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Abstract

We consider a mass conservative type method for semiconductor device problem by employing mixed finite element method

(FEM) for electric potential equation, mass conservative characteristic FEM for both electron and hole density equations. The

boundedness of numerical solution without certain time step restriction and optimal Lˆ2 error estimates of full discrete scheme

are proved. Numerical experiment is presented to verify the effectiveness and unconditional stability of the proposed method.
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Summary

We consider a mass conservative type method for semiconductor device problem by
employing mixed finite element method (FEM) for electric potential equation, mass
conservative characteristic FEM for both electron and hole density equations. The
boundedness of numerical solution without certain time step restriction and optimal
𝐿2 error estimates of full discrete scheme are proved. Numerical experiment is pre-
sented to verify the effectiveness and unconditional stability of the proposed method.
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1 INTRODUCTION

Here we study the semiconductor device described by the following nonlinear system1,2:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢 = −∇𝜙,
∇ ⋅ (𝛼𝑢) = 𝑞(𝑓 + 𝑝 − 𝑒),
𝜕𝑒
𝜕𝑡

− ∇ ⋅ (𝐷𝑒(𝑥)∇𝑒 + 𝜇𝑒(𝑥)𝑒𝑢) = −𝑅(𝑒, 𝑝),

𝜕𝑝
𝜕𝑡

− ∇ ⋅ (𝐷𝑝(𝑥)∇𝑝 − 𝜇𝑝(𝑥)𝑝𝑢) = −𝑅(𝑒, 𝑝),

(1)

on polyhedral domain Ω ∈ 𝑅𝑑 (𝑑 = 2, 3) over time period 𝐽 = [0, 𝑇 ]. Here the objective functions are the electrostatic potential
𝜙, the electric field intensity 𝑢, the electron density 𝑒 and the hole density 𝑝. 𝛼 is the dielectric permittivity, 𝑞 is the electron
charge constant. 𝑓 is the doping profile of the device. 𝐷𝑖 and 𝜇𝑖 are the diffusivity and the mobility of electrons (𝑖 = 𝑒) ∕ holes
(𝑖 = 𝑝). 𝑅(𝑒, 𝑝) describes the recombination and generation of carriers. The corresponding initial-boundary conditions are

𝑢 ⋅ 𝑛 = 𝐷𝑒(𝑥)∇𝑒 ⋅ 𝑛 = 𝐷𝑝(𝑥)∇𝑝 ⋅ 𝑛 = 0, 𝑥 ∈ 𝜕Ω,
𝑒(𝑥, 0) = 𝑒0(𝑥), 𝑝(𝑥, 0) = 𝑝0(𝑥), 𝑥 ∈ Ω.

(2)

The model reflects significant fundamental conservation laws that describe mass balance of a charged system in a material
medium, and the numerical study of semiconductor device plays significant role in industrial applications which have been a
key interest topic for research1. Some classical numerical methods have been investigated extensively in recent years, such as
finite difference method (FDM)3, upwind FDM4, characteristics mixed FEM5, finite volume method6,7, discontinuous Galerkin
method8,9, two-grid method10.
There are two key issues with numerical simulation of the model (1). On one hand, both electron and hole density equations are

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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normally convection-dominated. As we all know, the conventional characteristic type method can obtain better approximation
with nonphysical oscillations or numerical diffusion than other standard methods, unfortunately it fails to maintain mass balance.
On the other hand, numerical error analyses were done roughly under some time-step condition 𝑡 = 𝑜(ℎ𝑑∕2) in all previous
works. Such time-step restriction may become more serious in practical three-dimensional computations with time-consuming.
To the best of our knowledge, few work can deal with any above issue for semiconductor device problem.

In this work, we present a new mass conservative type method, where the classical mixed FEM is used to solve electrostatic
potential and electric field intensity, while mass-conservation characteristic FEM as11 to treat both electron and hole density
equations. The mass-conservation characteristic FEM can keep the advantages of the traditional characteristic FEM and hold
mass balance globally in some engineering simulations12,13,14 proved that the time-step restriction is not necessary for numerical
simulation of miscible displacement problem by error splitting technique, which has been rapidly applied to other equations15,16.
The other contribution of this paper is firstly to obtain the unconditionally optimal convergence analysis for all four variables,
which means that both the boundedness of numerical solution and optimal approximation are valid without any time-step condi-
tion.The rest of the paper is organized as follows. In section 2, we introduce the mass conservative characteristic finite element
method and show main results. In section 3, we prove the numerical solution is bounded unconditionally and the error estimates
are optimal without any time-step restriction. In section 4, numerical experiments are presented to confirm the theoretical analy-
sis. Throughout the paper, the 𝑘 and 𝜀 denote generic positive constant and a generic small positive constant respectively, which
may take different values at different occurrences.

In the rest of the paper, we need the following regularity hypotheses (H) on system (1)

(𝐻)

⎧

⎪

⎨

⎪

⎩

𝑢 ∈ 𝐿∞(𝐽 ;𝐻2) ∩𝑊 1
2 (𝐽 ;𝐻

2) ∩𝑊 1
∞(𝐽 ;𝐿

∞),
𝜙 ∈ 𝐿∞(𝐽 ;𝐻3),
𝑒, 𝑝 ∈ 𝐿∞(𝐽 ;𝐻2) ∩𝑊 1

2 (𝐽 ;𝐻
2) ∩𝑊 2

2 (𝐽 ;𝐿
2).

2 FULL DISCRETE SCHEME OF MASS CONSERVATIVE FEM

Let ℎ be a shape regular finite element partition of Ω and the diameters of the elements are bounded by ℎ. Define𝑀ℎ ⊂ 𝐻1(Ω)
be the piecewise linear Lagrange finite element space, 𝑉ℎ ⊂ 𝐻(div; (Ω)) and 𝑊ℎ ⊂ 𝐿2(Ω) be the lowest Raviart-Thomas
spaces17. Partition the time interval 𝐽 = [0, 𝑇 ] into 0 = 𝑡0 < 𝑡1 <⋯ < 𝑡𝑁 = 𝑇 with 𝑡𝑛 = 𝑛Δ𝑡 conveniently.

Taking 𝑒0ℎ = 𝐼ℎ𝑒0, 𝑝0ℎ = 𝐼ℎ𝑝0 as the Lagrangian interpolation approximation, the full-discrete mass conservative characteristic
FEM of (1) is defined as follows: For 𝑛 = 1, ..., 𝑁 , find (𝑢𝑛ℎ, 𝜙

𝑛
ℎ, 𝑒

𝑛
ℎ, 𝑝

𝑛
ℎ) ∈ 𝑉ℎ ×𝑊ℎ ×𝑀ℎ ×𝑀ℎ, such that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝑎) (𝑢𝑛ℎ, 𝑣ℎ) − (𝜙𝑛ℎ,∇ ⋅ 𝑣ℎ) = 0,
(𝑏) (∇ ⋅ (𝛼𝑢𝑛ℎ), 𝑤ℎ) = 𝑞(𝑓 𝑛 + 𝑝𝑛ℎ − 𝑒

𝑛
ℎ, 𝑤ℎ),

(𝑐) (
𝑒𝑛ℎ − 𝑒

𝑛−1
ℎ ◦𝜒𝑛𝑒ℎ𝛿

𝑛
𝑒ℎ

Δ𝑡
, 𝜓ℎ) + (𝐷𝑒∇𝑒𝑛ℎ,∇𝜓ℎ) = (−𝑅(𝑒𝑛−1ℎ , 𝑝𝑛−1ℎ ), 𝜓ℎ),

(𝑑) (
𝑝𝑛ℎ − 𝑝

𝑛−1
ℎ ◦𝜒𝑛𝑝ℎ𝛿

𝑛
𝑝ℎ

Δ𝑡
, 𝜓ℎ) + (𝐷𝑝∇𝑝𝑛ℎ,∇𝜓ℎ) = (−𝑅(𝑒𝑛−1ℎ , 𝑝𝑛−1ℎ ), 𝜓ℎ),

(3)

for all 𝑣ℎ ∈ 𝑉ℎ, 𝑤ℎ ∈ 𝑊ℎ, 𝜓ℎ ∈𝑀ℎ, where

𝜒𝑛𝑒ℎ = 𝑥 + 𝜇𝑒(𝑥)𝑢𝑛ℎΔ𝑡, 𝜒𝑛𝑝ℎ = 𝑥 − 𝜇𝑝(𝑥)𝑢𝑛ℎΔ𝑡, 𝛿
𝑛
𝑖ℎ
= det(𝜕𝜒𝑛𝑖ℎ∕𝜕𝑥), 𝑖 = 𝑒, 𝑝.

We show the mass balance of discrete scheme (3) in the following lemma12.

Lemma 1. (Mass balance) Suppose that {𝑒𝑛ℎ}
𝑁
𝑛=1 and {𝑝𝑛ℎ}

𝑁
𝑛=1 is the solution of (3), then it holds for 𝑛 = 1⋯𝑁

∫
Ω

𝑒𝑛ℎ𝑑𝑥 = ∫
Ω

𝑒𝑛−1ℎ 𝑑𝑥 + Δ𝑡∫
Ω

−𝑅(𝑒𝑛−1ℎ , 𝑝𝑛−1ℎ )𝑑𝑥,

∫
Ω

𝑝𝑛ℎ𝑑𝑥 = ∫
Ω

𝑝𝑛−1ℎ 𝑑𝑥 + Δ𝑡∫
Ω

−𝑅(𝑒𝑛−1ℎ , 𝑝𝑛−1ℎ )𝑑𝑥.

Now we present our main results and the proof will be given in the next section.
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Theorem 1. Suppose that the model (1) has a unique solution (𝑢, 𝜙, 𝑒, 𝑝) satisfying the regularity condition (H), then there exist
𝜏0 > 0 and ℎ0 > 0 such that when Δ𝑡 < 𝜏0, ℎ < ℎ0, the full discrete system (3) admits a unique solution (𝑢𝑛ℎ, 𝜙

𝑛
ℎ, 𝑒

𝑛
ℎ, 𝑝

𝑛
ℎ) ∈

𝑉ℎ ×𝑊ℎ ×𝑀ℎ ×𝑀ℎ, satisfying

max
1≤𝑛≤𝑁

‖𝑢𝑛ℎ − 𝑢
𝑛
‖ + max

1≤𝑛≤𝑁
‖𝜙𝑛ℎ − 𝜙

𝑛
‖ ≤ 𝑘(Δ𝑡 + ℎ),

max
1≤𝑛≤𝑁

‖𝑒𝑛ℎ − 𝑒
𝑛
‖ + max

1≤𝑛≤𝑁
‖𝑝𝑛ℎ − 𝑝

𝑛
‖ ≤ 𝑘(Δ𝑡 + ℎ2).

(4)

3 UNCONDITIONAL STABILITY AND OPTIMAL ERROR ANALYSIS

To prove the unconditional stability and optimal error estimate of full discrete scheme (3), we need introduce a conservative
characteristic time-discrete system as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑈 𝑛 = −∇Φ𝑛,
∇ ⋅ (𝛼𝑈 𝑛) = 𝑞(𝑓 𝑛 + 𝑃 𝑛−1 − 𝐸𝑛−1),
𝐸𝑛 − 𝐸𝑛−1◦𝜒𝑛𝐸𝛿

𝑛
𝐸

Δ𝑡
− ∇ ⋅ (𝐷𝑒∇𝐸𝑛) = −𝑅(𝐸𝑛−1, 𝑃 𝑛−1),

𝑃 𝑛 − 𝑃 𝑛−1◦𝜒𝑛𝑃 𝛿
𝑛
𝑃

Δ𝑡
− ∇ ⋅ (𝐷𝑝∇𝑃 𝑛) = −𝑅(𝐸𝑛−1, 𝑃 𝑛−1),

(5)

with initial condition
𝐸0(𝑥) = 𝑒0(𝑥), 𝑃 0(𝑥) = 𝑝0(𝑥), (6)

where 𝜒𝑛𝐸 = 𝑥 + 𝜇𝑒(𝑥)𝑈 𝑛Δ𝑡, 𝜒𝑛𝑃 = 𝑥 − 𝜇𝑝(𝑥)𝑈 𝑛Δ𝑡, and 𝛿𝑛𝑖 = det(𝜕𝜒𝑛𝑖 ∕𝜕𝑥), 𝑖 = 𝐸, 𝑃 .
Set 𝑟𝑛

𝑢
= 𝑢𝑛 − 𝑈 𝑛, 𝑟𝑛𝜙 = 𝜙𝑛 − Φ𝑛, 𝑟𝑛𝑒 = 𝑒𝑛 − 𝐸𝑛, 𝑟𝑛𝑝 = 𝑝𝑛 − 𝑃 𝑛. Denoting 𝑑𝑡 ∶ 𝑑𝑡𝑓 𝑛 = (𝑓 𝑛 − 𝑓 𝑛−1)∕Δ𝑡, we will prove the

following useful theorem.

Theorem 2. Under the regularity condition (H), the time-discrete system (5) exists a unique solution (𝑈 𝑛,Φ𝑛, 𝐸𝑛, 𝑃 𝑛), 𝑛 =
1, ..., 𝑁 , which satisfies

‖𝑈 𝑛
‖2 + ‖Φ𝑛

‖3 + ‖𝐸𝑛
‖2 + ‖𝑃 𝑛

‖2 ≤ 𝑘, (7)
‖𝑟𝑛𝑢‖1 + ‖𝑟𝑛𝜙‖2 + ‖𝑟𝑛𝑒‖1 + ‖𝑟𝑛𝑝‖1 ≤ 𝑘Δ𝑡. (8)

Proof. From the semiconductor system (1) and the conservative characteristic time-discrete system (5), we can observe that the
error (𝑟𝑛

𝑢
, 𝑟𝑛𝜙, 𝑟

𝑛
𝑒 , 𝑟

𝑛
𝑝) satisfies the following equations

∇ ⋅ 𝑟𝑛𝑢 = ∇ ⋅ (−∇𝑟𝑛𝜙) = 𝑞∕𝛼(𝑝𝑛 − 𝑃 𝑛−1 − 𝑒𝑛 + 𝐸𝑛−1), (9)

𝑑𝑡𝑟
𝑛
𝑒 − ∇ ⋅ (𝐷𝑒∇𝑟𝑛𝑒)

=
𝑒𝑛−1◦𝜒𝑛𝑒 𝛿

𝑛
𝑒 − 𝑒

𝑛−1 + 𝐸𝑛−1 − 𝐸𝑛−1◦𝜒𝑛𝐸𝛿
𝑛
𝐸

Δ𝑡
− 𝑅𝑛𝑡𝑒 − 𝑅(𝑒

𝑛, 𝑝𝑛) + 𝑅(𝐸𝑛−1, 𝑃 𝑛−1),
(10)

𝑑𝑡𝑟
𝑛
𝑝 − ∇ ⋅ (𝐷𝑝∇𝑟𝑛𝑝)

=
𝑝𝑛−1◦𝜒𝑛𝑝 𝛿

𝑛
𝑝 − 𝑝

𝑛−1 + 𝑃 𝑛−1 − 𝑃 𝑛−1◦𝜒𝑛𝑃 𝛿
𝑛
𝑃

Δ𝑡
− 𝑅𝑛𝑡𝑝 − 𝑅(𝑒

𝑛, 𝑝𝑛) + 𝑅(𝐸𝑛−1, 𝑃 𝑛−1),
(11)

where 𝜒𝑛𝑒 = 𝑥 + 𝜇𝑒(𝑥)𝑢𝑛Δ𝑡, 𝜒𝑛𝑝 = 𝑥 − 𝜇𝑝(𝑥)𝑢𝑛Δ𝑡, 𝛿𝑛𝑖 = det(𝜕𝜒𝑛𝑖 ∕𝜕𝑥), (𝑖 = 𝑒, 𝑝), and

𝑅𝑛𝑡𝑒 =
𝜕𝑒
𝜕𝑡

− ∇ ⋅ (𝜇𝑒(𝑥)𝑒𝑢) −
𝑒𝑛 − 𝑒𝑛−1◦𝜒𝑛𝑒 𝛿

𝑛
𝑒

Δ𝑡
,

𝑅𝑛𝑡𝑝 =
𝜕𝑝
𝜕𝑡

+ ∇ ⋅ (𝜇𝑝(𝑥)𝑝𝑢) −
𝑝𝑛 − 𝑝𝑛−1◦𝜒𝑛𝑝 𝛿

𝑛
𝑝

Δ𝑡
.

It is easy to see11
𝑁
∑

𝑛=1
‖𝑅𝑛𝑡𝑒‖

2Δ𝑡 ≤ 𝑘Δ𝑡2,
𝑁
∑

𝑛=1
‖𝑅𝑛𝑡𝑝‖

2Δ𝑡 ≤ 𝑘Δ𝑡2. (12)

Here we need to prove following estimate
𝑚
∑

𝑛=0
‖𝑟𝑛𝑒‖

2
2Δ𝑡 ≤ 𝑘Δ𝑡2,

𝑚
∑

𝑛=0
‖𝑟𝑛𝑝‖

2
2Δ𝑡 ≤ 𝑘Δ𝑡2, (13)
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by mathematical induction for 𝑚 = 0, 1..., 𝑁 .
From initial condition (6), the above inequality holds for 𝑚 = 0. We assume (13) holds until 𝑚 = 𝑁 − 1, which implies that

‖𝐸𝑛
‖2 + ‖𝑃 𝑛

‖2 ≤ 𝑘, 𝑛 = 0, 1..., 𝑁 − 1. (14)
Applying the 𝐻3 estimates of elliptic equation18 to (5), we can obtain

‖Φ𝑛
‖3 + ‖𝑈 𝑛

‖2 ≤ 𝑘, 𝑛 = 1, 2, ...𝑁. (15)
By (9) we have

‖𝑟𝑛𝑢‖1 + ‖𝑟𝑛𝜙‖2 ≤ 𝑘(‖𝑟𝑛−1𝑒 ‖ + ‖𝑟𝑛−1𝑝 ‖ + ‖𝑝𝑛 − 𝑝𝑛−1‖ + ‖𝑒𝑛 − 𝑒𝑛−1‖). (16)

To prove (13) for 𝑚 = 𝑁 , we multiply (10) by 𝑟𝑛𝑒 to get
(𝑑𝑡𝑟𝑛𝑒 , 𝑟

𝑛
𝑒) + (𝐷𝑒∇𝑟𝑛𝑒 ,∇𝑟

𝑛
𝑒)

=(
𝑒𝑛−1◦𝜒𝑛𝑒 𝛿

𝑛
𝑒 − 𝑒

𝑛−1 + 𝐸𝑛−1 − 𝐸𝑛−1◦𝜒𝑛𝐸𝛿
𝑛
𝐸

Δ𝑡
, 𝑟𝑛𝑒)

− (𝑅𝑛𝑡𝑒, 𝑟
𝑛
𝑒) + (𝑅(𝐸𝑛−1, 𝑃 𝑛−1) − 𝑅(𝑒𝑛, 𝑝𝑛), 𝑟𝑛𝑒)

≤𝑘(‖𝑟𝑛𝑢‖
2 + ‖𝑟𝑛𝑒‖

2 + ‖𝑟𝑛−1𝑒 ‖

2 + ‖𝑟𝑛−1𝑝 ‖

2 + ‖𝑅𝑛𝑡𝑒‖
2 + Δ𝑡2) + 𝜀‖∇𝑟𝑛𝑒‖

2,
where the last inequality can be obtained by the same technique as19.
Combing with (13) and (16), we multiply above inequality and sum over 1 ≤ 𝑛 ≤ 𝑁 to obtain

1
2
(𝑟𝑁𝑒 , 𝑟

𝑁
𝑒 ) +

𝑁
∑

𝑛=1
(𝐷𝑒∇𝑟𝑛𝑒 ,∇𝑟

𝑛
𝑒)Δ𝑡 ≤ 𝑘

𝑁
∑

𝑛=1
‖𝑟𝑛𝑒‖

2Δ𝑡 + 𝜀
𝑁
∑

𝑛=1
‖∇𝑟𝑛𝑒‖

2Δ𝑡 + 𝑘Δ𝑡2.

An application of the discrete Gronwall’s inequality yields that

max
1≤𝑛≤𝑁

‖𝑟𝑛𝑒‖
2 +

𝑁
∑

𝑛=1
‖∇𝑟𝑛𝑒‖

2Δ𝑡 ≤ 𝑘Δ𝑡2, (17)

To obtain the 𝐻1 estimate of 𝑟𝑛𝑒 , Multiplying (10) by 𝑑𝑡𝑟𝑛𝑒Δ𝑡 and summing over 1 ≤ 𝑛 ≤ 𝑁 , we have
𝑁
∑

𝑛=1
(𝑑𝑡𝑟𝑛𝑒 , 𝑑𝑡𝑟

𝑛
𝑒)Δ𝑡 +

1
2
(𝐷𝑒∇𝑟𝑁𝑒 ,∇𝑟

𝑁
𝑒 )

≤
𝑁
∑

𝑛=1
(𝑒𝑛−1◦𝜒𝑛𝑒 𝛿

𝑛
𝑒 − 𝑒

𝑛−1 + 𝐸𝑛−1 − 𝐸𝑛−1◦𝜒𝑛𝐸𝛿
𝑛
𝐸 , 𝑑𝑡𝑟

𝑛
𝑒)

−
𝑁
∑

𝑛=1
(𝑅𝑛𝑡𝑒, 𝑑𝑡𝑟

𝑛
𝑒)Δ𝑡 +

𝑁
∑

𝑛=1
(𝑅(𝐸𝑛−1, 𝑃 𝑛−1) − 𝑅(𝑒𝑛, 𝑝𝑛), 𝑑𝑡𝑟𝑛𝑒)Δ𝑡

≤𝜀
𝑁
∑

𝑛=1
‖𝑑𝑡𝑟

𝑛
𝑒‖

2Δ𝑡 + 𝜀‖∇𝑟𝑁𝑒 ‖
2 + 𝑘Δ𝑡2.

=𝐼1 + 𝐼2 + 𝐼3.
By (12) and (17) it is easy to see that

𝐼2 + 𝐼3 ≤ 𝜀
𝑁
∑

𝑛=1
‖𝑑𝑡𝑟

𝑛
𝑒‖

2Δ𝑡 + 𝑘Δ𝑡2.

For 𝐼1,

𝐼1 =
𝑁
∑

𝑛=1
(𝑟𝑛−1𝑒 ◦𝜒𝑛𝑒 𝛿

𝑛
𝑒 − 𝑟

𝑛−1
𝑒 , 𝑑𝑡𝑟

𝑛
𝑒) +

𝑁
∑

𝑛=1
(𝐸𝑛−1◦𝜒𝑛𝑒 𝛿

𝑛
𝑒 − 𝐸

𝑛−1◦𝜒𝑛𝐸𝛿
𝑛
𝐸 , 𝑑𝑡𝑟

𝑛
𝑒) = 𝐼11 + 𝐼12.

Where

𝐼11 =
𝑁
∑

𝑛=1
(
𝑟𝑛−1𝑒 − 𝑟𝑛−1𝑒 ◦𝜒𝑛𝑒 𝛿

𝑛
𝑒

Δ𝑡
, 𝑟𝑛𝑒) −

𝑁
∑

𝑛=1
(
𝑟𝑛−1𝑒 − 𝑟𝑛−1𝑒 ◦𝜒𝑛𝑒 𝛿

𝑛
𝑒

Δ𝑡
, 𝑟𝑛−1𝑒 )

=
𝑁
∑

𝑛=2
(𝑑𝑡(𝑟𝑛−1𝑒 ◦𝜒𝑛𝑒 𝛿

𝑛
𝑒 − 𝑟

𝑛−1
𝑒 ), 𝑟𝑛−1𝑒 ) + (

𝑟𝑁−1
𝑒 − 𝑟𝑁−1

𝑒 ◦𝜒𝑁𝑒 𝛿
𝑁
𝑒

Δ𝑡
, 𝑟𝑁𝑒 )

≤𝑘(
𝑁
∑

𝑛=1
‖∇𝑟𝑛−1𝑒 ‖

2Δ𝑡 +
𝑁
∑

𝑛=1
‖𝑟𝑛−1𝑒 ‖

2Δ𝑡 + ‖𝑟𝑁−1
𝑒 ‖

2) + 𝜀‖∇𝑟𝑁𝑒 ‖
2 + 𝜀

𝑁
∑

𝑛=1
‖𝑑𝑡𝑟

𝑛−1
𝑒 ‖

2Δ𝑡,
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and

𝐼12 =
𝑁
∑

𝑛=1
(𝐸𝑛−1◦𝜒𝑛𝑒 (𝛿

𝑛
𝑒 − 𝛿

𝑛
𝐸), 𝑑𝑡𝑟

𝑛
𝑒) +

𝑁
∑

𝑛=1
((𝐸𝑛−1◦𝜒𝑛𝑒 − 𝐸

𝑛−1◦𝜒𝑛𝐸)𝛿
𝑛
𝐸 , 𝑑𝑡𝑟

𝑛
𝑒)

≤𝑘
𝑁
∑

𝑛=1
‖𝑟𝑛𝑢‖

2
1Δ𝑡 + 𝜀

𝑁
∑

𝑛=1
‖𝑑𝑡𝑟

𝑛
𝑒‖

2Δ𝑡 + 𝑘Δ𝑡2.

Combing with (16), we obtain that

𝐼1 ≤ 𝜀
𝑁
∑

𝑛=1
‖𝑑𝑡𝑟

𝑛
𝑒‖

2Δ𝑡 + 𝜀‖∇𝑟𝑁𝑒 ‖
2 + 𝑘Δ𝑡2.

So we can get the following estimate

max
1≤𝑛≤𝑁

‖∇𝑟𝑛𝑒‖
2 +

𝑁
∑

𝑛=1
‖𝑑𝑡𝑟

𝑛
𝑒‖

2Δ𝑡 ≤ 𝑘Δ𝑡2. (18)

With similar process to (11), we can get
max
1≤𝑛≤𝑁

‖𝑟𝑛𝑝‖
2 + max

1≤𝑛≤𝑁
‖∇𝑟𝑛𝑝‖

2 ≤ 𝑘Δ𝑡2, (19)

then (8) follows from (16), (17) and (19). Applying 𝐻2 estimates to (10) yields
‖Δ𝑟𝑛𝑒‖ ≤ 𝑘(‖𝑑𝑡𝑟𝑛𝑒‖ + ‖𝑟𝑛𝑒‖1 + ‖𝑟𝑛𝑢‖1 + ‖𝑅𝑛𝑡𝑒‖ + ‖𝑟𝑛−1𝑒 ‖ + ‖𝑟𝑛−1𝑝 ‖ + Δ𝑡),

which together with (12) and (18) implies
𝑁
∑

𝑛=1
‖Δ𝑟𝑛𝑒‖

2Δ𝑡 ≤ 𝑘Δ𝑡2.

It means that (13) holds for 𝑚 = 𝑁 . The proof of Theorem 2 is complete.

Next we introduce mixed projection (Πℎ𝑈,ΠℎΦ) ∈ 𝑉ℎ ×𝑊ℎ as follows

(𝑈 𝑛 − Πℎ𝑈
𝑛, 𝑣ℎ) = (Φ𝑛 − ΠℎΦ𝑛,∇ ⋅ 𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ,

(∇ ⋅ Πℎ𝑈
𝑛, 𝑤ℎ) = (𝑞∕𝛼(𝑓 𝑛 + 𝑃 𝑛−1 − 𝐸𝑛−1), 𝑤ℎ), ∀𝑤ℎ ∈ 𝑆ℎ,

and the elliptic projection operators 𝑄ℎ ∶ 𝐻1 →𝑀ℎ to satisfy

(𝐷𝑒∇𝐸𝑛,∇𝜑ℎ) = (𝐷𝑒∇𝑄ℎ𝐸
𝑛,∇𝜑ℎ), ∀𝜑ℎ ∈𝑀ℎ,

(𝐷𝑝∇𝑃 𝑛,∇𝜑ℎ) = (𝐷𝑝∇𝑄ℎ𝑃
𝑛,∇𝜑ℎ), ∀𝜑ℎ ∈𝑀ℎ.

Based on the regularity (7), the following estimates hold16,17

‖𝑈 𝑛 − Πℎ𝑈
𝑛
‖ + ‖∇ ⋅ (𝑈 𝑛 − Πℎ𝑈

𝑛)‖ + ‖Φ𝑛 − ΠℎΦ𝑛
‖ ≤ 𝑘ℎ(‖𝑈 𝑛

‖2 + ‖Φ𝑛
‖1),

‖𝑆𝑛 −𝑄ℎ𝑆
𝑛
‖ + ℎ‖∇(𝑆𝑛 −𝑄ℎ𝑆

𝑛)‖ ≤ 𝑘ℎ2, 𝑆 = 𝐸, 𝑃 ,
𝑁
∑

𝑛=1
‖𝑑𝑡(𝑆𝑛 −𝑄ℎ𝑆

𝑛)‖2Δ𝑡 ≤ 𝑘ℎ4, 𝑆 = 𝐸, 𝑃 .

(20)

Let
𝜃𝑛𝑢 = 𝑢𝑛ℎ − Πℎ𝑈

𝑛, 𝜃𝑛𝜙 = 𝜙𝑛ℎ − ΠℎΦ𝑛, 𝜃𝑛𝑒 = 𝑒𝑛ℎ −𝑄ℎ𝐸
𝑛, 𝜃𝑛𝑝 = 𝑝𝑛ℎ −𝑄ℎ𝑃

𝑛,
𝜁𝑛𝑢 = 𝑈 𝑛 − Πℎ𝑈

𝑛, 𝜁𝑛𝜙 = Φ𝑛 − ΠℎΦ𝑛, 𝜁𝑛𝑒 = 𝐸𝑛 −𝑄ℎ𝐸
𝑛, 𝜁𝑛𝑝 = 𝑃 𝑛 −𝑄ℎ𝑃

𝑛.
The following Theorem shows the boundedness unconditionally of numerical solution for fully-discrete system and error with

the time-discrete system.

Theorem 3. Under the regularity condition (H), there exist 𝜏0 > 0 and ℎ0 > 0 such that when Δ𝑡 < 𝜏0, ℎ < ℎ0,
max
1≤𝑛≤𝑁

‖𝑢𝑛ℎ‖0,∞ + max
1≤𝑛≤𝑁

‖𝑒𝑛ℎ‖0,∞ + max
1≤𝑛≤𝑁

‖𝑝𝑛ℎ‖0,∞ ≤ 𝑘,

‖𝜃𝑛𝑢‖
2 + ‖𝜃𝑛𝜙‖

2 + ‖𝜃𝑛𝑒‖
2 + ‖𝜃𝑛𝑝‖

2 ≤ 𝑘ℎ4.
(21)

Proof. From full-discrete system (3) and time-discrete system (5), we obtain
(𝜃𝑛𝑢 , 𝑣ℎ) − (𝜃𝑛𝜙,∇ ⋅ 𝑣ℎ) = 0, (22)

(∇ ⋅ (𝛼𝜃𝑛𝑢 ), 𝑤ℎ) = (𝑞(𝜃𝑛−1𝑝 − 𝜁𝑛−1𝑝 − 𝜃𝑛−1𝑒 + 𝜁𝑛−1𝑒 ), 𝑤ℎ), (23)
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(𝑑𝑡𝜃𝑛𝑒 , 𝜑ℎ) + (𝐷𝑒(𝑥)∇𝜃𝑛𝑒 ,∇𝜑ℎ)

= 1
Δ𝑡

(𝐸𝑛−1 − 𝐸𝑛−1◦𝜒𝑛𝐸𝛿
𝑛
𝐸 − 𝑒𝑛−1ℎ + 𝑒𝑛−1ℎ ◦𝜒𝑛𝑒ℎ𝛿

𝑛
𝑒ℎ
, 𝜑ℎ)

+ 1
Δ𝑡

(𝜁𝑛𝑒 − 𝜁
𝑛−1
𝑒 ), 𝜑ℎ) + (𝑅(𝐸𝑛−1, 𝑃 𝑛−1) − 𝑅(𝑒𝑛−1ℎ , 𝑝𝑛−1ℎ ), 𝜑ℎ),

(24)

(𝑑𝑡𝜃𝑛𝑝 , 𝜑ℎ) + (𝐷𝑝(𝑥)∇𝜃𝑛𝑝 ,∇𝜑ℎ)

= 1
Δ𝑡

(𝑃 𝑛−1 − 𝑃 𝑛−1◦𝜒𝑛𝑃 𝛿
𝑛
𝑃 − 𝑝𝑛−1ℎ + 𝑝𝑛−1ℎ ◦𝜒𝑛𝑝ℎ𝛿

𝑛
𝑝ℎ
, 𝜑ℎ)

+ 1
Δ𝑡

(𝜁𝑛𝑝 − 𝜁
𝑛−1
𝑝 ), 𝜑ℎ) + (𝑅(𝐸𝑛−1, 𝑃 𝑛−1) − 𝑅(𝑒𝑛−1ℎ , 𝑝𝑛−1ℎ ), 𝜑ℎ).

(25)

Now we prove a primary estimate
‖𝜃𝑛𝑒‖ + ‖𝜃𝑛𝑝‖ ≤ 𝑘ℎ2, 𝑛 = 0, 1, ..., 𝑁, (26)

by mathematical induction. It is easy to see that ‖𝜃0𝑒‖+ ‖𝜃0𝑝‖ ≤ 𝑘ℎ2. We assume that the inequality (26) holds until 𝑛 = 𝑁 −1,
which implies

‖𝑒𝑛ℎ‖0,∞ ≤ ‖𝑄ℎ𝐸
𝑛
‖0,∞ + ‖𝜃𝑛𝑒‖0,∞ ≤ ‖𝑄ℎ𝐸

𝑛
‖0,∞ + 𝑘ℎ−𝑑∕2‖𝜃𝑛𝑒‖ ≤ 𝑘, (27)

and ‖𝑝𝑛ℎ‖0,∞ ≤ 𝑘. Using Inf-Sup condition and (22), we can obtain the estimate of 𝜃𝑛
𝑢

and 𝜃𝑛𝜙,
‖𝜃𝑛𝑢‖ + ‖𝜃𝑛𝜙‖ ≤ 𝑘(‖𝜃𝑛−1𝑝 ‖ + ‖𝜁𝑛−1𝑝 ‖ + ‖𝜃𝑛−1𝑒 ‖ + ‖𝜁𝑛−1𝑒 ‖ ≤ 𝑘ℎ2. (28)

By a similar approach as (27), we can prove that
‖𝑢𝑛ℎ‖0,∞ ≤ ‖Πℎ𝑈

𝑛
‖0,∞ + 𝑘ℎ−𝑑∕2ℎ2 ≤ 𝑘, 𝑛 = 1...𝑁. (29)

Now we choose 𝜑ℎ = 𝜃𝑛𝑒 in (24), and denote the resulting terms by 𝐿1, 𝐿2, 𝐿3.
By (20) and (26), we can see that

𝐿2 + 𝐿3 ≤ 𝑘‖𝑑𝑡𝜁
𝑛
𝑒 ‖

2 + 𝑘‖𝜃𝑛𝑒‖
2 + 𝑘ℎ4, (30)

For 𝐿1

𝐿1 =
1
Δ𝑡

(𝐸𝑛−1 − 𝑒𝑛−1ℎ − (𝐸𝑛−1 − 𝑒𝑛−1ℎ )◦𝜒𝑛𝑒ℎ𝛿
𝑛
𝑒ℎ
, 𝜃𝑛𝑒 )

+ 1
Δ𝑡

(𝐸𝑛−1◦𝜒𝑛𝑒ℎ𝛿
𝑛
𝑒ℎ
− 𝐸𝑛−1◦𝜒𝑛𝐸𝛿

𝑛
𝐸 , 𝜃

𝑛
𝑒 ) = 𝐿11 + 𝐿12,

where
𝐿11 ≤ 𝑘‖𝑒𝑛−1ℎ − 𝐸𝑛−1

‖

2 + 𝜀‖∇𝜃𝑛𝑒‖
2 ≤ 𝑘‖𝜃𝑛−1𝑒 ‖

2 + 𝜀‖∇𝜃𝑛𝑒‖
2 + 𝑘ℎ4.

let 𝜃𝑛𝑒 be the average value of 𝜃𝑛𝑒 on Ω, then we have

𝐿12 =
1
Δ𝑡

(𝐸𝑛−1◦𝜒𝑛𝑒ℎ𝛿
𝑛
𝑒ℎ
− 𝐸𝑛−1◦𝜒𝑛𝐸𝛿

𝑛
𝐸 , 𝜃

𝑛
𝑒 − 𝜃𝑛𝑒 )

=(
𝐸𝑛−1◦𝜒𝑛𝑒ℎ − 𝐸

𝑛−1◦𝜒𝑛𝐸
Δ𝑡

𝛿𝑛𝐸 , 𝜃
𝑛
𝑒 − 𝜃𝑛𝑒 ) + (

𝐸𝑛−1◦𝜒𝑛𝑒ℎ(𝛿
𝑛
𝑒ℎ
− 𝛿𝑛𝐸)

Δ𝑡
, 𝜃𝑛𝑒 − 𝜃𝑛𝑒 )

=𝐿121 + 𝐿122

where
𝐿121 ≤ 𝑘‖𝐸𝑛−1

‖0,∞‖𝑈
𝑛 − 𝑢𝑛ℎ‖‖𝜃

𝑛
𝑒 − 𝜃𝑛𝑒‖ ≤ 𝑘‖𝜃𝑛𝑢‖

2 + 𝑘ℎ4 + 𝜀‖∇𝜃𝑛𝑒‖
2,

and
𝐿122 =(𝐸𝑛−1◦𝜒𝑛𝑒ℎ∇ ⋅ (𝜇𝑒𝑢𝑛ℎ − 𝜇𝑒𝑈

𝑛), 𝜃𝑛𝑒 − 𝜃𝑛𝑒 )

=(𝐸𝑛−1◦𝜒𝑛𝑒ℎ𝜇𝑒∇ ⋅ (𝑢𝑛ℎ − 𝑈
𝑛), 𝜃𝑛𝑒 − 𝜃𝑛𝑒 ) + (𝐸𝑛−1◦𝜒𝑛𝑒ℎ∇𝜇𝑒(𝑢

𝑛
ℎ − 𝑈

𝑛), 𝜃𝑛𝑒 − 𝜃𝑛𝑒 )

≤𝑘ℎ‖∇ ⋅ 𝜁𝑛𝑢 ‖‖∇𝜃
𝑛
𝑐‖ + 𝑘‖𝜃

𝑛
𝑢‖‖∇𝜃

𝑛
𝑐‖ + 𝑘ℎ‖𝜁

𝑛
𝑢 ‖‖∇𝜃

𝑛
𝑐‖

≤𝑘‖𝜃𝑛𝑢‖
2 + 𝑘ℎ4 + 𝜀‖∇𝜃𝑛𝑐‖

2,
Combing above inequality, we obtain

1
2
𝑑𝑡(𝜃𝑛𝑒 , 𝜃

𝑛
𝑒 ) + (𝐷𝑒∇𝜃𝑛𝑒 ,∇𝜃

𝑛
𝑒 ) ≤ 𝑘‖𝜃𝑛𝑒‖

2 + 𝜀‖∇𝜃𝑛𝑒‖
2 + 𝑘‖𝑑𝑡(𝑄ℎ𝐸

𝑛 − 𝐸𝑛)‖2 + 𝑘ℎ4.

Multiplying Δ𝑡 and summing the above estimate over 𝑛, it in turn produces by (20)

‖𝜃𝑁𝑒 ‖

2 +
𝑁
∑

𝑛=1
‖∇𝜃𝑛𝑒‖

2Δ𝑡 ≤ 𝑘
𝑁
∑

𝑛=1
‖𝜃𝑛𝑒‖

2Δ𝑡 + 𝑘ℎ4.
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By Gronwall’s inequality, there exits 𝜏0 > 0 such that when Δ𝑡 < 𝜏0,

max
1≤𝑛≤𝑁

‖𝜃𝑛𝑒‖
2 +

𝑁
∑

𝑛=1
‖∇𝜃𝑛𝑒‖

2Δ𝑡 ≤ 𝑘ℎ4.

Similarly we can get

max
1≤𝑛≤𝑁

‖𝜃𝑛𝑝‖
2 +

𝑁
∑

𝑛=1
‖∇𝜃𝑛𝑝‖

2Δ𝑡 ≤ 𝑘ℎ4.

The induction (26) is closed, thus the proof of Theorem 3 is complete.

With the property (20), it is easy to see the error estimate (4) in Theorem 1 is optimal.

4 NUMERICAL EXPERIMENT

In this section, we present numerical experiments to illustrate theoretical analysis and efficiency of numerical method above.
For simplicity, we select the domain Ω = [0, 1] × [0, 1].
𝑬𝒙𝒂𝒎𝒑𝒍𝒆𝟒.𝟏. We begin with an example to verify theoretical analysis of convergence property. The analytical solution of the

model (1) is known as follows
𝜙(𝑥, 𝑦, 𝑡) = exp(𝑡 + 𝑥) sin(𝑡 + 𝑦), 𝑢(𝑥, 𝑦, 𝑡) = −∇𝜙(𝑥, 𝑦, 𝑡),
𝑒(𝑥, 𝑦, 𝑡) = (−3𝑡2 + 1) sin(2𝜋𝑥) sin(2𝜋𝑦),
𝑝(𝑥, 𝑦, 𝑡) = exp(𝑡) sin(𝜋𝑥) sin(𝜋𝑦).

The error estimates are listed in TABLE 1. We can see that the convergence rates for both electrostatic potential and electric
field intensity are first order, for electron density and hole density are second order convergence rates which are all optimal. The
one order lower approximation to 𝜙, 𝑢 indeed not affect the accuracy of 𝑒, 𝑝.

To show the unconditional stability of full-discrete scheme, we solve the model (1) on gradually refined mesh 1∕ℎ =
10, 20, 30, 40, 50 for each fixed Δ𝑡 = 0.1, 0.05, 0.025. The corresponding numerical results are presented in FIGURE 1 . We
can see that each error converges to a constant as ℎ goes to 0, which implies that the numerical scheme (3) is unconditionally
stability. Those results are all in consistent with the theoretical analysis.

TABLE 1 Error and convergence rate of Example 4.1

mesh ‖𝑢 − 𝑢ℎ‖ rate ‖𝜙 − 𝜙ℎ‖ rate ‖𝑒 − 𝑒ℎ‖ rate ‖𝑝 − 𝑝ℎ‖ rate

5 1.79e-3 – 1.46e-3 – 7.80e-4 – 2.12e-4 –
10 8.84e-4 1.02 7.30e-4 1.00 2.12e-4 1.88 5.42e-5 1.97
20 4.41e-4 1.01 3.65e-4 1.00 5.43e-5 1.97 1.36e-5 1.99
40 2.20e-4 1.00 1.82e-4 1.00 1.37e-5 1.99 3.43e-6 1.99

Next we give some experiments to test the performance of the mass conservative finite element method.
𝑬𝒙𝒂𝒎𝒑𝒍𝒆𝟒.𝟐. In this example we just handle the electron density equations. Set 𝑢 = (1, tan 35◦) and initial density as follows

𝑒0 = 1, (𝑥 − 0.25)2 + (𝑦 − 0.5)2 ≤ 0.04,
𝑒0 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Taking 𝐷𝑒 = 1𝑒−5, 𝜇𝑒 = 1, 𝑅 = 0,Δ𝑡 = 0.01, ℎ = 0.01, the surface and contour plots at different timeare presented in FIGURE
2 and FIGURE 3 . Similar with6, we can see that the solution has no drift-dependent bias, the method can stably keep symmetry
features throughout the whole simulation.
𝑬𝒙𝒂𝒎𝒑𝒍𝒆𝟒.𝟑. We consider the PN junction. Set the doping profile 𝑓 = −0.8 in P-region (0, 0.5) × (0.5, 1), and 𝑓 = 0.8 in

the rest N-region. The boundary condition 𝑒 = 0.9, 𝑝 = 0.1 on {𝑦 = 0}, and 𝑒 = 0.1, 𝑝 = 0.9 on {𝑦 = 1, 𝑥 ≤ 0.25}, and the
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FIGURE 1 Surface plots for Example 4.1

FIGURE 2 Surface plots for Example 4.2

parameters 𝛼 = 0.01, 𝐷𝑒 = 𝐷𝑝 = 𝜇𝑒 = 𝜇𝑝 = 1.Δ𝑡 = 0.001, ℎ = 0.025. Here we neglect the recombination and generation
rate 𝑅(𝑒, 𝑝), in which case steady-state solution can be captured progressively. The density of electron and hole at different time
are shown in FIGURE 4 and FIGURE 5 . These results verify the mass conservative method is efficient compared with the
simulation of finite volume method7 and HDG method9.

5 CONCLUSIONS

We propose the unconditional stability and optimal error estimates of a mass conservative characteristic FEM for semiconductor
device problems. We prove that the numerical electron density and hole density are optimal second order accuracy with no
loss of accuracy for first order approximation electrostatic potential and electric field intensity, while the estimates are obtained
without time-step restriction. Numerical experiment verified the theoretical results and effectiveness of the proposed method.
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FIGURE 3 Contour plots for Example 4.2
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FIGURE 4 Contour plots of numerical electron density 𝑒ℎ for Example 4.3
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