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Abstract

The source term identification of the time-fractional diffusion equation under Robin boundary condition is studied. This problem
is ill-posed. Therefore, we apply Landweber iterative regularization method, Fractional Landweber iterative regularization
method, TSVD method, combining TSVD method and Fractional Landweber iterative regularization method, respectively.
The comparisons of these four methods are given, which can help us select the most effective method. The error estimates
between the regularized approximate solutions and the exact solution are given under the a priori and a posteriori regularization

parameter choice rules. Finally, numerical examples verify the effectiveness of the methods.
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Source term identification of time-fractional diffusion
equation under Robin boundary condition *

Jianxuan Cui, Hao Cheng*
School of Science, Jiangnan University, Jiangsu, Wuxi 214122, P. R. China

Abstract

The source term identification of the time-fractional diffusion equation under Robin
boundary condition is studied. This problem is ill-posed. Therefore, we apply Landweber
iterative regularization method, Fractional Landweber iterative regularization method,
TSVD method, combining TSVD method and Fractional Landweber iterative regulariza-
tion method, respectively. The comparisons of these four methods are given, which can
help us select the most effective method. The error estimates between the regularized ap-
proximate solutions and the exact solution are given under the a prior: and a posterior:
regularization parameter choice rules. Finally, numerical examples verify the effectiveness

of the methods.

Keywords: fractional diffusion equation; Robin boundary condition; source term iden-

tification; iterative regularization; error estimates

1. Introduction

In recent years, time-fractional differential equations have received widespread at-
tention due to the memory properties of fractional derivatives. Time-fractional differ-
ential equations have advantages in describing hereditary diffusions compare to integer-
differential equations. Time-fractional diffusion equation is one of the most important
time-fractional differential equations.

The research on the direct problem of time-fractional diffusion equation has been
investigated extensively, such as extremum principle [1, 2, 3], finite-difference method
[4, 5, 6, 7] and finite element method [8, 9, 10, 11] , etc. In addition, the inverse problem
of time-fractional diffusion equation has attracted more and more researchers, the source

term identification is a branch of the inverse problem. Many scholars have used different
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methods to study the source term identification: Wei and Wang [12] proposed a modi-
fied quasi-boundary value regularization method and obtained two kinds of convergence
rates by using an a priori and an a posteriori regularization parameter choice rule, re-
spectively. Zhang and Xu [13] used analytic continuation and Laplace transform to prove
the uniqueness of the source term identification. Yang [14] used the Landweber iterative
regularization method to identify the source term. Xiong [15] investigated an inverse
problem which is highly ill-posed in the two-dimensional setting and constructed some
new regularization methods for solving the inverse source problem. Tuan [16] proposed
the Tikhonov regularization method to reconstruct the source term and obtained error
estimates between the exact solution and its regularized solution. Kirane [17] showed the
existence and uniqueness of the solution of the inverse problem by using the properties of
the biorthogonal system of functions.

However, most of the above researchers consider the source term identification under

Dirichlet or Neumann boundary conditions. Robin boundary condition

u(x,t) + a% = p(z,t),x € 0D

is a more general boundary condition. In fact, when damping coefficient ¢ = 0, the above
function is Dirichlet boundary condition; when damping coefficient o = oo, the limit form
of the above function is Neumann boundary condition. Therefore, the study of Robin
boundary condition is more complex and more meaningful, compared with Dirichlet and
Neumann boundary conditions. In this paper, we consider the following time-fractional

diffusion equation under Robin boundary condition

( 2

Deu(a,t) = % Y f(z) + Z(xt),  0<a<Lt>0,

u(z,0) = ¢(x), 0<z<IL, (1.1)
w(0,1) + ayu,(0,t) = p(t), 0<t<T,
\u(L,t) + Prug (L, t) = ua(t), 0<t<T,

where «; and (3 are constants, D{u(z,t) is the Caputo fractional derivative of order
a(0 < a < 1), which is defined by

o B 1 "ou(z,s) ds
Difu(z,t) = I'l—«) /0 ds  (t—s)™

and ¢(x), u1(t) and ps(t) of equation (1.1) need to satisfy the compatibility condition

$(0) + a1uz(0,0) = 11 (0),
u(L,0) + Brug(L,0) = us(0).



We want to investigate is to identify the source term f(x) from additional final value data
u(z,T) =g(z), 0<xz<L. (1.2)

Since the measurement is noise-contaminated inevitably, we assume ¢°(x) be the noisy

measurement of g(x) satisfying

Ig(x) = g°(2) <6, (1.3)

where || - || is the L? norm and ¢ > 0 is a noise level.

It is well known that the source term identification is ill-posed, so regularization
method is required to recover the continuous dependence of the solution. Iterative reg-
ularization method [18, 19] is an effective regularization method. Yang [20] investigated
an inverse source problem by using Landweber iterative regularization method. Based on
Landweber iterative regularization method, Klann [21] proposed Fractional Landweber it-
erative regularization method, which has advantages in solving nonlinear problems. Mean-
while, TSVD method is simple in construction but an effective regularization method, its
advantage is that it can filter out small singular values. In this paper, we put the above
three methods together and compare their regularization effects. In addition, we com-
bine TSVD method and Fractional Landweber iterative regularization method, trying to
integrate the strengths of two methods. For the above four methods, we have obtained
Holder type error estimates under the a priori and a posteriori parameter choice rules.

The structure of this paper is as follows. In Section 2, we introduce the direct problem
solving process. The ill-posedness of the source term identification and the conditional
stability are analyzed in Section 3. In Section 4, we introduce four regularization methods
and provide the error estimates under two parameter choice rules. Numerical examples
to illustrate the effectiveness of our methods are in Section 5. Finally, we give a brief

conclusion in Section 6.

2. Direct problem solving process

We make the following transformation of (1.1)
u(z,t) = Wz, t)+ V(x,t),

where

_ () —ppt) (LA Bm(t) — aapa(t)
a;—f1— L ay— B — L ’

V(z,t)



and the function W (z, t) is the solution of the following problem with homogeneous bound-

ary conditions

(Dﬂw@w—§¥%99+ﬁ@@, 0<z<Lt>0,
JW(z.0) = o(x). 0<z<L,
W(0,t) + oW (0,1) =0, 0<t<T,
| W(L, ) + BiWa(L, 1) =0, 0<t<T,

with

F(z,t) =r(t)f(z) + Z(x,t) — DIV (z, 1),
b(z) = ¢(x) — V(x,0),

then we obtain the following Sturm-Liouville eigenvalue problem by method of separating

variables

X"(x) 4+ AX(z) =0, 0<z<L, (2.1)
X(0) + anX'(0)=0,  X(L)+ BX'(L)=0, (2.2)

where ) is a constant to be determined. The positive and negative restrictions of the Robin
coefficient oy and (; do not exist in form, but do exist in physics. The reason for these
restrictions is: in mechanical problems, the elastic restoring force is always related to the
shape variation; in thermal problems, when the system exchanges heat with outside, the
heat always flows from high temperature to low temperature[22]. What’s more, because
of the arbitrariness of the Robin coefficient oy and (;, the Sturm-Liouville eigenvalue
problem (2.1)-(2.2) may not have solutions[23].

Inspired by Geng [24], we divide Robin boundary condition into the following four
special cases.

Case 1: oy = 51 = 1. Then the eigenvalues A, and eigenfunctions X,,(x) are

Ao = —1, Xo(z) =¢€¢"",

An = 2, Xn(x) = — i, €OS fpx + Sin pi, 2, n=12---

Considering the eigenfunctions

)?n(x) . \/b_o



where

L ) L ) 62L -1
bo = Xo(x)dx—/ e_xdx:%T>
0 0
L L 2 72
L
b, = X2(z)dr = / (= ftn COS i + sin pp,x)? d = %
0 0

One can easily check that )N(n(x) are standard orthogonal function systems in [0, L]. Using

this basis, we rewrite the analytical solution of (1.1) as

u(z,t) = Z [/0 T B a(= AT Fo(t — 7)dT + dp Bt (—Ant®) | X ()
_ ) =) (L Dm(t) — () (2.3)

L L ’
L~ ~

where E, . (-) and E,1(-) are Mittag-Leffler functions [25], F,(t) = Jy F(x, )X, (z) dz,
o0 = [} 0(a) X, (2) da.

Case 2: oy = 51 = —1. Then the eigenvalues ), and eigenfunctions X, (z) are

Ap = 12, Xn(x) = iy €OS iy + sin ppx, n=12---,

nm

L
Considering the eigenfunctions

where p,, =

2
N 62L_lXo(x), n =0,
Xn(z) := o7
—Xn ) - 1727”' )
(nm)? 4 L? (z) "

then we rewrite the analytical solution of (1.1) as

u(w, ) =>» [ /0 T By o (A7) Fo(t — 7)d7 + ¢ Bt (—At®) | X, ()
_ () — ) (L= D) + () (2.4)

L L
Case 3: oy =1 and f; = —1 (a; # L+ (). Then the eigenvalues \,, and eigenfunctions
X, (z) are

Mo =—pg,  Xo(x) = —pocosh pox + sinh poz,

An = 2, Xn(x) = — i, €OS fpx + Sin pi, n=12---,

where i is the solution of equation tanh ul = 1—3%, 1, satisfies the equation tan ul =

2p
1—p

PR



Considering the eigenfunctions

1
Kuw) =V

where

by — ,u_% <Sinh 2p0L N L) _ 2pgcosh2u9L — sinh 20 L N 1-L

2 240 4o 2
2 (sin 2u, L 24, cos2u, L —sin2u, L L —1

b= (S0 2L 20 cos 2y L | L=1
2 24, At 2

then we can rewrite the analytical solution of (1.1) as

o T . -
u(z,t) = Z [/ T B a(— AT Ey(t — 7)AT + ¢pEo i (—At®) | X (2)
n=0 0
) = o) (L= D (t) - ml)
+ 51 % 5T . (2.5)
Case 4: oy = —1 and 51 = 1. Then the eigenvalues )\, and eigenfunctions X, (x) are

Ao = 112, Xn () = iy cOS pin + sin p, n=12---,

where p, satisfies the equation tan pul = M—E_Ll

Considering the eigenfunctions

where

bn

2 /sin 2u,, L 20y, cos 2, L+ sin2p, L. L +1
_ o (sin2ul N 2 cosp pl L+l
2 20, 4y, 2

then we can rewrite the analytical solution of (1.1) as

u(a,t) =Y [ /0 T By o (A7) Fo(t — 7)d7 + ¢ Bt (—At®) | X, ()
_ ) =) (L Dp(t) + pa(t) (2.6)

2+ L 2+ L
3. Source term identification and conditional stability

In this section, we analyze the ill-posedness of the source term identification and prove
the conditional stability results. In the rest of this paper, we take Case 1 as an example,

that is, the solution wu(z,t) of Equation (1.1) is given by (2.3). The derivation process of

6



other cases is similar, so we won’t repeat it here. From the final value data u(z,T") = g(x),
denote g(z) = g(z) — Ziozo[fOT TV By o (= A7) Z, (T — 7)dT + gnEa,l(—Anta)])?n(x) —
V(z,T). In order to reconstruct the source term f(x), we only need to solve the following

integral equation B
(£D)@) = [ ka0 = 5o)
0
where

= Z an)?n@))?n(f)»

here o,, = fOT TV By o(=A7)r(T — 7)d7. Let K* be the conjugate operator of operator
K, it is easy to calculate that K = K*, so K is a self-adjoint operator with singular value

on. Then we obtain the source term f(z)

In order to facilitate the proof of the subsequent theorem, we give the following lemmas.
Lemma 3.1 [26]: Let r(t) € C[0,T] satisfies r(t) > 0, ¢t € [0,T], for any A, satisfying
An > A1 > 0and 0 < a < 1, there exist positive constants C; and Cy which depend on «,
T and Ay, such that

(3.1)

S |Qz

T
C
— <o, = / Ta_lEaa(—)\nTo‘)r(T —T1)dr < —2,n =1,2,---
An 0 ' An

Lemma 3.2 21): Let 0 < 8 < m >0,y €[0,1], p € [0,1], when v > u/2,

IIKHQ’

I

sup |(1— (1= Bo2)™) o] < Bmb.

0<on So'l

Lemma 3.3 [20]: As constants 5> 0,p >0, s>0and 0 < ﬁf—; < 1, we have

02 _P _D
<1—582) s 2 < (_5212) (m+1)"1,

02 _p_ +2 __pt2
(1_582) T (5502) "

Lemma 3.4 [27]: For 0 < v < 1 and k > 1, define pp(7) = S50 (1 — 7)? and r(v) =
L= pi(y) = (1 =7)*. Then,

NS

pe(V)y" < ETR0< p <,

re(Y)Y" < 0u(k+1)7"°



where

According to Lemma 3.1, we notice that

1 1
— =— — — 00,1 — 00.
On fo TV E o(= A7) (T — 7)dT 02

It means that the small disturbance for the data g(z) will lead to a huge change in the
source term f(z). Therefore, the recovery of the source term f(z) from the measured
data ¢°(z) is an ill-posed problem.

Theorem 3.1: Let source term f(x) satisfies the following a priori bound

I £(a) = (Z () 1 |2) < 52)

n=0

where p and E are both positive constants, then we obtain

L\#? > o,
I f(2) [I< (a) B || §(z) |75 .

Proof: Applying the Holder inequality, we obtain

T TR N
| f(z) || Z—g_z = T, g
=0 Tn n= 005“
(o) ,g»z P2 P2 [e%s} p p% o0 p’ﬁ
< (2 Za ) (z) (z( ) (5)7)" (%)
0o n n=0 n=0
L\ L
p+2 2p
== x 712 g( —) EP+2 2
(&) 1w - () |

4. Regularization methods

In this section, we apply four regularization methods to solve the source term iden-
tification. Moreover, we present the error estimates under the a priori and a posteriori

regularization parameter choice rules, respectively.

4.1. Landweber iterative reqularization method (method 1)

In this subsection, we give the Landweber iterative regularization method. Let f™°(z)

satisfy

P (2) =0, f™(z) = (I — BK*K) f" " (2) + BK*G (z),m = 1,2, -,

8



where m > 0 is iteration step, [ is the relaxation factor which satisfies 0 < § < i KH2 By
simple calculation, we obtain the regularized approximate solution of equation (1.1) as

follows

fro(x) = InXu(z). (4.1)

4.1.1. A priori reqularization parameter choice rule

In 4.1.1, we will give an error estimate under the a prior: regularization parameter
choice rule.
Theorem 4.1: Let f(x) given by (3.1) be the exact solution. Let f™°(z) given by (4.1)
be the regularization solution. The conditions (1.3) and (3.2) hold. If we choose

where [z] denotes the largest integer less than or equal to x, then we have the following

error estimate

| 179 (@) — f) 1< (f G+ Lk ( ﬁm)“) B#i57%.

Proof: Using triangle inequality, we have

£ (@) = fl) 1] ™0 @) = f@) T+ 1 (@) = fa) ]

From Lemma 3.2 and (1.3), we have

I = ) =) 3 A G g R )
< VB | 3() - 5(0) < VB “2)

then

™ () ) =l Z S5 K@) |

31— oy (f)
n=0
g . 2\m *%
<L igli) <(1 Boi)" An >E,

from Lemma 3.3, we have

2 2 P % P
(1—B02)" A < (1—5(;2) A2 < (%) m~%,

9



thus,

| /() - f(@) 1< L} (ﬁ%) CniE (43)

_4
Combining (4.2) and (4.3), and choosing the regularization parameter m = [(£)7%2], we

complete the proof.

4.1.2. A posteriori reqularization parameter choice rule

In 4.1.1, the regularization parameter m is chosen by m = [(%)ﬁ] It shows that
the choice of m depends on the a priori bound FE, which is hard to obtain in practical
problems. So here we give a posteriori regularization parameter choice rule that does not
depend on a priori information.

Using Morozov’s discrepancy principle, we have
| K f™ () = 3°(x) [ wd <|| Kf™ 1 (x) = () |, (4.4)

where w > 1 is a constant.
Theorem 4.2: Let f(z) given by (3.1) be the exact solution. Let f™°(x) given by
(4.1) be the regularization solution. The conditions (1.3) and (3.2) hold. Regularization

parameter m is chosen by (4.4), then we have the following error estimate

m.s B < 2 p+2)\?2 Cy p+2 L(w—i—l) P2 p% 25
|7 f<x>||_(L+ (252)7 (%) + (M) ™) et

Proof: Using triangle inequality, we have

£ (@) = f) I @) = f™ (@) |+ 1 (@) = flz) ] -

From Lemma 3.3 and (1.3), we have
w8 < K1) — () || Z (1 - Bo2y 15 %) |
< 2(1 B2 G — ) Kla) |+ | Z (1 - o2y 15,5, ) |
<54 30— B2y R |
n=0

N p An LR
<o+ D LECY (1 - BoZ)m 1, (f) A X () |

n=0

p -1-z = A >
<5+ L2C 1—Bo2)™ A, 2 n <—") Xo
< 2sup (1= o) )15 (F) %@

10



, N,
§5+L202<p+) m— e

23C?
then, we deduce that

similar to (4.2), it is easy to get that
| f™ () = f™(2) | < v/ Bmé
2

2 p+2 2 P
< Lt (pgg) ( < ) " pinoit, (4.6)
1

w—1

On the other hand, we have

K™ (@) = f() || =] Z(l — B07)"GnXn(x) |

<||Zl—50 n = Gn) Xal ||+||Z Xo(o) |

< 6§+ wo,

based on (3.2), we have

| () = f2) llp = <i<f) ﬁ‘?)

(%) (1- 5gg>2mfs> <Il £(@) llp<

using Therorem 3.1, we have

m L(w+1 ) 2 p
| f™(2) — fla)||< (%) Er2§orz, (4.7)
Combining (4.6) and (4.7), we can easily obtain the desired result.

4.2. Fractional Landweber iterative reqularization method (method 2)
In this subsection, we introduce the Fractional Landweber iterative regularization
method, which overcomes the over-smoothness of solution compared to Landweber itera-

tive regularization method. Let f™°(z) satisfy
PO (@) =0, [0 (@) = (I = BIK*K)'5) "7 () + B(K*K)'T K*'§(x),m=1,2,-+- ,

where % < v < 1. By simple calculation, we obtain the regularized approximate solution

eES!

of equation (1.1) as follows

D" g

EIOE PE S ) (45)




4.2.1. A priori reqularization parameter choice rule

In 4.2.1, we will give an error estimate under the a prior: regularization parameter

choice rule.

Theorem 4.3: Let f(x) given by (3.1) be the exact solution. Let f™°(z) given by (4.8)
be the regularization solution. The conditions (1.3) and (3.2) hold. If we choose

then we have the following error estimate

| F9a) - fla) 1< <ﬂ+ Lt (5%) ) it

Proof: Using triangle inequality, we have

1 £ (@) = flo) 1] ™ (@) = f@) T+ || f (@) = fla) |-

From Lemma 3.2 and (1.3), we have

7o) - @ =1 Y I G g R |

< s (22 o) - gt N Vo, a9)

0<on<oi n

then

| (@) — £(x) | =] Z )5 %) |

7‘L

p.—2 [ A, v
IS0 petreint () nkw|
n=0

< Lisup ((1- 82" ) B,

n>1

similar to the proof of Theorem 4.1, we have

VS|

m P % -z
| (@) - f() < L (67) L.

Combining (4.9) and (4.10), and choosing the regularization parameter m =

complete the proof.

12

(4.10)

[(B)72], we



4.2.2. A posteriori reqularization parameter choice rule

In 4.2.2, we will give an error estimate under the a posterior: regularization parameter
choice rule.
Theorem 4.4: Let f(z) given by (3.1) be the exact solution. Let f™°(x) given by
(4.8) be the regularization solution. The conditions (1.3) and (3.2) hold. Regularization

parameter m is chosen by (4.4), then we have the following error estimate:

L2002 e w2 s
1P = £ f< | +(ﬁii9)+ priasita.
CF (w—1) C

Proof: Using triangle inequality, we have

£ (@) = flo) 1] ™0 @) = f@) T+ || f (@) = fa) |-

From Lemma 3.4 and (1.3), we have
b <|| K f() r—u}jl—rv—l—ﬂay”w] @) |
snﬁzu—ﬁﬁr%%ﬁ ; n+u§jl—5o 15,50 |
ga+w\§i<1—¢%ﬁy”4ammizcwr

<5+ L% sup ((1 — Bo2)™ N, 0n> [ an (2) Xn(2) |

n>1

< &4 L5 sup ((1—&7 oy p0:+2>E

n>1
L z pt2
<5—|—(Cl) 9%2(mﬁ) T B
where
L, 0<p<2
Opy2 = pt2
w2 2\
(Z%) ) p>27

then, we deduce that

| (LN [ B\
m< == i
B (Cl) (w—1)6 7

similar to the proof of Theorem 4.2, it is easy to get that

Lg@& v 2 P
HFW@—WWWS(ﬁfi—) Brets (@11
Cf(w—1)
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and
L(w+1)\ 77 p
I = o) I (HEE) T B (4.12)
1
Combining (4.11) and (4.12), we can easily obtain the desired result.

4.3. TSVD method (method 3)

In this subsection, we introduce TSVD method, which is simple in structure but
effective. Its advantage is to filter large and small singular values separately to ensure the

stability of the solution. We give the regularized approximate solution as follows

i) = 3 gRal) (1.13)
o2>1 7"
4.8.1. A priori regularization parameter choice rule
In 4.3.1, we will give an error estimate under the a priori regularization parameter
choice rule.
Theorem 4.5: Let f(x) given by (3.1) be the exact solution. Let f™(x) given by (4.13)
be the regularization solution. The conditions (1.3) and (3.2) hold. If we choose

then we have the following error estimate

|7 @) = f(a) 1< (1 n (g)) B,

Proof: Using triangle inequality, we have

™0 (@) = f) <] F™ () = f™ (@) |+ || f™ () = f2) ]|
Then

™) = @) =l Y Oin@’i — ) Xa(2) || Vmd, (4.14)

from (3.2), we have

N

N 1 - A\ AN Lo
L) = f@) L=l Y —a@Xal@) = | Y (F -
On L L
U%<% U%<%
LN (AN o\ (L)
< Vet (2) 2| <(=) miE 4.15
(2 (@@ a) <@y o
o2<L
Combining (4.14) and (4.15), and choosing the regularization parameter m = [(%)Zﬁ],

we complete the proof.
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4.8.2. A posteriori reqularization parameter choice rule

In 4.3.2, we will give an error estimate under the a posterior: regularization parameter
choice rule.
Theorem 4.6: Let f(z) given by (3.1) be the exact solution. Let f™°(x) given by
(4.13) be the regularization solution. The conditions (1.3) and (3.2) hold. Regularization

parameter m is chosen by (4.4), then we have the following error estimate

5\ (L 2\ e
| 75(@) — @) 1< (%@——> + (M) prtert

Cf (w—1)
Proof: Using triangle inequality, we have
|0 (@) = fa) I (@) = f7 (@) ||+ [ f™(@) = fla) ]|

Then

<D0 @K@ [+ DY GXal@) |
U"274<m171 U%<m171
< 6+ || Z O foXn(z) ||
o%<%
%
L\’ An\?
<4 i p+2 [ 7' 2
<o Z (&) # (%) #
O’%<%
P p+2

then, we deduce that

<o L By
»=2(&)" (@mm)

similar to the proof of Theorem 4.2, it is easy to get that

” fm’E(CL’) . fm(l’) ” < (#) Eﬁ(Sﬁ, (4.16)
Cf(w—1)
and
L(w o,
I 7 - 1) 1= (HSED) ™ st (1.7

Combining (4.16) and (4.17), we can easily obtain the desired result.
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4.4. Combining TSVD method and Fractional Landweber iterative reqularization method

(method 4)

In this subsection, we combine two methods, its advantage is that not only retains the
characteristics of Fractional Landweber iterative regularization method, but also increases
the advantages of TSVD method for filtering large and small singular values separately.

We give the regularized approximate solution as follows

o)y =Y Uingi)?n(mH 3 1-a ;nﬁ"")m]vg,i)?n(x). (4.18)

2 1
oL

4.4.1. A priori reqularization parameter choice rule
In 4.4.1, we will give an error estimate under the a priori regularization parameter

choice rule.
Theorem 4.7: Let f(x) given by (3.1) be the exact solution. Let f™(x) given by (4.18)
be the regularization solution. The conditions (1.3) and (3.2) hold. If we choose

m = [(?)1

then we have the following error estimate

I 5 ) - 5@ 1< <ﬂ+ ()

Proof: Using triangle inequality, we have

If™0 (@) = f) I @) = f™ (@) |+ 1 (@) = flz) ] -

From Lemma 3.2, we have

On

175w - @ =1 Y @ -k + Y P g %)

2 -1
n=—m U7L<7n

< (Vm++/Bm) || §(z) — §(2) ||< (Vm + /Bm)s, (4.19)

from (3.2), we have

@) - | =) Y 0P 0G &

n

o2< L
1 A\ Y :
1Y cakel= | X () () 8
0%<%O‘n U%<%
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[

LN (A L\*
<> (51) oP <f> fa] < (E) m1E. (4.20)

2 1
O’n<E

4

)p+2],

Combining (4.19) and (4.20), and choosing the regularization parameter m = [(

S

we complete the proof.

4.4.2. A posteriori reqularization parameter choice rule

In 4.4.2, we will give an error estimate under the a posteriori regularization parameter
choice rule.
Theorem 4.8: Let f(z) given by (3.1) be the exact solution. Let f™?(x) given by
(4.18) be the regularization solution. The conditions (1.3) and (3.2) hold. Regularization

parameter m is chosen by (4.4), then we have the following error estimate

2w (L\7T 1 Lw+1)\72\ 2
I ) ||<<f+1 (@) e (5 )Ea

2 w—1)r2 Cy

Proof: Using triangle inequality, we have

£ (@) = f) I @) = (@) |+ 1 (@) = flo) ] -

Then
wd || Km0 (@) = g@) 1= > = (1= (1= Bap)" )] Xa(x) |
<Y (= Be) @ = g Xa(@) [+ D (1= Bo2)™ G Xu(2) |
<o+ D (1= pon)" onfuXa(e) |
=
<+ 7l 3 AR
1 AT AN o)
- (2 (7)) (3) 5

17



similar to the proof of Theorem 4.2, it is easy to get that

22p+4 L ﬁ 1 2 P
o < 1) ( ) — Ewase, 421
I = 1< W02 (7)) (421)
and
| f™ () = f(z) [|< (L(MTTD) o ozt vt (4.22)

Combining (4.21) and (4.22), we can easily obtain the desired result.

5. Numerical experiments

In this section, numerical experiments are presented to illustrate the effectiveness of
our methods. We take Case 1 as an example, that is, let a; = f; = 1. Assume that
F(z,t) =r(t)f(z) + Z(x,t), then equation (1.1) can be rewritten as

( 2

Df‘u(m,t):%JrF(x,t), O<zx<L,t>0,

u(z,0) = ¢(x), 0<z<IL, (5.1)
w(0,t) 4+ ug(0,t) = ui (1), 0<t<T,
\u(L,t)—kux(L,t):,ug(t), 0<t<T.

Due to the difficulty in getting the exact solution of the direct problem, we use the finite
difference method (FDM) to solve the direct problem (assumed that fuctions F'(x,t), ¢(z),
p1(t) and po(t) are known). Then the final value data g(x) is easily obtained.

Denote the discrete points in the space interval [0, L] as x; = ih(i = 0,1,--- , M)

with the space step size h = ﬁ, the discrete points in the time interval [0,7] as ¢, =

nt(n = 0,1,--- , N) with the time step size 7 = % Let the value at each gird point is
ul = u(z;, ty).
Take the average of two adjacent time layers. Adopting the finite difference scheme,

we discrete the equation Dfu(z,t) = & “(I D 4 F(z,t) as follows

n—1
T_a n « « o 1 n
T2—a) [uf — ;(afl_)k_l - af@_)k)Uf - a;_>1¢(xi)] = h_( 2w ) + F,O(5.2)

where ak = (k+ 1) —k'=2(k > 0), F" = F(x4,t,), denote A = % and (5.2) can

be simplified as

18



¢

—2ul + (N4 2 — 2h)ul = —2huy () + A Z O b 4+ Mal™ b (o) + B2FY,

i
L

ulyy + (A 2l —uly =\ — ! b 2 b))+ R2EE, 1<i< M -1,

—

Q/\
iz
Eal

k=1
n—1
A+ 2+ 2R)ully — 2uly g = 2hyua(t) + XD (i, — al?)uby + Al p(anr) + W2 Fgy.
\ k=1

Then we get the following matrix equation:
AU—A1+)\A2+>\G A3+h_/44,

where A is a tridiagonal matrix:

A+2-2n -2 0 0
~1 A+2 -1 0

A4t (1) = ,

0 —1 A+2 ~1

0 0 -2 A+2+2h

U™ = (o, un) Ar = (=2 (£),0,-++ .0, 2hpua(8) T, Ay = (35 (@)=, 330 (a2~
alD)ub)T, As = (6(wo), -+ Slaan))Ts Ay = (Fg oo Fip)T
Noisy data is generated by adding a random disturbance, i.e.

9’(w) = g(x) + eg() - (2rand(size(g(x))) - 1),

where € > 0 reflects the noise level and § = ||¢°(z) — g(z)]|.

In order to facilitate the subsequent description, we call the Landweber iterative regu-
larization method as method 1, Fractional Landweber iterative regularization method as
method 2, TSVD method as method 3, combining TSVD method and Fractional Landwe-
ber iterative regularization method as method 4. The absolute error e( f, €);4 and relative
error e,(f,€)14 between the regularized approximate solution and the exact solution of

method 1 ~ 4 are

e(f,€)i =™ (x) — f(@)|,e-(f, )i = =1,

1f™(z) — f(@)]
I1f ()]
respectively. In our following numerical experiments, we take L = 1,7 =1, M =50, N =
100, 8 = ﬁ, ~v = 0.75. The regularized approximate solutions of four methods are given

by (4.1), (4.8), (4.13) and (4.18), respectively. The regularization parameter m under the
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4
a priori choice rule is given by m = [(£)?%2], where E =|| f(z) ||,. The regularization
parameter m under the a posteriori choice rule is given by (4.4), with w = 1.1.

Example 1: Take functions

fa)=sin(Ta), ot =2+ 1), Z(x,t):%x,

o(e) =sin(Zo), ()= —(E+1), ) = 2+ 1)

e e(fieh elfie)e e(fie)s elfie)a elf,e)r elf,e)2 el(f,e)s elf e
0.001 0.0391 0.0361 0.0398 0.0386 0.1974 0.1823 0.2010 0.1949
0.005 0.0572 0.0513 0.0783 0.0560 0.2888 0.2591 0.3954 0.2828
0.01 0.0661 0.0659 0.0861 0.0767 0.3338 0.3328 0.4349 0.3873

Table 1: Errors by using a priori parameter choice rule for Example 1

e elfieh elfie)r elfie)s efie)s e(f,e)i e(fie)a e(f,e)s e(f €)a
0.001 0.0378 0.0312 0.0375 0.0359 0.1909 0.1576 0.1894 0.1813
0.005 0.0488 0.0478 0.0771 0.0546  0.2464 0.2414 0.3893 0.2757
0.01 0.0634 0.0626 0.0843 0.0725 0.3202 0.3161 0.4257 0.3661

Table 2: Errors by using a posteriori parameter choice rule for Example 1
Example 2: Take functions

Fo) 2z, 0<zx<0.5, 0 2 Z(2.1) 22—«
Tr) = rit) =1 + 1, r,t) = ———x,
22, 05<az<l, I'3—a)

gb(ZL') = 2, Nl(x) = _(t2 + 1)7 ,UJQ(*T) = _2(t2 + 1)'

€ elfiehn e lfie) elfie)s efie)s e(f,e)i e(fie)a e(f,e)s e(f e
0.001  0.0780 0.0779 0.0749 0.0772 0.3186 0.3182 0.3059 0.3153
0.005 0.0852 0.0846 0.0871 0.0897  0.3480 0.3455 0.3557 0.3663
0.01 0.1140 0.1088 0.1034 0.1101 0.4656 0.4444 0.4223 0.4497

Table 3: Errors by using a prior: parameter choice rule for Example 2
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(e) A priori parameter choice rule (e =0.01)

Fig 1: The exact solution f(x) and its approximation with different methods for Example 1
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(f) A posteriori parameter choice rule (e = 0.01)
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Fig 2: The exact solution f(x) and its approximation by using method 4 with different noise levels for

Example 1

e e(fir elfie)2 e(fi€)s e(fie)s elfe)r e(fie)a elf,€)s e(f e
0.001  0.0757 0.0737 0.0716 0.0765 0.3092 0.3010 0.2924 0.3124
0.005 0.0840 0.0810 0.0841 0.0862 0.3431 0.3308 0.3435 0.3520
0.01  0.1108 0.1033 0.0998 0.0996  0.4525 0.4219 0.4076 0.4068

Table 4: Errors by using a posteriori parameter choice rule for Example 2

Example 3: Take functions

0, 0<x<0.25,
2t27a
= . < . t :tz 17 Z 1) = 50— %,
flx)y=22,  025<z<075, rt)=t+ (z,t) r3—a)”
0, 0.75 <z <1,

o) =2, @)= —(P+1),  pale) = 22 +1).

e elfior elfiey elfids elfios elfier elf,e) elf,e)s elf )
0.001 02281 02274 0.2280 0.2292 22810 2.2740 2.2800  2.2920
0.005 0.2833  0.2804 0.3055 0.2758 2.8330 2.8040 3.0550 2.7580
0.0l 03106 0.3059 03273  0.3128 3.1060 3.0590 3.2730 3.1280

Table 5: Errors by using a priori parameter choice rule for Example 3
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Fig 3: The exact solution f(x) and its approximation with different methods for Example 2
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(f) A posteriori parameter choice rule (e = 0.01)
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Fig 4: The exact solution f(x) and its approximation by using method 4 with different noise levels for

Example 2

e e(fir elfie)2 e(fi€)s e(fie)s elfe)r e(fie)a elf,€)s e(f e
0.001 0.2259 0.2252 0.2263 0.2253  2.2590 2.2520 2.2630 2.2530
0.005 0.2797 0.2777 0.3026 0.2727  2.7970 2.7770 3.0260 2.7270
0.01  0.3002 0.2964 0.3233 0.3095  3.0020 2.9640 3.2330 3.0950

Table 6: Errors by using a posteriori parameter choice rule for Example 3

In Figs 1, 3 and 5, we provide the comparisons between the exact solution f(x) and
its regularized approximate solution by using a prior:t and a posteriori parameter choice
rules with different methods. Since the a prior bound E is difficult to obtain in practical
problems, we give an accurate a prior bound E =|| f(z) ||,, then both a priori and a
posteriori parameter choice rules achieve desired results. In Figs 2, 4 and 6, we take
combining TSVD method and Fractional Landweber iterative regularization method as
an example, then we provide the comparisons between the exact solution f(z) and its
regularized approximate solution by using a prior: and a posterior: parameter choice
rules with different noise levels. Tables 1-6 show the absolute errors and relative errors
with different methods and different noise levels.

From these examples, it can be seen from Figs 1-6 that the numerical results of four
regularization methods are similar, and when the smoothness of the solution gets better,
the numerical results get better. These are consistent with our theoretical results. It can
be seen from Table 1-6 that the smaller €, the better the approximation effect. Moreover,

we can see that the a posteriori parameter choice rule is even comparable to the a
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Fig 6: The exact solution f(x) and its approximation by using method 4 with different noise levels for

Example 3

priort parameter choice rule. These numerical examples verify the validity of our iterative

regularization method.

6. Conclusion

In this paper, we consider the source term identification of the time-fractional diffusion
equation under Robin boundary condition. Landweber iterative regularization method,
Fractional Landweber iterative regularization method, TSVD method, combining TSVD
method and Fractional Landweber iterative regularization method are used to solve the
equation (1.1). Error estimations between the regularized approximate solution and exact
solution under two parameter choice rules are given. The numerical simulation results
show that: (1) Fractional Landweber iterative regularization method outperform Landwe-
ber iterative regularization method, (2) numerical results of four methods are similar,
which is consistent with our theoretical results. Combining TSVD method and Fractional
Landweber iterative regularization method does not show advantages in numerical ex-
amples of this paper, probably because the equation (1.1) is linear. On other types of
inverse problem, such as nonlinear equations, combining TSVD method and Fractional
Landweber iterative regularization method will achieve better numerical results, which

awaits our further study.
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