine woodlands grade into either Dry Sclerophyll
Forest or Grassy Woodlands as annual rainfall declines in the shadow of the Divide. Grasslands replace
Grassy Woodlands in frost hollows, the heaviest-texture soils and the most moisture-limited sites (Costin,
1954). Further east of the tablelands, grasslands and grassy woodlands are replaced by mosaics of wet and
dry sclerophyll forests on the escarpment ranges as rainfall increases with increasing elevation and exposure
to oceanic weather systems (Keith, 2004). Wetlands occur throughout the bioregions in areas of impeded
drainage, while heathlands are among the local expressions of edaphic and topographic variation.

Compilation of Floristic Data

We sourced a total of 7541 floristic plot samples from a database compiled and administered by the De-
partment of Planning, Industry and Environment (DPIE, 2019). These comprised all survey data collected



in (or within 25 km of) the South East Highlands and Australian Alps Bioregions which met the following
criteria: 1) the sample location was recorded with an accuracy of < ¢.100m; ii) the sample area was 0.04 ha;
and iii) all vascular plant species were recorded. Individual species records were reviewed and modified to
resolve inconsistencies in taxonomy (see Methods in Tozer et al ., 2010). Taxa identified only at the generic
level were removed along with records of naturalised species. Cover-abundance scores were transformed to
presence-absence to eliminate the possible effects of bias in cover-abundance estimates by different observers.
This transformation was considered an appropriate strategy to achieve a balance between information-loss
and maximising the pool of available data in circumstances where the data set is both large and likely to be
heterogeneous (Goodall, 1978).

Chameleon performance evaluation

We performed all Chameleon analyses on pairwise Bray-Curtis compositional similarities between samples
(Clarke, 1993) using the scluster function in CLUTO software version 2.1.2 (Karypis, 1999). First, since
we found little information in the literature to guide parameter-setting, we assessed solutions of 15 clusters
over a range of neighbourhood sizes (15 — 1000 neighbours), degrees of sub-partitioning (up to 500 sub-
partitions or agglomerative phase omitted) and linkage functions (single or complete) (Table 1). We focused
carried out our initial trials using the cluster-weighted single-link criterion function in the agglomerative
phase, as recommended for non-spherical clusters (Karypis, 1999). For each solution we calculated average
pairwise within-cluster association (homogeneity) and the proportion of samples located in clusters other
than that of their nearest neighbour (misclassification rate). We found using the single linkage function
caused chaining (sensu Peet & Roberts 2013) when the number of sub-partitions specified was larger than
30. We repeated the relevant trials using an option forcing Chameleon to prioritise large clusters over small
in the partitioning phase. On the basis of the preliminary results, we undertook subsequent analyses using
the complete linkage function and assessed performance over a range of thematic scales (15 — 250 clusters)
and degrees of sub-partitioning (30 — 500 sub-partitions) with neighbourhood size fixed at either 30 or 1000
(Table 1).

Comparison of algorithms

We compared Chameleon cluster member-sets with those derived using: i) k-means clustering; ii) flexible
unweighted pair-group averaging with arithmetic mean (Belbin et al . 1992); and iii) polythetic-division
(MacNaughton-Smith et al ., 1965; Belbinet al ., 1984). We transformed the adjacency matrix supplied to
scluster to dissimilarity (1-simmilarity) and used each algorithm to compute solutions ranging from 15 —
250 clusters (Table 1.) We characterised each solution in terms of homogeneity and misclassification rate (as
described above), the number of species occurring at higher frequencies within each cluster than in the dataset
as a whole (cumulative hypergeometric probability >0.999) and the number of species with standardised phi
> 0.35 (Tichy & Chytry 2006).

Comparing clustering solutions with a reference classification

We assessed the extent to which clustering solutions (15 classes) produced by each algorithm retrieved
species-sets characterising the units of an established subcontinental-scale vegetation classification that cov-
ers 800,000 km? in southeastern Australia (Keith 2004), including the study area (c. 11% of total area).
The reference classification was developed from the top-down based on an extensive review of vegetation
studies, field reconnaissance and qualitative synthesis of vegetation maps available at the time (Keith 2004).
Its highest level of classification (vegetation formation) is based on structural/physiognomic features. For-
mations are subdivided into vegetation classes based on geographically distinct expressions of structural and
compositional features. Fifteen of 99 vegetation classes recognised in the reference classification are mapped
within the study area and are described with lists of indicative species (Keith, 2004). For each clustering
solution, we identified the species diagnostic of each cluster as those with a frequency of occurrence sta-
tistically higher within the cluster samples than across the dataset as a whole (cumulative hypergeometric
probability > 0.999). We compared these with the species identified as diagnostic of the reference classes,
compiling a confusion matrix with the units of the respective classifications as rows and columns and cell



values calculated as the proportion of reference class species that were identified as diagnostic of each cluster
class.

Results

A summary of the analytical trials performed and a brief synopsis of the results is contained in Table 1. A
detailed description of the results follows:

Performance of Chameleon under combinations of varying parameters- single linkage

Trends in the mis-classification rate and average within cluster homogeneity in Chameleon cluster solutions
generated using the weighted single-link functions are summarised in Figure 3. The misclassification rate
rose with increasing neighbourhood size (Figure 3A). This result may reflect aberrations caused by forcing
members of small clusters to forge links with samples in other clusters as illustrated by Chameleon’s attri-
bution of the simulated data we presented in Figure 1 given neighbourhoods of different sizes (Figure 4).
Solutions derived by agglomeration from 30 sub-partitions had consistently lower rates of misclassification,
but beyond 30 sub-partitions solutions became increasing uneven (chaining) and mis-classification rates be-
came meaningless because a high proportion of samples were concentrated in few clusters. The problem
of chaining was not corrected by directing the algorithm to prioritise large clusters over small in the parti-
tioning phase however more even clusters were produced when the cluster-weighted complete link function
was employed in the agglomerative phase of the algorithm and subsequent analyses were performed using
this option, as described in the next section. There was no clear trend in within-cluster homogeneity with
increasing neighbourhood size when the agglomeration phase was omitted (Figure 3B). Solutions derived by
agglomeration from 30 sub-partitions had highest homogeneity with a neighbourhood size of 100. Beyond
30 sub-partitions the data showed no clear trend and varied erratically depending on the uneven-ness of the
solutions.

Clusters of 15 solutions generated using the cluster-weighted complete link function exhibited higher rates of
mis-classification and lower within-cluster homogeneity when either neighbourhood size (n) or the number
of sub-partitions (a) in the agglomerative phase were increased, although increasing n disproportionately
affected the mis-classification rate while increasing a disproportionately affected cluster homogeneity (Figure
5).

Both the rate of mis-classification and within-cluster homogeneity increased with increasing thematic res-
olution (Figure 6). Chameleon solutions derived using small neighbour sizes and either: modest numbers
of sub-partitions (twice the number of classes in the solution); or with the agglomeration phase omitted,
were better (lower rates of misclassification and higher homogeneity) than those derived with the divisive
algorithm, but worse than those derived with the agglomerative algorithm (Figure 6). However, 15- class
solutions derived by Chameleon were more even than those produced by either the agglomerative or divisive
algorithms (Figure 7). Chameleon solutions were better than those of k-means at broad thematic scales
(15 — 60 classes) but equivalent at finer scales (90 — 250 classes). Chameleon produced more even 15-class
solutions than k- means (Figure 7).

Clusters derived by Chameleon solutions were generally characterised by fewer diagnostic species than those
derived using the traditional algorithms (Table 2), however species diagnostic of Chameleon clusters cor-
responded more with those characterising units of a reference classification for our study area than those
diagnostic of cluster derived by agglomerative or divisive algorithms, both in the range of units represented
and with less overlap between unrelated units (Table 3a, 3b, 3c). Clusters derived by k-means retrieved
units of the reference classification with efficiency similar to Chameleon (Table 3d).

Discussion
Is there evidence of irregular structure in vegetation data reflected in the performance of different algorithms?

We hypothesised that in cases where the structure of vegetation data is variable (irregular shaped clusters
or variable density), an algorithm sensitive to such variability would perform better (lower rates of mis-



classification) than one that optimises central-tendency (more homogenous clusters). While the structure of
our vegetation data is unknown, it is unlikely to be regular, neither continuous along environmental gradients
nor arranged in discrete clusters. Theory and empirical evidence suggest that assemblages of species form
multi-dimensional continua (Whittaker, 1975; Goodall, 1978; Kent, 2011). However, discontinuities may arise
where environmental gradients are either discontinuous in geographic space, or parts of the environmental
spectrum are not represented (Austin, 2013). Discontinuities are also likely to arise in our data at broader
thematic scales due to biases in the distribution in sample (Gellie et al . 2018) and they patently exist
at continental scales between climatically similar sub-continental regions which are separated by water or
large areas with unsuitable climate and so share few species (Tozer et al . 2017). We further hypothesised,
therefore, that Chameleon’s primary advantage was likely to be in the elucidation of upper-hierarchal clusters.

Overall, the results of our analyses support both hypotheses, although it is clear that: i) the utility of the
different clustering methods cannot be encapsulated solely in terms of cluster homogeneity and rates of
misclassification, ii) internal evaluators can be misleading in terms of cluster quality; and iii) the superior
performance of Chameleon in elucidating upper-hierarchical clusters is entirely dependent on selecting ap-
propriate parameters from an infinite range of combinations. The clearest support for our hypotheses was
evident in the comparison between solutions derived using Chameleon clusters with those derived by k-means
over the range from 15 — 250 clusters. Chameleon’s best 15 and 30 cluster solutions exhibited significantly
lower rates of mis-classification than those of k-means at the cost of an increase in heterogeneity (Figure
C), while at progressively higher levels of thematic detail (60 — 250 clusters) there was a convergence in the
respective metrics. We speculate that increasing rates of misclassification at finer thematic scale is indicative
of the partitioning of a continuum. That is, at fine thematic scales communities increasingly intergrade such
that the proportion of their (ever decreasing) member-sets which most closely resemble samples in adjacent
clusters increases. If there was indeed variability in the structure of our data at broad thematic scales, then
the algorithms performed as hypothesised. We conclude there was a clear advantage in using Chameleon
over k-means to elucidate our upper-hierarchical clusters (and relatively little cost), but no apparent advan-
tage at finer thematic scales in terms of cluster metrics. However, since Chameleon solutions of progressive
finer scale can be produced by continually partitioning the sparse graph, the algorithm potential offers a
straightforward method of integrating plot-based classifications at multiple hierarchical scales.

Accounting for the performance of agglomerative and divisive clustering algorithms is more complicated.
First, on the basis of cluster homogeneity and rates of mis-classification, our agglomerative algorithm per-
formed better than either Chameleon or k-means, scoring higher on both metrics at all levels of thematic
detail, while our divisive algorithm scored worse (Figure C). Both, however, produced 15-cluster solutions of
much greater unevenness in membership numbers than k-means or Chameleon (Figure D) which, if evidence
of chaining (sensuPeet & Roberts 2013), could suggest that both solutions were less informative in relation
to the nature of upper-hierarchical groupings. Conversely, our three traditional algorithms scored equally
highly in terms of the number of diagnostic species and clearly higher than the best Chameleon solutions,
suggesting that unevenness in cluster membership numbers could, in fact, be symptomatic of biases in the
distribution of samples among ‘natural’ clusters, and that the three traditional algorithms performed better
in detecting these uneven clusters (as evidenced by higher numbers of diagnostic species).

Comparisons with a reference classification suggest unevenness in the cluster size is more likely to be in-
dicative of chaining, because indicator species of the largest clusters tended to represent large numbers of
known classes, some of which are relatively distantly related, a phenomenon most strongly evident in the
agglomerative and divisive solutions (Tables 3a-c). This reflects a well-known weakness of agglomerative or
divisive methods which incorporate merge or split decisions based on the aggregate properties of clusters.
Such methods require either unrealistic assumptions concerning the structure of the data and/or sequential
merge/split decisions which cannot be reversed, and which are necessarily sensitive to the composition of
the dataset (Han et al ., 2012). While we did not evaluate the quality of solutions of greater than 15 classes,
we suggest our agglomerative algorithm outperformed all others in producing 250-cluster solutions with low
rates of misclassification and high homogeneity, but that subsequent, upper-hierarchical groupings because
progressively less meaningful because of poor merging decisions. We conclude that Chameleon and k-means



generated the most informative solutions of 15 clusters with the former perhaps better representing the
natural structure of the data while the latte produced more homogeneous groupings.

Are ‘natural’ clusters necessarily less homogeneous?

Although a degradation of cluster homogeneity is implicit in our model, the degree to which this is realised is
likely to be highly dependent on the structure of individual datasets. In our case study, the mis-classification
rate achieved by Chameleon was half that of k-means at the cost of a 10% reduction in cluster homogeneity.
We speculate that if the clusters Chameleon retrieved in our dataset are indeed irregular shapes, then our
results suggest they are unlikely to be highly elongated, and variability in our data structure tends toward
uneven density rather than irregular shape.

The question of whether ‘natural’ clusters necessarily have fewer diagnostic species is more difficult to resolve
based on our analyses. A priori , we inclined to the notion that more heterogenous clusters would mean fewer
diagnostic species, the pattern reflected in our results, however Schmidtlein et al. (2010) demonstrated that
Isopam, an algorithm that adapts to irregular cluster shapes, consistently out-performed other algorithms
in terms of the number of indicator species (sensu Dufréne & Legendre 1997) and was also highly ranked
in terms of the number of species with standardized phi >0.35 (Tichy & Chytry 2006). Higher numbers
of diagnostic species could reflect the sampling of a wider species pool, since samples sharing no species can
occupy the same cluster if comprise an interconnected neighbourhood (Schmidtlein et al. 2010). However,
it is not clear that higher numbers of diagnostic species is not an artefact of Isopam’s partitioning of the
ordinations space by medoids, notwithstanding the fact the ordination axes are adjusted to accommodate
non-linearities (and hence irregularities).

On the evidence of our results, we conclude that our original contention is supported, that cluster solution
derived by algorithms sensitive to data structure are unlikely to be as compact or homogenous as those
derived by optimising central tendency, although the differences may not always be pronounced, depending
on the characteristics of individual datasets and thematic scale of investigation. In that case, we suggest that
further research is required into metrics which give insights into how well cluster solutions model the structure
of vegetation data (eg within-cluster inter-connectedness, mis-classification rates) to better understand the
potential trade-offs involved in maximising homogeneity or indicator values.

Are natural clusters likely to be more stable/robust to new data?

Clustering solutions are notoriously sensitive to classification protocols, and it has generally proven difficult
to retrieve the units of individual CCSs via meta-analysis of combined data (Tichy et al . 2011, 2014). Wiser &
De Céceres (2013) and Tichy et al . (2014) characterised this problem in terms of the need to preserve units of
one or more CCSs while allowing for previously unrecognised units to be identified following the acquisition of
new plot data. Their respective solutions comprise alternative forms of semi-supervised clustering, promising
approaches that allow for units to be “fixed” by specifying their plot membership a priori while allowing
for unattributed plots to form new clusters. The question of when units should be “fixed” must still be
addressed. If the problem arises either because algorithms cluster irregular data in idiosyncratic ways or
there are biases in the distribution of samples in compositional then some understanding of the underlying
data structure is likely to be informative.

In theory, algorithms sensitive to data structure may reduce the extent of this problem, at least at some
thematic scales. Tozer et al. (2022) concluded Chameleon’s novel approach to modelling inter-sample re-
lationships greatly facilitated the revision of an earlier broad-thematic classification of forested wetlands
based on substantially fewer plot samples (Keith & Scott 2005). Unlike many traditional methods which
incorporate merge or split decisions based on the aggregate properties of clusters, Chameleon operates on
inter-connected neighbourhood sets structured, in Tozer et al ’s (2022) case, on the same similarity metric
used in the original analysis. They considered these features pivotal, because the algorithm could potentially
minimise the impact of incremental additions of new data by retaining connections between samples from
the original set (Tozer et al . 2022) (although they speculated that this could best achieved by specifying
a large neighbourhood which, on the basis of our results, we suggest is not appropriate for minimising the



rate of misclassification). Tozer et al . (2022) reasoned that since Chameleon dissolves connections between
relatively weakly-connected samples in the partitioning phases, strong pairwise relationships between samp-
les underpinning clusters in the original analysis were potentially preserved (and reflected more faithfully)
in their new Chameleon-derived clusters (provided they were not displaced by a sufficiently large number of
more strongly inter-connected samples). This interesting feature requires further study.

Conclusion

Our study demonstrates that scale-dependent irregularities in vegetation data can exist and potentially affect
the utility and stability of clustering solutions underlying vegetation classification schemes. The existence of
clusters of irregular shape and density implies that novel metrics are required in their evaluation because
clusters which are ‘natural’ in the sense they reflect human responses to visual cues (Barton et al . 2019) are
unlikely to score well on traditional metrics that assume a spheroidal model (Aho et al . 2008). Evaluating the
utility of such cluster solutions requires metrics which assess inter-connectivity rather than central tendency.

While the results presented here demonstrate the potential utility of the Chameleon algorithm in vegetation
science, there exist several issues requiring further investigation. Although Chameleon produced informative
solutions at broad thematic scales, solutions derived with different parameters varied markedly, and some
were clearly inferior to those of the traditional algorithms we evaluated. While its theoretical advantages are
widely cited, we found very few examples in the literature to guide how Chameleon should be parameterised,
and none pertaining to analysis of vegetation data. Although the algorithm can be implemented on wide range
of distance metrics, we opted to import a distance matrix which underpins Consistent Classification Sections
(CCS,sensu De Céceres et al . 2015) within our study area in order to maximise the potential for integrating
our results with those CCSs. On the basis of our trials, we recommend the use of small neighbourhood sizes
over large and either omitting the agglomerative phase or restricting the number of partitions to no more
than twice the number of samples in the desired solution. Although Karypis (2003) recommended using a
cluster-weighted single linkage function in the implementation of Chameleon, we found this induced chaining
in our solutions, while the cluster-weighted complete linkage function produced satisfactory results and we
recommend this function if an agglomerative step is employed. Further experimentation with each of these
parameters using other datasets is clearly required.

Finally, there is some uncertainty in relation to how the algorithm can be implemented. We employed
the Cluto clustering package (Karypis 2003) distributed by Chameleon’s authors, however we noted some
inconsistencies in relation to the parameters offered compared to the description of the algorthim (Karypis et
al . 1999). Furthermore, Barton et al. (2019) have suggested Cluto’s implementation does not entirely embody
the Chameleon concept. Barton et al. (2019) offer an alternative implementation which deserves evaluation,
although it relies on an different partitioning algorithm because the original is proprietary protected.

In summary, while our results support the notion the Chameleon algorithm is theoretically better suited to
the task of elucidating vegetation classes, the characteristics of its solutions, and the ways in which these
improve upon those retrieved by traditional clustering approaches requires further quantification. We suggest
this is a worthwhile endeavour because Chameleon offers a conceptually simple model, can process very large
datasets quickly and potentially presents a solution to the problem of integrating plot-based classifications
across hierarchical levels.

Data availability statement

CLUTO  software modules are available for download from Karypis Lab  website
(http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download ). Plot data used in our analyses are available
at: https://www.environment.nsw.gov.au/research/Vegetationinformationsystem.htm (NSW DPIE 2020,
accessed 2°4 August 2016). All analyses were performed on an adjacency matrix of similarity (1-Bray-Curtis
dissimilarity) between the objects to be clustered. Data were imported in a plain text file with n + 1 lines,
the first line containing the number of rows and the remaining n lines containing adjacency values for each
row (Karypis 2003).
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Table 1: Summary of analytical trials undertaken, their purpose and results. Colours in column match
indicative results plotted in Figures 3-6.

Algorithm Number of clusters Nei
Chameleon 15 15
Chameleon 15 15
Chameleon 15 30

11



Algorithm Number of clusters Nei
Chameleon 15, 30, 60, 90, 120, 150 200, 250 30
Chameleon 15, 30, 60, 90, 120, 150 200, 250 30
Chameleon 15, 30, 60, 90, 120, 150 200, 250 100
k-means 15, 30, 60, 90, 120, 150 200, 250 NA
flexible unweighted pair-group averaging with arithmetic mean (Belbin et al. 1992) 15, 30, 60, 90, 120, 150 200, 250 NA
polythetic-division (MacNaughton-Smith et al., 1965; Belbin et al., 1984) 15, 30, 60, 90, 120, 150 200, 250 NA

Table 7: Total number of diagnostic species across all classes as determined by frequency (statistically higher
than background frequency) or standardised phi (Tichy & Chytry 2006).

Algorithm total number of species with class hypergeometric probability > 0.999 total number of sp
k-means 3615 303
Agglomerative 3478 282
Divisive 3118 278
Chameleon (n= 10 a = 15) 3569 252
Chameleon (n=40, a = 15) 3572 268
Chameleon (n 100 a=15) 3416 269
Chameleon (n=1000, a = 15) 3416 269
Chameleon (n=1000, a = 60) 4646 549

Table 3a:: Proportion of characteristic species for each reference class (rows) shared with clusters from the
Chameleon algorithm (15 clusters based on neighbourhood range of 1000 samples agglomerated from 30 sub-
partitions). Dark grey indicates proportions>0.7, pale grey proportions >0.5. Cells with the same shading
in column one comprise members of the same formation.

Cluster (15) 6 7 9 0 4 5 8 14 3 15 1 12 2

Alpine Herbfields 0.88 0.00 0.00 0.12 0.19 0.19 0.19 0.00 0.00 0.00 0.00 0.19 0.08
Alpine Bogs and Fens 1.00 0.00 0.00 0.04 0.04 0.07 0.04 0.11 0.04 0.00 0.00 0.21 0.04
Alpine Heaths 0.93 0.00 0.07 0.07 0.07 0.00 0.00 0.04 0.04 0.00 0.00 0.37 0.04
Alpine Fjaeldmarks 1.00 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.06 0.00 0.00 0.06 0.00
Southern Tablelands DSF 0.03 080 0.14 040 043 031 0.09 0.06 0.06 0.09 0.23 0.00 0.26
Southern Escarpment WSF 0.00 0.03 0.88 0.38 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.03 0.16
Montane Wet Sclerophyll Forests 0.11 0.09 049 0.66 0.20 0.06 0.06 0.06 0.06 0.14 0.06 0.14 0.11
Southern Tableland WSF 0.02 0.17 0.41 068 0.66 0.27 0.15 0.00 0.02 0.12 0.05 0.07 0.44
Subalpine woodlands 0.19 024 0.19 062 0.57 022 0.14 0.03 0.05 0.08 0.08 0.11 0.30
Tableland Clay GW 0.08 0.05 0.14 041 0.65 046 046 0.00 0.03 0.03 0.00 0.14 0.38
Southern Tablelands GW 0.00 0.26 0.14 042 0.79 074 049 0.02 0.00 0.05 0.02 0.02 047
Temperate_Montane_grasslands 0.07 0.04 0.00 0.19 048 0.70 085 0.00 0.00 0.00 0.00 0.22 0.44
Southern Montane Heaths 0.03 0.24 0.07r 0.10 0.14 0.07 0.03 059 038 0.21 0.28 0.07 0.03
Sydney Montane Heaths 0.00 0.08 0.00 0.04 0.04 004 0.00 042 092 0.50 0.25 0.00 0.00
Sydney Montane DSF 0.00 0.20 0.10 0.07 0.10 0.00 0.00 0.13 0.63 0.80 043 0.00 0.10
South East DSF 0.04 037 033 0.11 0.11 0.02 0.00 0.20 043 0.65 0.50 0.00 0.17
Montane Bogs and Fens 0.49 0.04 0.23 005 0.15 004 0.09 032 021 0.06 0.02 0.72 0.04
Montane Lakes 0.23 0.00 0.00 0.05 0.09 0.05 0.09 0.00 0.00 0.00 0.00 1.00 0.00
Central Gorge DSF 0.00 0.20 0.04 0.15 0.14 0.16 0.11 0.20 0.02 0.18 0.23 0.00 0.75
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Table 3b: Proportion of species characteristic of each structural/physiognomic class that are diagnostic of
units of a 15-cluster solution derived using polythetic division. ). Dark grey indicates proportions>0.7, pale
grey proportions >0.5. Cells with the same shading in column one comprise members of the same formation.

Cluster 2 1 11 8 7 ) 9 3 4 6 10 12 13
Alpine Herbfields 0.73 0.00 0.00 0.15 0.23 0.00 0.00 0.35 0.27 0.00 0.00 0.04 0.00
Alpine Bogs and Fens 0.57 0.00 0.00 0.07 0.04 0.07 0.00 0.79 0.25 0.00 0.00 0.00 0.00
Alpine Heaths 0.89 0.00 0.07 0.26 0.00 0.04 0.00 0.26 0.11 0.04 0.04 0.07 0.04
Alpine Fjaeldmarks 0.88 0.00 0.00 0.00 0.06 0.06 0.00 031 0.06 0.00 0.00 0.06 0.00
Southern Tablelands DSF 0.00 080 0.14 043 0.26 0.00 0.03 0.00 0.00 0.14 0.03 0.03 0.03
Southern Escarpment WSF 0.03 0.06 0.91 059 0.00 0.00 0.44 0.00 0.03 041 0.03 0.13 0.22
Montane Wet Sclerophyll Forests 0.14 0.14 0.40 0.83 0.06 0.03 0.14 0.00 0.09 0.20 0.03 0.03 0.11
Southern Tableland WSF 0.02 020 0.34 083 0.44 0.00 0.24 0.00 0.15 0.54 0.07 0.17 0.29
Subalpine woodlands 0.22 024 0.14 078 0.24 0.00 0.05 0.00 0.08 0.27 005 0.08 0.11
Tableland Clay GW 0.08 0.08 0.14 0.57 0.59 0.03 0.08 0.03 0.14 0.27 0.00 0.05 0.16
Southern Tablelands GW 0.00 0.21 0.12 049 0.79 0.00 0.12 0.00 0.05 0.28 0.05 0.09 0.21
Temperate_Montane_grasslands 0.04 0.04 0.00 030 0.89 0.00 0.00 0.04 0.19 0.11 0.00 0.00 0.00
Southern Montane Heaths 0.00 0.76 0.00 0.14 0.07 0.21 0.07 0.00 0.03 0.03 0.00 0.00 0.03
Sydney Montane Heaths 0.00 0.67 0.04 0.04 0.04 092 0.00 0.04 0.00 0.04 0.04 0.04 0.04
Sydney Montane DSF 0.00 097 0.07r 0.10 0.03 0.33 0.03 0.00 0.00 0.10 0.00 0.03 0.07
South East DSF 0.02 085 0.28 0.13 0.0r 026 0.15 0.00 0.00 0.24 0.02 0.09 0.20
Montane Bogs and Fens 0.13 0.04 0.00 032 0.13 0.19 0.00 0.64 0.74 0.06 0.00 0.04 0.00
Montane Lakes 0.05 0.00 0.00 0.05 0.14 0.00 0.00 0.14 1.00 0.00 0.00 0.05 0.00
Central Gorge DSF 0.00 0.27 0.07 0.07 0.59 0.00 0.50 0.00 0.00 0.43 0.05 0.09 0.39
Table 3c: Proportion of species characteristic of each structural/physiognomic class that are diagnostic of

units of a 15-cluster solution derived using pairwise unweighted group-averaging. ). Dark grey indicates
proportions>0.7, pale grey proportions >0.5. Cells with the same shading in column one comprise members

of the same formation.

Cluster 14 13 15 7 4 5 11 1 2 8 10 6 3
Alpine Herbfields 0.58 0.46 0.46 0.12 0.00 0.15 0.00 0.19 0.15 0.04 0.00 0.00 0.04
Alpine Bogs and Fens 0.50 0.79 0.43 0.07 0.00 0.18 0.00 0.07 0.00 0.00 0.11 0.00 0.04
Alpine Heaths 0.85 0.30 0.56 0.07 0.07 041 0.07 0.07 0.00 0.04 0.07 0.00 0.00
Alpine Fjaeldmarks 0.25 031 0.88 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.00 0.00
Southern Tablelands DSF 0.40 049 0.03 074 0.23 040 0.63 031 0.14 034 043 0.43 0.29
Southern Escarpment WSF 0.22 034 0.06 0.22 097 044 0.34 0.13 0.00 0.09 0.25 0.06 0.09
Montane Wet Sclerophyll Forests 0.34 0.37 0.17 031 0.54 080 0.43 0.23 0.06 0.20 0.29 0.09 0.03
Southern Tableland WSF 0.46 071 0.05 039 049 066 0.68 0.66 0.17 0.24 044 0.20 0.32
Subalpine woodlands 0.70 0.54 0.14 0.43 0.32 0.78 0.51 0.46 0.14 0.32 0.43 0.19 0.19
Tableland Clay GW 0.35 046 0.056 022 0.24 043 038 0.68 043 0.14 027 0.08 0.38
Southern Tablelands GW 0.51 0.53 0.02 044 0.23 033 051 072 056 021 033 0.14 0.42
Temperate_Montane_grasslands 0.33 048 0.00 0.19 0.04 0.22 0.26 0.59 0.78 0.11 0.19 0.04 0.33
Southern Montane Heaths 0.28 0.17 0.03 038 0.14 0.10 045 0.10 0.03 0.66 0.38 0.34 0.10
Sydney Montane Heaths 0.17 0.13 0.00 0.13 0.04 0.04 0.67 0.04 0.04 025 092 029 0.04
Sydney Montane DSF 0.17 0.17 0.00 0.23 0.10 0.07 1.00 0.07 0.00 0.27 0.60 0.60 0.10
South East DSF 0.24 030 0.02 035 037 013 0.72 0.09 0.02 026 050 0.74 0.24
Montane Bogs and Fens 0.23 0.72 0.09 0.11 0.04 030 0.13 032 0.04 0.06 043 0.02 0.04
Montane Lakes 0.09 0.36 0.00 0.05 0.00 0.05 0.00 0.77 0.05 0.00 0.00 0.00 0.00
Central Gorge DSF 0.20 0.14 0.00 032 0.18 0.05 041 0.09 0.16 0.05 0.18 0.41 0.89
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Table 3d: Proportion of species characteristic of each structural/physiognomic class that are diagnostic
of units of a 15-cluster solution derived using k-means. ). Dark grey indicates proportions>0.7, pale grey
proportions >0.5. Cells with the same shading in column one comprise members of the same formation.

Cluster 14 13 15 7 4 5 11 1 2 8 10 6 3
Alpine Herbfields 0.88 0.62 0 0 0.12 0.04 0.04 012 0 0.04 031 0.04 0.04
Alpine Bogs and Fens 043 043 0 0.04 021 0.11 0.07 0 0 0.04 0.18 0 0.07
Alpine Heaths 0.3 089 0 0.11 044 0.07 O 0.04 0 0 0.11 0 0
Alpine Fjaeldmarks 0.63 088 0 0 0 0 0.06 0.06 O 0 0.06 0 0
Southern Tablelands DSF 0 0 0.74 026 04 031 0.09 0 0.09 026 0.03 0 0.57
Southern Escarpment WSF 0 0 0.03 097 041 019 O 0 0.09 0.09 003 0 0
Montane Wet Sclerophyll Forests 0 0.09 0.09 057 0.8 023 0.06 003 014 0.06 014 O 0
Southern Tableland WSF 0 0 0.17 0.56 0.59 0.68 0.12 0 0.12 0.29 0.15 0.05 0.24
Subalpine woodlands 0 0.16 0.27 038 084 049 0.11 0 0.08 0.16 0.14 0.03 0.19
Tableland Clay GW 0.03 0.05 0.08 0.27 041 062 046 0.03 0.03 032 0.16 0.08 0.3
Southern Tablelands GW 0 0 023 023 03 077 053 0 0.06 033 0.06 0 0.53
Temperate_Montane_grasslands 0.04 0.04 0.04 0.04 0.07 052 0.85 0 0 0.22 0.22 0.19 0.22
Southern Montane Heaths 0 0 0.52 0.07 014 0.1 0.03 034 024 0.07 007 O 0.21
Sydney Montane Heaths 0 0 0.13 0.04 0.04 004 O 0.88 0.67 0.04 0 0 0.04
Sydney Montane DSF 0 0 02 01 0.07r 007 O 037 08 007 O 0 0.1
South East DSF 0 0.02 028 033 015 0.11 O 022 065 024 0.02 0 0.09
Central Gorge DSF 0 0 0.09 0.16 0.02 0.09 0.09 0 0.18 086 0 0 0.23
Montane Bogs and Fens 0.4 011 0.04 004 023 021 0.06 032 0.09 0.02 081 0.15 0.04
Montane Lakes 0.23 005 0 0 0.06 0.23 0.09 0 0 0 0.73 0.73 0.05

Figure 1: Sample clusters (A-F) Simulated data created by supplying cartesian coordinates for six centroids
and generating random coordinates normally distributed around each centroid with sample sizes i) n= 30,
50, 500, 50, 70, 300), and ii) n = 20, 100, 500, 20, 100, 500) with standard deviation =1. The boundaries
of each cluster are approximated by circles, colours indicate cluster membership as determined by k-means
operating on a matrix of Euclidean distances.
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Figure 2: Graphical representation of Chameleon’s two-phase algorithm (reproduced form Karypis et al .
1999)

k-nearest-neighbor graph Final clusters
Data set Construct
a sparse Partition A g é Merge
graph the graph % 4 partitions
e —_ @

Figure 3: Mis-classification rate (A) and average similarity among objects within clusters (B) function of
neighbourhood size as a function of neighbourhood size. Results for solutions obtained with more than
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30 sub-partitions are not shown in (A) because samples were frequently concentrated in a single cluster
(chaining). Trials incorporating an agglomeration phase (a >15) were performed using a weighted single
linkage function.
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Figure 4: Clustering of simulated data (Figure 1) by Chameleon illustrating increasing rates of mis-
classification with increasing neighbourhood size. Samples with the same colour were placed in the same
cluster.
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Figure 5: Trends in mis-classification rate and within-cluster homogeneity with increasing neighbourhood size
or increasing number of sub-partitions in the agglomeration phase. The effect of increasing sub-partitions us-
ing the single-linkage function is not shown due to chaining as described above). Trendlines are least-squares
linear regressions. Data describing the respective 15-cluster solutions derived by k-means, agglomerative and
divisive algorithms are plotted for comparison (see figure 6).
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Figure 6: Trends in mis-classification rate and within-cluster homogeneity with increasing thematic detail
(15 — 250 clusters).
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Figure 7: Cluster sizes ranked in order of increasing size and plotted as a proportion of the number of samples
in the largest cluster.
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