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1 Introduction and main result

Let 0 ∈ Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. In this paper, we

consider the following Kirchhoff type problems with variable exponent{
−(a+ b

∫
Ω
|∇u|2dx)∆u = |u|q(x)−2u, in Ω,

u = 0, on ∂Ω,
(1.1)

where a ≥ 0, b > 0 are real numbers. Define D0 = {0}, Dρ = {x|x ∈ Ω, |x| < ρ} and

Ωρ = Ω \Dρ. We assume q(x) satisfies the following conditions.

(Q1) q ∈ C(Ω), q(0) = 4 and 4 < q(x) ≤ max
x∈Ω
{q(x)} = q+ < 6 for x 6= 0;

(Q2) there exist α ∈ (0, 5
2
) such that q(x) ≥ 4 + |x|α for x ∈ Ω.

Kirchhoff type problem on a smooth-bounded domain Ω ⊂ R3 takes the form{
−(a+ b

∫
Ω
|∇u|2dx)∆u = f(x, u), in Ω,

u = 0, on ∂Ω,
(1.2)

∗Corresponding author. Email address: gzmychuchangmu@sina.com.
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which has been studied extensively. Indeed, such a class of problems is called a nonlocal

because of the presence of the term
∫

Ω
|∇u|2dx, which implies that equation in (1.2) is

no longer a pointwise equation. Moreover, equation (1.2) is related to the stationary

analogue equation, that is,{
utt − (a+ b

∫
Ω
|∇u|2dx)∆u = f(x, u), in Ω,

u = 0, on ∂Ω,
(1.3)

which was first proposed by Kirchhoff (see [8]) in 1883 as an extension of the classical

D’Alembert wave equation for free vibrations of elastic strings. The problem (1.2) has

been studied by many authors, for example [2, 5, 6, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22].

Many solvability conditions on the nonlinearity f near zero and infinity for the problem

(1.2) have been considered, such as the superlinear case [14] and asymptotical linear

case [17]. In addition, the authors in [9] mentioned the following growth condition on

f is often assumed:

(f) f(x, t)t ≥ 4F (x, t) for |t| large, where F (x, t) =
∫ t

0
f(x, s) ds,

which assures the boundedness of any Palais-Smale or Cerami sequence (see [20]).

Indeed the condition (f) may appear in different forms as follows:

(f0) there exists θ ≥ 1 such that θG(x, t) ≥ G(sx, st) for all t ∈ R and s ∈ [0, 1],

where G(x, t) = tf(x, t)− 4F (x, t) for all x ∈ Ω (see [17]);

(f1) lim
|t|→∞

G(x, t) =∞ for all x ∈ Ω (see [21]); or

(f2) lim
|t|→∞

G(x, t) = ∞ and there exists σ > max{1, N/2} such that |f(x, t)|σ ≤

CG(x, t)|t|σ for any x ∈ Ω and |t| large enough (see [14]).

In the papers above, each of the conditions (f0) − (f2) implies that the condition (f)

holds. Several researchers studied problem (1.2) with conditions weaker than (f). For

example, a more weaker super-quadratic condition is that

(S) F (x,u)
|u|4 → +∞ as |u| → +∞ uniformly in x ∈ Ω.

In [3], the authors obtained the existence of one least energy sign-changing solution for

problem (1.2) by condition (S) and some extra assumptions. It is worth mentioning

that the above conditions are usually for the non-degenerate case, i.e. the case a > 0.

In fact, for the degenerate case a = 0, some conditions need to be strengthened(see

[4]). For example, the condition (f) should be replaced by

(f
′
) f(x, t)t > 4F (x, t) for |t| large.
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Indeed, if there exists x0 ∈ Ω such that q(x0) = inf
x∈Ω
{q(x)} = 4, then the con-

ditions (f
′
) and (S) do not hold. This phenomenon does not exist for the constant

exponent. Therefore, the problem we intend to study is a new phenomenon. If a = 0,

it is difficult to verify the boundedness of Palais-Smale sequence of the corresponding

functional to equation (1.1). In recent years, some literature has used perturbation

method to overcome this difficulty(see [11, 12, 18, 23]). Inspired by the above litera-

ture, we first modify the nonlinear term to guarantee the boundedness of Palais-Smale

sequence of the corresponding functional and obtain a nonnegative nontrivial solution

of perturbation problem by the method of mountain pass lemma. Subsequently, we

use the Moser iteration to prove that the nonnegative nontrivial solution of auxiliary

problem is indeed a nonnegative nontrivial solution of original problem (1.1).

The main result of this paper reads as follows.

Theorem 1.1. Suppose that a ≥ 0, b > 0, the conditions (Q1) and (Q2) hold. Then,

problem (1.1) has at least a nonnegative nontrivial solution.

Remark 1.2. We use the perturbation method and Moser iteration mainly to deal with

the degenerate cases. Our results include both degenerate and non-degenerate cases.

Throughout this paper, We use ‖·‖ to denote the usual norms of H1
0 (Ω). The letter

C stands for positive constant which may take different values at different places.

2 The modified Kirchhoff problem

According to q(0) = 4, it seems to be difficult to confirm whether the energy

function I corresponding to (1.1) satisfies the Palais-Smale condition or not. To apply

variational methods, the first step in proving Theorem 1.1 is modifying the nonlinear

term to obtain the perturbation equation. Since q(x) is a continuous function and

q+ < 6, we can choose r > 0 such that

r < min

{
6− q+,

1

12

}
. (2.1)

Let ψ(t) ∈ C∞0 (R, [0, 1]) be a smooth even function with the following properties:

ψ(t) = 1 for |t| ≤ 1, ψ(t) = 0 for |t| ≥ 2 and ψ(t) is monotonically decreasing on the

interval (0,+∞). Define

bµ(t) = ψ(µt), mµ(t) =

∫ t

0

bµ(τ)dτ,

for µ ∈ (0, 1]. We will deal with the modified problem{
−(a+ b

∫
Ω
|∇u|2dx)∆u = ( u

mµ(u)
)r|u|q(x)−2u, in Ω,

u = 0, on ∂Ω.
(2.2)
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Theorem 2.1. Suppose that a ≥ 0, b > 0, the conditions (Q1) and (Q2) hold. Then,

for any µ ∈ (0, 1], there exists L > 0 independent of µ such that problem (2.2) has at

least a nonnegative nontrivial solution uµ satisfying 0 < Iµ(uµ) < L.

The formal energy functional Iµ : H1
0 (Ω)→ R associated with (2.2) is defined by

Iµ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 −

∫
Ω

Kµ(x, u+) dx,

where kµ(x, t) =
(

t
mµ(t)

)r
|t|q(x)−2t, Kµ(x, t) =

∫ t

0

kµ(x, τ) dτ .

Lemma 2.2. The function Kµ(x, t) defined above satisfies the following inequalities:

Kµ(x, t) ≤ 1

q(x)
tkµ(x, t), Kµ(x, t) ≤ 1

q(x) + r
tkµ(x, t) + Cµ,

for t > 0, where Cµ > 0 is a positive constant.

Proof. Since bµ(t) is a monotonically decreasing on the interval (0,+∞), we have

d

dt

(
t

mµ(t)

)
=
mµ(t)− tbµ(t)

m2
µ(t)

=
t(bµ(ξ)− bµ(t))

m2
µ(t)

≥ 0,

for t > 0, where ξ ∈ (0, t). Therefore, t
mµ(t)

is monotonically increasing on the interval

(0,+∞). Hence, kµ(x,t)

tq(x)−1 =
(

t
mµ(t)

)r
is also monotonically increasing on the interval

(0,+∞). It follows that

Kµ(x, t) =

∫ t

0

kµ(x, τ)dτ ≤
∫ t

0

kµ(x, t)

tq(x)−1
τ q(x)−1dτ =

1

q(x)
tkµ(x, t), (2.3)

for t > 0.

By definition of the function mµ, we have mµ(t) = A
µ

for t ≥ 2
µ
, where A =

1 +
∫ 2

1
ψ(τ)dτ . For t > 2

µ
, one has

Kµ(x, t) =

∫ 2
µ

0

kµ(x, τ) dτ +

∫ t

2
µ

(µ
A

)r
τ q(x)+r−1 dτ

=

∫ 2
µ

0

(
kµ(x, τ)−

(µ
A

)r
τ q(x)+r−1

)
dτ +

∫ t

0

(µ
A

)r
τ q(x)+r−1 dτ

≤ Cµ +
tkµ(x, t)

q(x) + r
. (2.4)

It implies from (2.3) and (2.4) that

Kµ(x, t) ≤ 1

q(x) + r
tkµ(x, t) + Cµ

for t > 0.

4



Lemma 2.3. Suppose that a ≥ 0, b > 0, the conditions (Q1) and (Q2) hold. Then, for

any µ ∈ (0, 1], Iµ satisfies the (PS) condition.

Proof. Let {un} be a (PS) sequence of Iµ in H1
0 (Ω). This means that there exists

C > 0 such that

|Iµ(un)| ≤ C, I
′

µ(un)→ 0 as n→∞. (2.5)

From (2.5) and Lemma 2.2, we derive that

Iµ(un)− 1

4 + r
〈I ′µ(un), un〉

≥ (2 + r)a

2(4 + r)
‖un‖2 +

br

4(4 + r)
‖un‖4 +

∫
Ω

(
1

4 + r
− 1

q(x) + r

)
kµ(x, u+

n )u+
n dx− Cµ

≥ br

4(4 + r)
‖un‖4 − Cµ,

which implies that br
4(4+r)

‖un‖4 ≤ C + Cµ + o(‖un‖). We obtain {un} is bounded in

H1
0 (Ω). Since the functional Iµ(u) is of subcritical growth, by a standard argument

Iµ(u) satisfies the (PS) condition.

In the following lemma, we will verify that Iµ possesses the mountain pass geometry.

Lemma 2.4. Suppose that a ≥ 0, b > 0, the conditions (Q1) and (Q2) hold. Then, the

functional Iµ possesses the mountain pass geometry, namely,

(1) there exist m, ρ > 0 such that Iµ(u) > m for any u ∈ H1
0 (Ω) with ‖u‖ = ρ;

(2) there exists w ∈ H1
0 (Ω) such that ‖w‖ > ρ and Iµ(w) < 0.

Proof. By definition of the function kµ, we have

|kµ(x, t)| ≤ |t|q(x)−1 +
(µ
A

)r
|t|q(x)+r−1.

It follows that

|Kµ(x, t)| ≤ |t|
q(x)

q(x)
+
(µ
A

)r |t|q(x)+r

q(x) + r
.

Therefore, there exists Cµ > 0 such that∣∣∣∣∫
Ω

Kµ(x, u+) dx

∣∣∣∣ ≤ Cµ

∫
Ω

(|u|q(x) + |u|q(x)+r) dx. (2.6)

By the Sobolev imbedding theorem, it implies from 4 ≤ q(x) < q(x) + r < 6 that∫
Ω

|u|q(x)+r dx ≤
∫

Ω

(|u|4+r + |u|6) dx ≤ C(‖u‖4+r + ‖u‖6). (2.7)
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Set Vε = {x ∈ Ω|4 ≤ q(x) < 4 + ε}. By the Hölder inequality and the Sobolev

imbedding theorem, we have∫
Ω

|u|q(x) dx =

∫
Vε

|u|q(x) dx+

∫
Ω\Vε
|u|q(x) dx

≤
∫
Vε

(|u|4 + |u|4+ε) dx+

∫
Ω\Vε

(|u|4+ε + |u|6) dx

≤
∫
Vε

|u|4 dx+

∫
Ω

(|u|4+ε + |u|6) dx

≤ C|Vε|
1
3‖u‖4 + C(‖u‖4+ε + ‖u‖6). (2.8)

Since V0 = {0}, we obtain |Vε| → 0 as ε→ 0. Fix µ ∈ (0, 1], it implies that there exists

ε0 > 0 such that

|Vε|
1
3 <

b

8CCµ
, (2.9)

for any ε ∈ (0, ε0). From (2.6)-(2.9), we obtain

Iµ(u) ≥ b

8
‖u‖4 − Cµ(‖u‖4+ε + ‖u‖4+r + ‖u‖6).

Therefore, there exist m, ρ > 0 such that Iµ(u) > m for any u ∈ H1
0 (Ω) with ‖u‖ = ρ.

By definition of the function kµ, we obtain kµ(x, t) ≥ tq(x)−1. According to (Q1),

we know that there exists a positive measurable set U0 ⊂ Ω such that

q(x) ≥ 4 + q+

2
for any x ∈ U0. (2.10)

Fix a nonnegative function v0 ∈ H1
0 (U0)\{0}. Then, for t > 0 sufficiently large, we

obtain

Iµ(tv0) ≤ at2

2
‖v0‖2 +

bt4

4
‖v0‖4 − t

4+q+

2

∫
Ω

|v0|q(x)

q(x)
dx < 0.

Choosing w = t0v0 with t0 > 0 large enough, we have ‖w‖ > ρ and Iµ(w) < 0.

Now we are in a position to prove the main result of this section.

Proof of Theorem 2.1. From Lemmas 2.3 and 2.4 we see that the functional Iµ
satisfies the (PS) condition and has the mountain pass geometry. Define

Γ = {γ ∈ C([0, 1], H1
0 (Ω))| γ(0) = 0, γ(1) = w}, cµ = inf

γ∈Γ
max
t∈[0,1]

Iµ(γ(t)).

By the mountain pass theorem(see [1]), we obtain that problem (2.2) has a solution uµ.

After a direct calculation, we derive that a‖u−µ ‖2 + b‖u−µ ‖4 = 〈I ′µ(uµ), u−µ 〉 = 0, which

implies that u−µ = 0. Hence, uµ ≥ 0. Since Iµ(uµ) = cµ > 0 = Iµ(0), we have uµ 6= 0.

6



So we obtain uµ is a nonnegative nontrivial solution of problem (2.2). It follows from

(2.10) that

Iµ(uµ) = cµ ≤ max
t∈[0,1]

Iµ(tw) ≤ max
t∈[0,1]

(at2
2
‖w‖2 +

bt4

4
‖w‖4 − t

4+q+

2

∫
Ω

|w|q(x)

q(x)
dx
)

= L,

where L independent of µ. The proof is complete.

3 A priori estimate and proof of Theorem 1.1

In this section, we will show that solutions of auxiliary problem (2.2) are indeed

solutions of original problem (1.1). For this purpose, we need the following uniform

L∞-estimate for critical points of the functional Iµ.

Lemma 3.1. Suppose that a ≥ 0, b > 0, the conditions (Q1) and (Q2) hold. If

Iµ(v) ≤ L and I ′µ(v) = 0, then there exists C = C(L) > 0 independent of µ such that∫
Ω
|∇v|2dx ≤ C.

Proof. By Lemma 2.2, Iµ(v) ≤ L and I ′µ(v) = 0, we have

L ≥ Iµ(v)− 1

4
〈I ′µ(v), v〉

≥ a

2
‖v‖2 +

∫
Ω

(
1

4
− 1

q(x)

)
kµ(x, v)vdx. (3.1)

Case 1. If a > 0, then according to (Q1) and (3.1), we obtain ‖v‖2 ≤ 2L
a

, then there

exist C = C(L) > 0 independent of µ such that
∫

Ω
|∇v|2dx ≤ C.

Case 2. If a = 0, then according to (Q2) and (3.1), there exists C0 > 0 such that

L ≥
∫

Ω

(
1

4
− 1

q(x)

)
kµ(x, v)vdx

≥ C0

∫
Ω

|x|αkµ(x, v)vdx. (3.2)

Therefore, for any ρ > 0, we know that there exists mρ > 0 such that∫
Ωρ

kµ(x, v)vdx ≤ 1

ρα

∫
Ωρ

|x|αkµ(x, v)vdx ≤ mρ, (3.3)

and ∫
Dρ

|x|α|v|q(x)dx ≤
∫
Dρ

|x|αkµ(x, v)vdx ≤ L/C0. (3.4)

From (Q2) and (2.1), we have

0 <
α(1 + r)

2− (1 + r)
=
α(1 + r)

1− r
<

13α

11
< 3.
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Therefore, we can choose p ∈
(
1, 3

2

)
satisfying

p(1− r)
p− 1

> 2 and 0 <
pα(1 + r)

2 + r − p(1 + r)
<

23

8
< 3. (3.5)

Let q+
ρ = sup{q(x)|x ∈ Dρ}. It follows from (Q1) and (3.5) that

q+
ρ ≤

p(1− r)
p− 1

and 0 <
pα(q+

ρ − 1 + r)

q+
ρ − p(q+

ρ − 1 + r)
< 3 (3.6)

Using the Young inequality, we deduce from (3.4) and (3.6) that∫
Dρ

|v|p(q(x)+r−1)dx =

∫
Dρ

(
|x|α|v|q(x)

) p(q(x)+r−1)
q(x) · |x|−

pα(q(x)+r−1)
q(x) dx

≤ C

∫
Dρ

|x|α|v|q(x)dx+ C

∫
Dρ

|x|−
pα(q(x)+r−1)

q(x)−p(q(x)+r−1)dx

≤ C

∫
Dρ

|x|α|v|q(x)dx+ C

∫
Dρ

|x|
− pα(q+ρ +r−1)

q+ρ −p(q
+
ρ +r−1)dx

≤ CL

C0

+ Cρ
3− pα(q+ρ +r−1)

q+ρ −p(q
+
ρ +r−1)

≤ C. (3.7)

Choose r and ρ such that 6(q(x) + r− 4) ≤ p(q(x) + r− 1). By the Hölder inequality,

we deduce from (3.7) that

∫
Dρ

|v|q(x)+rdx ≤

(∫
Dρ

|v|6dx

) 4
6
(∫

Dρ

|v|6(q(x)+r−4)dx

) 1
6
(∫

Dρ

dx

) 1
6

≤ C‖v‖4
6

(∫
Dρ

(1 + |v|p(q(x)+r−1))dx

) 1
6

|Dρ|
1
6

≤ Cρ
1
2‖v‖4

6. (3.8)

Since v ∈ H1
0 (Ω) is a solution of problem (2.2), when a = 0, we have

−(b

∫
Ω

|∇v|2dx)4v = kµ(x, v), in Ω. (3.9)
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Multiply problem (3.9) by v and integrate, it implies from (3.3) and (3.8) that

b‖v‖4 =

∫
Ω

kµ(x, v)vdx

=

∫
Ω\Ωρ

kµ(x, v)vdx+

∫
Ωρ

kµ(x, v)vdx

≤
∫
Dρ

|v|q(x)+rdx+mρ

≤ Cρ
1
2‖v‖4

6 +mρ

≤ Cρ
1
2 (S−1

3 )2‖v‖4 +mρ

≤ Cρ
1
2‖v‖4 +mρ, (3.10)

where S3 is the best embedding constant for H1
0 (Ω) → L6(Ω). We can choose ρ0 > 0

sufficiently small such that

b− Cρ
1
2
0 > 0.

It follows from (3.10) that ∫
Ω

|∇v|2dx ≤ C.

Lemma 3.2. Suppose that a ≥ 0, b > 0, the conditions (Q1) and (Q2) hold. If v is

a critical point of Iµ with Iµ(v) ≤ L, then there exists a positive constant M = M(L)

independent of µ such that ‖V ‖∞ ≤M .

Proof. Using the Sobolev embedding theorem, we have∫
Ω

|v|6dx ≤ C

(∫
Ω

|∇v|2dx
)3

≤ C. (3.11)

Let s > 0 and t = q+ + r. We have∫
Ω

∇ϕ∇ϕ2s+1dx = (2s+ 1)

∫
Ω

|∇ϕ|2ϕ2sdx > 0,

for any ϕ ∈ H1
0 (Ω). Since v is a solution of problem (2.2), multiply problem (2.2) by

v2s+1 and integrate to obtain

b‖v‖2

∫
Ω

∇v∇v2s+1dx ≤ (a+ b‖v‖2)

∫
Ω

∇v∇v2s+1dx

=

∫
Ω

kµ(x, v)v2s+1dx

≤ C

(∫
Ω

|v|2dx+

∫
Ω

|v|2s+tdx
)
.

9



It implies that

b‖v‖2

∫
Ω

|∇v|2v2sdx =
b‖v‖2

2s+ 1

∫
Ω

∇v∇v2s+1dx

≤ C

(∫
Ω

|v|2dx+

∫
Ω

|v|2s+tdx
)
. (3.12)

On the one hand, by the Sobolev embedding theorem, we have

b‖v‖2

∫
Ω

|∇v|2v2sdx =
b‖v‖2

(1 + s)2

∫
Ω

|∇v1+s|2dx

≥ b‖v‖2

(1 + s)2
C

(∫
Ω

|v|6(1+s)dx

) 1
3

. (3.13)

On the other hand, by the Hölder inequality and (3.11), we have∫
Ω

|v|2s+tdx ≤
(∫

Ω

|v|6dx
) t−2

6
(∫

Ω

|v|2(1+s) 6
8−tdx

) 8−t
6

≤ C‖v‖t−2

(∫
Ω

|v|(1+s) 6
ddx

) d
3

, (3.14)

where d = 8−t
2
> 1. And by the Sobolev embedding theorem, we have∫

Ω

|v|2dx ≤ C‖v‖2. (3.15)

According to (3.12), (3.13), (3.14) and (3.15), we obtain

b‖v‖2
(∫

Ω
|v|6(1+s)dx

) 1
3

≤ (1 + s)2

C
b‖v‖2

∫
Ω
|∇v|2v2sdx

≤ (1 + s)2

C
· C
(∫

Ω
|v|2dx +

∫
Ω
|v|2s+tdx

)
≤ (1 + s)2

C
· C

(
C‖v‖2 + C‖v‖t−2

(∫
Ω
|v|(1+s) 6

ddx

) d
3

)
,

then, by Lemma 3.1, when b > 0, we have(∫
Ω

|v|6(1+s)dx

) 1
3

≤ (C(1 + s))2

(
1 + ‖v‖t−4

(∫
Ω

|v|(1+s) 6
ddx

) d
3

)

≤ (C(1 + s))2

(
1 + (

∫
Ω

|v|(1+s) 6
ddx)

d
3

)
.
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Notice that 1
2(1+s)

< 1, we have(∫
Ω

|v|6(1+s)dx

) 1
6(1+s)

≤ (C(1 + s))
1

1+s

(
1 +

(∫
Ω

|v|(1+s) 6
ddx

) d
6(1+s)

)

≤ (2C(1 + s))
1

1+s max

{
1,

(∫
Ω

|v|(1+s) 6
ddx

) d
6(1+s)

}
. (3.16)

Now we carry out an iteration process. Set sk = dk − 1 for k = 1, 2, · · · . By (3.16),

we have(∫
Ω

|v|6dkdx
) 1

6dk

≤ (2Cdk)
1

dk max

{
1,

(∫
Ω

|v|6dk−1

dx

) 1

6dk−1

}

≤ Πk
j=1(2Cdj)

1

dj max

{
1,

(∫
Ω

|v|6dx
) 1

6

}

≤ (2C)
∑k
j=1 d

−j · d
∑k
j=1 jd

−j
max

{
1,

(∫
Ω

|v|6dx
) 1

6

}
. (3.17)

Since d > 1, the series
∞∑
j=1

d−j and
∞∑
j=1

jd−j are convergent. Letting k →∞, we conclude

from (3.11) and (3.17) that ‖v‖∞ ≤M . The proof is complete.

Proof of Theorem 1.1. By Theorem 2.1, we know that problem (2.2) has at least

a nonnegative nontrivial solution uµ satisfying 0 < Iµ(uµ) < L. By definition of the

function mµ, we have mµ(t) = t for t ≤ 1
µ
. Hence, problem (2.2) reduce to problem

(1.1) for |u| ≤ 1
µ
. Let µ < 1

2M
. By Lemma 3.2, we have

|uµ| ≤
1

µ
, (3.18)

then uµ is indeed a nonnegative nontrivial solution of problem (1.1). The proof of

Theorem 1.1 is now complete.
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