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Abstract

1. The encroachment of woody plants into grasslands is an ongoing global problem that is largely attributed to anthropogenic

factors such as climate change and land management practices. Determining the mechanisms that drive successful encroachment

is a critical step towards planning restoration and long-term management strategies. Feedbacks between soil and aboveground

communities can have a large influence on the fitness of plants and must be considered as potentially important drivers for

woody encroachment. 2. We conducted a plant-soil feedback experiment in a greenhouse between eastern redcedar Juniperus

virginiana and four common North American prairie grass species. We assessed how soils that had been occupied by redcedar, a

pervasive woody encroacher in the Great Plains of North America, affected the growth of big bluestem, little bluestem smooth

brome, and western wheatgrass over time. We evaluated the effect of redcedar on grass performance by comparing the height

and biomass of individuals of each grass species that were grown in live or sterilized conspecific or redcedar soil. 3. We

found that redcedar created a negative plant-soil feedback that limited the growth of two species. These effects were found in

both live and sterilized redcedar soils, indicating redcedar may exude an allelochemical into the soil that limits grass growth.

4. Synthesis. By evaluating the strength and direction of plant-soil feedbacks in the encroaching range, we can further our

understanding of how woody pants successfully establish in new plant communities. Our results demonstrate that plant-soil

feedback created by redcedar inhibits the growth of certain grass species. By creating a plant-plant interaction that negatively

affects competitors, redcedars increase the probability of seedling survival until they can grow to overtop their neighbors. These

results indicate plant-soil feedback is a mechanism of native woody plant encroachment that could be important in many systems

yet is understudied.
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Abstract

1. The encroachment of woody plants into grasslands is an ongoing global problem that is largely at-
tributed to anthropogenic factors such as climate change and land management practices. Determining
the mechanisms that drive successful encroachment is a critical step towards planning restoration and
long-term management strategies. Feedbacks between soil and aboveground communities can have a
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large influence on the fitness of plants and must be considered as potentially important drivers for
woody encroachment.

2. We conducted a plant-soil feedback experiment in a greenhouse between eastern redcedar Juniperus
virginiana and four common North American prairie grass species. We assessed how soils that had been
occupied by redcedar, a pervasive woody encroacher in the Great Plains of North America, affected the
growth of big bluestem, little bluestem smooth brome, and western wheatgrass over time. We evaluated
the effect of redcedar on grass performance by comparing the height and biomass of individuals of each
grass species that were grown in live or sterilized conspecific or redcedar soil.

3. We found that redcedar created a negative plant-soil feedback that limited the growth of two species.
These effects were found in both live and sterilized redcedar soils, indicating redcedar may exude an
allelochemical into the soil that limits grass growth.

4. Synthesis. By evaluating the strength and direction of plant-soil feedbacks in the encroaching range,
we can further our understanding of how woody pants successfully establish in new plant communities.
Our results demonstrate that plant-soil feedback created by redcedar inhibits the growth of certain
grass species. By creating a plant-plant interaction that negatively affects competitors, redcedars
increase the probability of seedling survival until they can grow to overtop their neighbors. These
results indicate plant-soil feedback is a mechanism of native woody plant encroachment that could be
important in many systems yet is understudied.

Keywords:

Plant-soil feedback, woody encroachment, eastern redcedar, allelopathy, prairie, soil community, Juniperus
virginiana , range expansion

1 | Introduction

Plants make species-specific changes to the biotic and abiotic conditions of their near-soil environment which
can affect the fitness of future occupants (Bever et al. 1997; Bezemer et al.2006; Gundale and Kardol
2021). This phenomenon, deemed plant-soil feedback, can have a large influence on competitive interactions,
community composition and function (van der Putten et al. 2013; Lekberg et al. 2018; Crawford et al.
2019). The strength and direction of a feedback is the product of several interacting mechanisms including
soil-nutrient availability, the presence of pathogenic natural enemies and beneficial mutualists, and the effects
of secondary chemicals (i.e. allelochemicals) that are exuded from plants (Bennett and Klironomos 2019).

Woody plant encroachment into grasslands is a global phenomenon that alters ecosystem function (Eldridge
et al. 2011; Naito and Cairns 2011). The conversion of grasslands to woodlands can decrease biodiversity,
change ecosystem structure and function, reduce productivity for livestock, alter water resource availability,
and change the carbon balance (Barger et al. 2011; Ratajczak et al. 2012; Anadón et al. 2014; Acharya et
al. 2018). Managing for encroaching species is difficult because the influence of factors differs between study
species and systems (Tomiolo and Ward 2018). Fire suppression and livestock grazing are land-management
practices that are frequently cited as the primary drivers of woody plant encroachment (Briggs et al. 2005;
Van Auken 2009). The global trend of climate change, specifically increased temperature, nutrient deposition,
and elevated CO2 levels, may also explain continental-scale patterns of woody species expansion (Devineet
al. 2017). An additional factor that may promote encroachment is plant-soil feedback, which is a mechanism
that can promote the establishment of woody species and reinforce the dominance of a woody state (Peters
et al. 2020).

In North America, woody encroachment is occurring in the deserts and rangelands of the west, the savannas
of the south, and the grasslands of the Great Plains region (Van Auken 2000; Ratajczak et al. 2012). Tree
cover in rangelands of the western United States has increased by as much as 50% in the last 30 years,
resulting in ˜$5 billion in lost revenue (Morford et al. 2021). Encroachment in the Great Plains region of the
United States is particularly concerning, with invading woody shrubs (e.g. Cornus drummondii ) and trees
(e.g. Juniperus virginiana ) replacing grassland plant communities at a rate of up to 1.7 % per year (Barger
et al. 2011).
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Understanding how successful woody encroachers establish and spread is critical to being able to manage
them effectively and efficiently. It is of particular importance to understand mechanisms that provide an
advantage to species in their expanded range and to quantify the strength of that advantage. This paper
explores plant-soil feedback as a potential mechanism that has facilitated the movement of eastern redcedar
(J. virginiana ) from its historical range into the prairies of the Great Plains and into disturbed areas within
their current ranges. Eastern redcedar (hereafter redcedar) is the most common, widely distributed conifer
that is native to eastern North America (Fowells, 1965; Ward, 2020).

Redcedar tolerates a wide variety of climatic conditions including temperature extremes and drought. Redce-
dar is considered a long-lived, early seral species that can be dominant in a forest or woodland habitat until
later seral species establish (Lawson, 1990; Briggs et al., 2002). Historically, populations persisted where the-
re was reduced threat of fire, such as on rocky outcrops or barrens (Guyette et al. 2002; Briggs et al. 2002).
Several mechanisms have been proposed that explain why redcedar is a successful encroacher. In tallgrass
prairies there is strong evidence for the interaction of extended fire regimes and livestock grazing intensity
being determinants of redcedar expansion (Briggs et al. 2005). The transition from grassland to woodlands
in the Great Plains is largely attributed to land-management practices that have greatly extended fire-return
intervals beyond their pre-European settlement levels (Briggs et al. 2005; Bielskiet al. 2021; Fogarty et al.
2021). There is also some evidence that the C3 photosynthetic pathway may provide an advantage to redce-
dar trees under elevated CO2conditions over many of the warm-season C4 grasses that co-occur in its range
(Iverson et al. 2008; Huntley and Baxter 2013).

1.1 | Plant-soil feedbacks and woody plant encroachment

Plant-soil feedback could favor an encroaching species if it benefits the encroacher (intraspecific positive
feedback) or inhibits competitors (interspecific negative feedback) or both (Bever et al. 1997; Aldorfová et
al. 2020). A typical experimental approach to determine if the soil microbial community is driving plant-
soil feedbacks is to compare plant growth in soils with live microbial communities with soils that have had
their microbial communities sterilized with heat or fungicides (Kulmatiski and Kardol 2008). Greenhouse
feedback-experiments typically have a training phase, where soil is conditioned by the growth of a species of
interest and a phytometer phase, where plants are grown in the training soil to evaluate whether a feedback
affects their growth. A positive feedback occurs when the fitness of subsequent conspecific or heterospecific
plants benefit from growing in soil altered (conditioned) by a given species. Conversely, a negative feedback
describes a reduction in fitness when growing in conditioned soil (Kulmatiski et al.2008a). Plant-soil feedback
is a well-documented mechanism that can favor the fitness of range-expanding and invasive species in plant
communities (Kulmatiski and Kardol 2008; Aldorfová et al. 2020).

We conducted a fully-crossed greenhouse experiment between redcedar and four common North American
prairie grasses (Andropogon gerardi ,Schizachyrium scoparium , Bromus inermis , Pascopyrum smithii ) to
evaluate if redcedar creates plant-soil feedback with any of those species and to determine the strength and
direction of that feedback. If plant-soil feedbacks are a mechanism that help redcedars encroach into prairies,
we hypothesize that we would observe the following outcomes: (a) redcedar would have neutral or positive
conspecific feedbacks; (b) grass growth in redcedar soils would be reduced when compared to growth in
intraspecific soils; (c) grass growth in live redcedar soil would be reduced when compared to sterile redcedar
soil.

2 | Materials and Methods

2.1 | Study Species

We selected four common perennial grass species to be phytometers of soil conditioned by eastern redce-
dar. We selected two C3and two C4 grasses for this experiment because both photosynthetic pathways are
common in North America and frequently co-occur, although they partition dominance along a gradient
of temperature at the continental scale (Teeri and Stowe 1976; Stillet al. 2003). Andropogon gerardi (big
bluestem) andSchizachyrium scoparium (little bluestem) are common, native warm-season C4 bunchgrasses
with ranges that typically overlap in tall- or mixed-grass prairies (Weaver 1954; Wang et al. 2013). Pasco-
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pyrum smithii (western wheatgrass) is a common, native cool-season C3 rhizomatous grass that occurs in
mixed-grass prairies (Dong et al. 2014). Bromus inermis(smooth brome) is a common, Eurasian cool-season
C3rhizomatous grass that has rapidly spread across North American grasslands since its introduction in the
late 1800s (Vogel 2004).B. inermis occurs in all contiguous states of the United States. All four grass species
can co-occur with each other and with redcedar in portions of their range (Weaver 1942; Burns 1990).

2.2 | Phase I: Training Phase

In the training phase of the experiment individuals are grown in potting mix to condition (or train) soils
for use in the feedback phase. In February 2020 four shallow trays were filled with sterilized sand. Sand was
steam sterilized in a pressurized autoclave at 121 ºC for ˜60 min, cooled and then sterilized for an additional
cycle (e.g. Crawford & Knight, 2017). Each tray was sown with a monoculture of A. gerardi , S. scoparium,
B. inermis , orP. smithii . All seeds were purchased from OPN Seed, Ohio, USA. In early March 2020, 30
seedlings (mean grass height ˜ 5 cm) of each species were transplanted into 5.6 L pots of common potting
mix (120 pots total). Plants were grown in a greenhouse and received auxiliary lighting in the evening hours
to promote growth. Ten randomly selected pots of each grass species were harvested in mid-June following
˜16 weeks of growth. In addition, we randomly selected ten pots from a pool of ˜18-month-old redcedars
that had been growing in 5.6 L pots in the same greenhouse for the previous ten-months. Grass and tree
samples were clipped at the root collar and aboveground biomass was dried in a 65 ºC oven and weighed.
Training soils were separated from root materials manually by running material through a 2 mm sieve. Half
of the soil (> 2 L) collected from each sample was set-aside for sterilization in an autoclave. Each pot was
processed individually, and all materials used in processing were sterilized with an alcohol solution in-between
each sample. This procedure was established to prevent the transfer of soil particles and microbes between
samples.

2.3 | Phase II: Phytometer Phase

In June 2020, we germinated seeds of the same four grass species following the procedure outlined above.
Eastern redcedar were purchased from Pinewoods nursery, New Jersey. Individual grass and redcedar seed-
lings were transferred into 2.8 L pots that contained home oraway soils that were either live or sterilized
. They were planted in pots using the following method: We added 1.3 L of sterilized sand, then 0.4 L of
conditioned training soil from one of the five above-mentioned species, followed by a 0.3 L cap of sterili-
zed sand (Appendix Figure 1). We used a full-factorial design with ten replicates of each phytometer- and
conditioned-soil combination, resulting in a total of 500 experimental pots (Figure 1). Grasses were grown in
controlled greenhouse conditions for 96 days. Eastern redcedar pots were allowed to grow for 13 months due
to their slower growth rate. The maximum height of each plant was measured twice a week for the duration
of the experiment. At the end of the experiment, each sample was cut at the root collar and dried in an oven
prior to weighing above- and belowground biomass.

Figure 1: Illustration showing how soil from each training pot was distributed to ten new pots for the
phytometer phase. There were 50 total training sample pots, ten from each study species. The grey pot
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represents one of the 50 training pots. The remaining pots are colored according to the phytometer that was
grown in the soil conditioned by a given species in the training phase.

2.4 | Statistical Analysis

Height data were recorded at regular intervals over the course of the experiment to aid in determining when
plant-soil feedbacks occurred and to assess their strength and direction. The rate of plant growth is variable
over time, which means non-linear models will generally perform better than linear models at capturing how
height changes over time. We chose to use generalized additive models (GAMs) to evaluate grass growth
over time. GAMs are similar to generalized linear models except that they replace linear covariates with
local smoothing functions that enable modeling of non-linear processes (Hastie and Tibshirani 1986). To
help us understand the overall effect and timing of plant-soil feedbacks on the four phytometers, we built
GAMs of the height data of each treatment group over time using the mgcv package (v1.8-34; Wood, 2011)
in R. The following is a simplification of the generalized additive model (GAM) formula that was used for
each group of phytometers (Yee and Mitchell 1991).

E logy = x1 : x2 + (
∑

{(ti)+ {(ti)x1 : x2) + (1|x3)

The formula relates the expected value (E) log10-transformed height (logy) as a function of the interaction
between the factors conditioning species (x1) and sterilization status (x2), the sum ([?]) of smoothing ({)
variables time (ti) and time given each level of the interaction of the two factors ({(ti)x1 : x2), and a random
intercept (1|x3)) using the unique ID for each pot in the phytometer phase of the experiment. The random
intercept was selected to account for repeated measures on each phytometer (Pedersen et al., 2019). The
models used the Gaussian family and identity link function. Model selection was done by comparing the AIC
for candidate models. We found this model formulation to explain the most variance while retaining only
the variables that contribute to explanatory power of the model. We plotted the output of these generalized
additive models (GAMs) using the tidymv R package to visualize and facilitate comparison of plant height
over time under different treatments (Coretta, 2022).Post hoc comparisons were done using the emmeans
package (v1.7.1-1; Russell, 2021). For each phytometer species, the mean estimated height was contrasted
between each treatment group. Significance was determined using a Tukey post hoc comparison adjustment
for a family of ten estimates.

Table 1. The model type and R2 value for each biomass type (Shoot, Root, or Total) and phytometer
Andropogon gerardi (ANGE), Schizachyrium scoparium (SCSC), Bromus inermis (BRIN), and Pascopyrum
smithii (PASM). Model types are mixed effects (M) or linear (L) and either contain an interaction term (I)
between conditioning soil type and sterilization status or do not include the interaction term (no I). Asterisks
(*) denote models that have significant main effects. Adjusted R2 (adj) quantifies the explained variance of
fixed effects in linear models. Conditional R2 (cond) quantifies the variance described by fixed and random
effects in mixed models. SeeMethods section for detailed model description.

Phytometer Biomass Model Type R-squared (type)

ANGE Shoot M, I, * 0.81 (cond)
ANGE Root M, I, * 0.73 (cond)
ANGE Total M, I, * 0.76 (cond)
SCSC Shoot L, I 0.01 (adj)
SCSC Root L, I 0.01 (adj)
SCSC Total L, I 0.02 (adj)
BRIN Shoot L, I, * 0.63 (adj)
BRIN Root M, I, * 0.51 (cond)
BRIN Total L, I, * 0.54 (adj)
PASM Shoot L, I, * 0.53 (adj)
PASM Root M, no I, * 0.66 (cond)
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Phytometer Biomass Model Type R-squared (type)

PASM Total M, no I, * 0.64 (cond)

We assessed how the aboveground, belowground, and overall biomass differed between treatments, splitting
the dataset into observations from each phytometer species. We ran a mixed-effects model (GLMM) relating
biomass (transformed to the log10 scale) as a function of the conditioning species, the sterilization status of
the soil, and the interaction between the two. The pot ID number of the conditioned training soil was used
as a random intercept with a fixed mean. Conditioned soils came from individual pots in the training stage
that may differ in their abiotic and biotic features, so we chose to use mixed-effects models to account for
the variance in the strength of feedback due to these differences. If the random effect was not significant
(i.e. individual pots from the training stage did not differ in their effect on the feedback), we ran the same
formula as a generalized linear model (GLM). For GLMMs or GLMs of aboveground, belowground, and
overall biomass data, the most parsimonious model was selected through comparison of AIC between full
and reduced models. The type of model, whether an interaction term was used, and the R2 value for each
model is indicated (Table 1). To determine if any of the simple main effects were significant, we ran the same
formula as an ANOVA using the linear model to calculate degrees of freedom and sum of squares error. We
were particularly interested in comparing the effects of live and sterilized eastern redcedar soil to live and
sterile home soils for each phytometer species. To elucidate this relationship for each phytometer species, we
performed post hoc pairwise comparisons to obtain the estimated marginal means (also called least-squares
means) using the emmeans package (Russell 2021).

We visualized differences in phytometer biomass between live and sterile home and redcedar soils using effects
plots that were derived from the linear model fit for each set of contrasts (Ho et al. 2019; Wilschut and
van Kleunen 2021). These plots illustrate simple mean differences between contrasts of interest with 95%
confidence intervals using the sample data. The second part of these plots shows the modeled means and
95% confidence intervals paired with raw data points (Figure 2).

3 | Results

In general, soils conditioned by Juniperus virginiana (redcedar) suppressed the C3 grasses Pascopyrum smithii
andBromus inermis relative to growth in their home soils (Table 2 and Appendix Table 1). The C4 grasses
Andropogon gerardi and Schizachyrium scoparium showed mixed feedbacks in soil conditioned by redcedar
when compared to the height and biomass of plants grown in their home soils (Table 2 and Appendix Table
1).
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Figure 2. Plot showing modeled grass heights (mean line and 95% confidence intervals) and raw data
(points) for the phytometers (A)Andropogon gerardi , (B) Schizachyrium scoparium , (C)Bromus inermis ,
and (D) Pascopyrum smithii grown in their home or away (Juniperus virginiana ) soils. The shaded areas
illustrate 95% confidence intervals. Modeled means and confidence intervals are derived from the output
of generalized additive models of log10(height) as a function of the interaction between the factors soil
sterilization status and conditioning soil type and the smoothing variables days of growth , days of growth
given the interaction of treatment factors , and the random intercept of pot ID for each plant. Grasses
grown in live or sterile soils are indicated by red or blue coloration, respectively. Species names within
each subfigure are abbreviated as follows: A. gerardi (ANGE), S. scoparium (SCSC), B. inermis (BRIN),P.
smithii (PASM), and J. virginiana (JUVI).

Table 2.

The mean estimate, variance, and confidence intervals of effects on shoot biomass for contrasting interac-
tions of each home and away (redcedar (JUVI)) and soil sterilization status. Phytometers and conditioned
soil types are abbreviated as follows: Andropogon gerardi (ANGE), Bromus inermis (BRIN), Pascopyrum
smithii(PASM), and Schizachyrium scoparium (SCSC). Soils are either live (L) or sterile (S).

Phytometer Contrasts estimate SE df lower CL upper CL t ratio p

ANGE ANGE L - JUVI L -1.662 0.324 25.382 -2.554 -0.771 -5.126 <0.001
ANGE L - ANGE S -1.279 0.193 18 -1.823 -0.734 -6.634 <0.001
ANGE L - JUVI S -1.509 0.324 25.382 -2.4 -0.618 -4.652 <0.001
JUVI L - ANGE S 0.384 0.324 25.382 -0.508 1.275 1.183 0.643
ANGE S - JUVI S -0.23 0.324 25.382 -1.121 0.661 -0.709 0.892
JUVI L - JUVI S 0.154 0.193 18 -0.391 0.698 0.797 0.855

7



P
os

te
d

on
A

u
th

or
ea

6
J
u
n

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
65

45
34

97
.7

37
19

43
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Phytometer Contrasts estimate SE df lower CL upper CL t ratio p

SCSC JUVI L - SCSC L 0.405 0.773 36 -1.677 2.487 0.524 0.953
JUVI L - JUVI S 1.049 0.773 36 -1.033 3.132 1.357 0.534
JUVI L - SCSC S -0.332 0.773 36 -2.415 1.75 -0.43 0.973
SCSC L - JUVI S 0.644 0.773 36 -1.438 2.726 0.833 0.838
SCSC L - SCSC S -0.737 0.773 36 -2.82 1.345 -0.954 0.776
JUVI S - SCSC S -1.382 0.773 36 -3.464 0.701 -1.787 0.296

BRIN BRIN L - JUVI L 0.987 0.155 36 0.57 1.405 6.373 <0.001
BRIN L - BRIN S -0.096 0.155 36 -0.513 0.322 -0.618 0.926
BRIN L - JUVI S 0.708 0.155 36 0.29 1.125 4.567 <0.001
JUVI L - BRIN S -1.083 0.155 36 -1.5 -0.666 -6.991 <0.001
JUVI L - JUVI S -0.28 0.155 36 -0.697 0.137 -1.806 0.287
BRIN S - JUVI S 0.803 0.155 36 0.386 1.221 5.185 <0.001

PASM JUVI L - PASM L -0.925 0.198 36 -1.46 -0.391 -4.663 <0.001
JUVI L - JUVI S -0.301 0.198 36 -0.835 0.233 -1.517 0.438
JUVI L - PASM S -1.206 0.198 36 -1.741 -0.672 -6.079 <0.001
PASM L - JUVI S 0.624 0.198 36 0.09 1.159 3.145 0.017
PASM L - PASM S -0.281 0.198 36 -0.816 0.253 -1.416 0.498
JUVI S - PASM S -0.905 0.198 36 -1.44 -0.371 -4.562 <0.001

3.1 | Plant height

Comparisons between the estimated mean height of each phytometer species grown in home and redcedar
soils revealed many significant differences (Appendix Table 1). A. gerardi height in live home soils showed
a strong negative feedback when compared to height in sterile home soils (t = 17.2, p<0.001). Height of
A. gerardi in sterile home soils was greater than in sterile redcedar soils (t = 3.3, p = 0.029), but greater
than height in home live soils (t = 15.0, p <0.001) (Figure 2a). Height of A. gerardi in live home soils was
significantly shorter than in live redcedar soils (t = -16.3, p < 0.001). Similarly, S. scoparium height in
home sterile soils was much greater than in home live soil (t = 10.3, p<0.001), indicating a strong negative
feedback. S. scoparium height in live (t = 7.6, p < 0.001) and sterile (t = -7.7, p < 0.001) redcedar soils were
shorter than in home sterile soils. There was no detectable difference in S. scopariumheight when comparing
growth in home live soils and sterile or live redcedar soils (Figure 2b). There was no detectable difference
inB. inermis height in live home soils and sterile home soils (t =

-2.7, p = 0.194). The height of B. inermis was suppressed in sterile redcedar soils relative to live (t =
-15.2, p < 0.001) and sterile (t = 13.0, p <0.001) home soils. (Figure 2c). The height of B. inermis was
also suppressed in live redcedar soils relative to live (t = 13.5, p < 0.001) and sterile (t = 11.2, p <0.001)
home soils (Figure 2c). The height of P. smithii showed no detectable difference between live home soils and
sterile home soils (t = 0.5, p = 1.0). The height of P. smithiigrowth was suppressed in sterile redcedar soils
relative to sterile (t = -10.4, p < 0.001) and live (t = -13.0, p <0.001) home soils. The height of P. smithii
growth was also suppressed in live redcedar soils relative to sterile (t = 13.9, p < 0.001) and live (t = -16.6,
p <0.001) home soils. Live redcedar soils suppressed the height of P. smithii relative to growth in sterile
redcedar soils (t = 4.5, p < 0.001) (Figure 2d).

3.2 | Plant biomass

There were many significant differences on the final shoot biomass of each species in the effects of the
interaction between home or away (redcedar) soil types and the main effects of whether the soil was live or
sterilized (Table 2). Root biomass and total biomass results generally aligned with those of shoot biomass
(see Appendix Figures 2, 3 and Tables 2, 3).

Plant-soil feedbacks where soil conditioned by redcedar suppressed shoot biomass were not detected for
either C4 grass species in the study. A. gerardi shoot biomass in live home soils showed a strong negative
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feedback (estimate = -1.3, p < 0.001) when compared to the biomass of samples grown in sterile home soils.
Shoot biomass of A. gerardi grown in live home soils was less than its biomass when grown in redcedar soils
that were live (estimate = -1.6, p < 0.001) or sterile (estimate = -1.5, p < 0.001). No significant effects or
interactions were found when modeling shoot biomass as a function of growth in home or away soils and soil
sterilization status.

The C3 grasses in this experiment showed strong negative feedbacks when grown in redcedar soil (Figure 3).
However, the shoot biomass of B. inermis did not show any significant feedback when growth between live
and sterile home soils (estimate = -0.10, p = 0.93) was contrasted. Shoot biomass of B. inermis was reduced
when grown in live (estimate = 0.99, p < 0.001) or sterile (estimate = 0.71, p < 0.001) redcedar-soils in
comparison to shoot biomass in live home soils. Similarly, shoot biomass of B. inermis was reduced when
grown in live (estimate = -1.1, p < 0.001) or sterile (estimate = 0.80, p < 0.001) redcedar soils in comparison
to shoot biomass in sterile home soils. Shoot biomass ofB. inermis did not differ when grown in live or sterile
redcedar-conditioned soils (estimate = -0.28, p = 0.29). The shoot biomass of P. smithii grown in home
live or sterile soils did not differ (estimate = -0.28, p = 0.50). Shoot biomass of P. smithiigrown in sterile
away soils was reduced significantly when compared to live (estimate = 0.62, p = 0.017) or sterile (estimate
= -0.91, p < 0.001) home soils. Shoot biomass of P. smithii was reduced when grown in live redcedar soils
when compared to live (estimate = -0.93, p < 0.001) or sterile (estimate = -1.2, p < 0.001) home soils.
Shoot biomass of P. smithii did not differ when grown in live or sterile redcedar-conditioned soils (estimate
= -0.30, p = 0.44).

Figure 3. These plots illustrate the effect of home- and away-conditioned soils and whether the soil is ster-
ilized (S) or live (L) on the shoot biomass of (a) Andropogon gerardi (ANGE), (b)Schizachyrium scoparium
(SCSC), (c) Bromus inermis (BRIN), and (d) Pascopyrum smithii (PASM). Top of each figure: Effects plot
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showing the difference in means between home and away soils and sterilization status of those soils. The
horizontal black bars show 95% confidence intervals of the effects. The horizontal dashed line shows where
there is no difference between groups, a 95% confidence interval that crosses this dashed line indicates no
significant difference in the effects of contrasting pairs of treatment groups. The x-axis scale is log10(biomass,
mg). The Y-axis lists the contrasts between each pairing of treatment types. Bottom of each figure: This
portion of each plot shows the modeled response to each treatment pair, where the large solid dot is the
mean and the vertical bars are the modeled 95% confidence intervals. Semi-transparent dots illustrate the
raw data for each treatment combination. Blue indicates live (L) soils and orange indicates soils that were
sterilized (S).

4 | Discussion

The growth of woody species is limited by above- and belowground competition during early stages of
establishment in grasslands (Bush and van Auken 1990; Ward 2020). Identifying mechanisms that could
promote survivorship and growth of woody species during their seedling stage is critical to understanding how
they encroach into grasslands (Van Auken 2000). We observed a negative plant-soil feedback that suppressed
the height and biomass of grasses grown in soil conditioned by redcedar for two of the four species used in this
experiment. This suggests plant-soil feedback may facilitate the establishment of redcedar in its encroaching
range depending on the local plant community at the site of establishment, much has it has done for other
species combinations (Aldorfová et al. 2020).

In our experiment, grass growth in live and sterilized away (redcedar) soil was reduced when compared to
growth in live and sterilized home soils for the C3 grasses B. inermis and P. smithii . Plants frequently
experience strong negative feedback when growing in live home soils due to accumulation of specialized
predators (Bever 1994; Petermann et al. 2008; Lekberg et al. 2018). Therefore, the observed suppression of
grass growth in redcedar-conditioned soils relative to home soils is noteworthy and may represent a key factor
in redcedar expansion into grasslands. Negative feedbacks from dissimilar heterospecific species on target
species can be derived from either an antimicrobial effect of soil biota in the conditioned soil (Haichar et al.
2014) or from the production of allelochemicals that negatively affect the growth of the target plant directly
or by inhibiting the establishment of beneficial soil microbial communities (Mommer et al. 2008; Bennett and
Klironomos 2019). In this experiment, we observed the inhibition of phytometer growth in sterilized away
soils, which may be indicative that redcedar exudes an allelochemical into its near-soil environment. We are
uncertain why C3 species showed negative feedbacks and not C4 species. A possible explanation is that the
C3 redcedar has novel weapons against these two species (Callaway and Ridenour 2004; Orians and Ward
2010). The Eurasian origins of B. inermis that now occupies the entire contiguous United States and the
recent switch to dominance of P. smithii in parts of the Great Plains during the Dust Bowl could indicate
that these species have had relatively limited exposure to any secondary chemicals produced by redcedar
(Weaver 1942; Knapp et al. 2020). Another possibility is that because redcedar is a C3 plant, it produces
a stronger negative feedback with other C3plants. Further study of more C3 grass species will be needed to
determine if this is a causal relationship or a coincidence.

The modification of the soil environment by allelopathic woody plants is an important process that can
create a positive feedback for their encroachment (Eldridge et al. 2011; Caracciolo et al.2016). Researchers
have explored the possibility of allelopathy in several North American Juniperus species with mixed results
(Schott and Pieper 1985; Norman and Anderson 2003). Past investigations of redcedar allelopathy have
focused on germination rates of prairie plants. For example, Corbett and Lashley (2017) found redcedar
litter additions did not negatively affect germination of test species. However, Stipe and Bragg (1989) noted
suppression of germination for a different pool of test species grown in soil collected from a redcedar stand.
Our findings take this research one step further by demonstrating the suppression of plant performance
following successful germination. Taken together, the ability of redcedar to reduce the germination rate of
grasses and suppress their growth following establishment may be a key factor in its successful encroachment
of prairies.

Our experimental results show a negative feedback for grasses grown in soil conditioned by redcedar, but
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interpretation of these results must also consider the myriad factors that influence plant-plant interactions
in the field. Our study examined growth of individuals in a greenhouse, using potting mix and sand as soil
substrates, and comparing live inoculations of conditioned soil with those that had been sterilized under heat
and pressure. The strength of plant-soil feedbacks measured in artificial conditions have been found to be
inflated relative to those observed in field conditions (Kulmatiski and Kardol 2008). Confounding factors that
could change the relative strength of feedback in field conditions include the near-neighborhood community
composition and competitive interactions. For example, we observed strong suppression of individuals of
B. inermis and P. smithiigrown in live and sterilized redcedar soils. In field conditions, individuals of B.
inermis and P. smithii could be expected to grow in patches where they have many conspecific neighbors
(Fink and Wilson 2011; Ott and Hartnett 2015). In the prairies of the Great Plains, B. inermis has been
shown to have positive conspecific plant-soil feedback that can exclude heterospecific plants (Vinton and
Goergen 2006). Additionally, when B. inermis occurs at high density, it has been shown to be a strong
competitor with redcedar seedlings (Hamati et al. 2021). In mixed-grass prairies, P. smithii invests heavily
in spreading its resources through rhizomes that aid in ensuring plant survival in changing conditions (Ott
and Hartnett 2015). Taken in this context, it is unlikely that the allelopathic effect of redcedar seedlings
could fully displace B. inermis or P. smithii in a dense monoculture. However, if the suppressive effect of
redcedar is sufficiently large to allow redcedar individuals to establish and survive long enough to overtop
their competitors, then plant-soil feedbacks could be an important factor in the spread of the redcedars.
Inherently, this effect will only apply to near neighbors that overlap in the rooting zone of redcedars (i.e.
over a short distance). Further studies are needed to determine the strength of this effect in field conditions,
the size of the area of impact around trees, the longevity of the effect in the soil, and how the strength of
suppression changes with tree size or age.
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Appendix

Table A1.

This table shows contrasts between modeled height of the four study grasses grown in home and away
(redcedar) soils. The grasses are abbreviated using the following notation: Andropogon gerardi(ANGE),
Schizachyrium scoparium (SCSC), Bromus inermis(BRIN), and Pascopyrum smithii (PASM). These con-
trasts are derived from generalized additive models of log10(height) as a function of the interaction between
the factors soil sterilization status (Live = L and Sterile = S) and parent soil type and the smoothing vari-
ables days of growth , days of growth while accounting for interactions of treatment factors , and the random
intercept of pot ID for each plant. The significance of contrasts was calculated by comparing the ratio be-
tween the estimated marginal means of different groups of interest. If the ratio is <1, this indicates the first
term of the contrast is less than the second term. Conversely, if the ratio is >1, this indicates that the first
term of the contrast is greater than the second term. The significance of these differences was calculated
using a Tukey adjustment of α for a family of ten estimates.

14



P
os

te
d

on
A

u
th

or
ea

6
J
u
n

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
65

45
34

97
.7

37
19

43
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Phytometer Contrast ratio SE df lower CL upper CL null t ratio p

Phytometer Contrast ratio SE df lower CL upper CL null t ratio p

ANGE ANGE S / JUVI S 1.12 0.04 1698.20 1.01 1.25 1 3.3 0.029
ANGE ANGE S / ANGE L 1.88 0.07 1698.20 1.68 2.11 1 17.2 <0.001
ANGE ANGE S / JUVI L 1.02 0.04 1698.20 0.91 1.15 1 0.6 1.000
ANGE JUVI S / ANGE L 1.68 0.06 1698.20 1.50 1.87 1 15.0 <0.001
ANGE JUVI S / JUVI L 0.91 0.03 1698.20 0.82 1.02 1 -2.6 0.207
ANGE ANGE L / JUVI L 0.54 0.02 1698.20 0.48 0.61 1 -16.3 <0.001
SCSC JUVI S / SCSC S 0.74 0.03 1547.97 0.66 0.84 1 -7.7 <0.001
SCSC JUVI S / JUVI L 1.04 0.05 1547.97 0.90 1.19 1 0.8 0.998
SCSC JUVI S / SCSC L 1.06 0.04 1547.97 0.95 1.18 1 1.8 0.761
SCSC SCSC S / JUVI L 1.40 0.06 1547.97 1.22 1.61 1 7.6 <0.001
SCSC SCSC S / SCSC L 1.43 0.05 1547.97 1.28 1.60 1 10.3 <0.001
SCSC JUVI L / SCSC L 1.02 0.04 1547.97 0.90 1.17 1 0.6 1.000
BRIN BRIN S / JUVI S 1.65 0.06 1692.73 1.46 1.87 1 13.0 <0.001
BRIN BRIN S / BRIN L 0.91 0.03 1692.73 0.82 1.02 1 -2.7 0.194
BRIN BRIN S / JUVI L 1.52 0.06 1692.73 1.35 1.71 1 11.2 <0.001
BRIN JUVI S / BRIN L 0.55 0.02 1692.73 0.49 0.63 1 -15.2 <0.001
BRIN JUVI S / JUVI L 0.92 0.04 1692.73 0.81 1.05 1 -2.0 0.578
BRIN BRIN L / JUVI L 1.66 0.06 1692.73 1.48 1.87 1 13.5 <0.001
PASM JUVI S / PASM S 0.67 0.03 1704.72 0.60 0.76 1 -10.4 <0.001
PASM JUVI S / JUVI L 1.19 0.05 1704.72 1.05 1.34 1 4.5 <0.001
PASM JUVI S / PASM L 0.68 0.02 1704.72 0.62 0.75 1 -13.0 <0.001
PASM PASM S / JUVI L 1.76 0.07 1704.72 1.55 2.01 1 13.9 <0.001
PASM PASM S / PASM L 1.02 0.03 1704.72 0.92 1.13 1 0.5 1.000
PASM JUVI L / PASM L 0.58 0.02 1704.72 0.52 0.64 1 -16.6 <0.001

Table A2.

The mean estimate, variance, and confidence intervals of effects on root biomass for contrasting interactions
of each home and away (Redcedar) and soil sterilization status. Phytometers and parent soil types are
abbreviated as follows: Andropogon gerardi (ANGE),Schizachyrium scoparium (SCSC), Bromus inermis
(BRIN), andPascopyrum smithii (PASM). Soils are either live (L) or sterile (S).

Phytometer Contrasts estimate SE df lower CL upper CL t ratio p

ANGE ANGE L - JUVI L -1.813 0.323 29.568 -2.691 -0.935 -5.617 <0.001
ANGE L - ANGE S -1.464 0.236 18 -2.131 -0.798 -6.211 <0.001
ANGE L - JUVI S -1.561 0.323 29.568 -2.44 -0.683 -4.837 <0.001
JUVI L - ANGE S 0.349 0.323 29.568 -0.53 1.227 1.08 0.704
JUVI L - JUVI S 0.252 0.236 18 -0.415 0.918 1.067 0.713
ANGE S - JUVI S -0.097 0.323 29.568 -0.975 0.781 -0.3 0.99

SCSC JUVI L - SCSC L 0.381 0.802 36 -1.778 2.541 0.476 0.964
JUVI L - JUVI S 0.968 0.802 36 -1.191 3.127 1.207 0.626
JUVI L - SCSC S -0.498 0.802 36 -2.658 1.661 -0.621 0.925
SCSC L - JUVI S 0.587 0.802 36 -1.573 2.746 0.732 0.884
SCSC L - SCSC S -0.88 0.802 36 -3.039 1.28 -1.097 0.694
JUVI S - SCSC S -1.466 0.802 36 -3.626 0.693 -1.829 0.277

BRIN BRIN L - JUVI L 1.162 0.236 35.948 0.525 1.799 4.914 <0.001
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Phytometer Contrasts estimate SE df lower CL upper CL t ratio p

BRIN L - BRIN S -0.169 0.232 18 -0.824 0.487 -0.728 0.885
BRIN L - JUVI S 0.357 0.236 35.948 -0.279 0.994 1.512 0.441
JUVI L - BRIN S -1.331 0.236 35.948 -1.968 -0.694 -5.628 <0.001
JUVI L - JUVI S -0.805 0.232 18 -1.46 -0.149 -3.469 0.013
BRIN S - JUVI S 0.526 0.236 35.948 -0.111 1.163 2.226 0.136

PASM JUVI L - PASM L -1.185 0.17 18 -1.665 -0.706 -6.984 <0.001
JUVI L - JUVI S -0.538 0.154 19 -0.97 -0.106 -3.503 0.012
JUVI L - PASM S -1.723 0.229 36.42 -2.339 -1.107 -7.529 <0.001
PASM L - JUVI S 0.647 0.229 36.42 0.031 1.263 2.827 0.036
PASM L - PASM S -0.538 0.154 19 -0.97 -0.106 -3.503 0.012
JUVI S - PASM S -1.185 0.17 18 -1.665 -0.706 -6.984 <0.001

Table A3.

The mean estimate, variance, and confidence intervals of effects on total biomass for contrasting interac-
tions of each home and away (redcedar (JUVI)) and soil sterilization status. Phytometers and conditioned
soil types are abbreviated as follows: Andropogon gerardi (ANGE), Bromus inermis (BRIN), Pascopyrum
smithii(PASM), and Schizachyrium scoparium (SCSC). Soils are either live (L) or sterile (S). Non-integers
for d.f. derive from mixed models. See details in Figure S3.

Phytometer Contrast estimate SE df lower CL upper CL t.ratio p

ANGE ANGE L - JUVI L -1.764 0.318 28.088 -2.631 -0.896 -5.551 <0.001
ANGE L - ANGE S -1.408 0.218 18 -2.023 -0.793 -6.468 <0.001
ANGE L - JUVI S -1.537 0.318 28.088 -2.404 -0.67 -4.837 <0.001
JUVI L - ANGE S 0.356 0.318 28.088 -0.511 1.223 1.12 0.68
JUVI L - JUVI S 0.227 0.218 18 -0.388 0.842 1.042 0.728
ANGE S - JUVI S -0.129 0.318 28.088 -0.996 0.738 -0.406 0.977

BRIN BRIN L - JUVI L 1.14 0.201 36 0.599 1.68 5.678 <0.001
BRIN L - BRIN S -0.13 0.201 36 -0.671 0.411 -0.647 0.916
BRIN L - JUVI S 0.451 0.201 36 -0.089 0.992 2.248 0.13
JUVI L - BRIN S -1.27 0.201 36 -1.81 -0.729 -6.325 <0.001
JUVI L - JUVI S -0.688 0.201 36 -1.229 -0.148 -3.429 0.008
BRIN S - JUVI S 0.581 0.201 36 0.041 1.122 2.896 0.031

PASM JUVI L - PASM L -1.079 0.153 18 -1.511 -0.647 -7.062 <0.001
JUVI L - JUVI S -0.435 0.143 19 -0.838 -0.032 -3.032 0.032
JUVI L - PASM S -1.514 0.21 36.703 -2.078 -0.95 -7.223 <0.001
PASM L - JUVI S 0.644 0.21 36.703 0.08 1.208 3.073 0.02
PASM L - PASM S -0.435 0.143 19 -0.838 -0.032 -3.032 0.032
JUVI S - PASM S -1.079 0.153 18 -1.511 -0.647 -7.062 <0.001

SCSC JUVI L - SCSC L 0.325 0.868 36 -2.012 2.662 0.375 0.982
JUVI L - JUVI S 1.141 0.868 36 -1.196 3.479 1.315 0.56
JUVI L - SCSC S -0.488 0.868 36 -2.826 1.849 -0.563 0.942
SCSC L - JUVI S 0.816 0.868 36 -1.521 3.154 0.94 0.783
SCSC L - SCSC S -0.814 0.868 36 -3.151 1.524 -0.937 0.785
JUVI S - SCSC S -1.63 0.868 36 -3.967 0.708 -1.878 0.255
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Figure A1: This is a basic illustration of how substrates were combined in 2.8 L pots. Sand was sterilized
in an autoclave and cooled prior to being added to each pot. Conditioned soils from the training phase
were added and then capped with additional sand. One individual phytometer was transplanted into each
prepared pot.
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Figure A2. These plots illustrate the effects of home- and away-conditioned soils and whether the soil is
sterilized (S) or live (L) on the root biomass of (a) Andropogon gerardi (ANGE), (b)Schizachyrium scoparium
(SCSC), (c) Bromus inermis (BRIN) and (d) Pascopyrum smithii (PASM). Top of each figure: Effects plot
showing the difference in means between home and away soils and sterilization status of those soils. The
horizontal black bars show 95% confidence intervals of the effects. The horizontal dashed line shows where
there is no difference between groups, a 95% confidence interval that crosses this dashed line indicates no
significant difference in the effects of contrasting pairs of treatment groups. The x-axis scale is log10(biomass,
mg). The Y-axis lists the contrasts between each pairing of treatment types. Bottom of each figure: This
portion of each plot shows the modeled response to each treatment pair, where the large solid dot is the
mean and the vertical bars are the modeled 95% confidence intervals. Dots illustrate the raw data for each
treatment combination. Blue coloration indicates live (L) soils and orange coloration indicates soils that
were sterilized (S).
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Figure A3. These plots illustrate the effect of home- and away-conditioned soils and whether the soil is
sterilized (S) or live (L) on the total biomass of (a) Andropogon gerardi (ANGE), (b)Schizachyrium scoparium
(SCSC), (c) Bromus inermis (BRIN), and (d) Pascopyrum smithii (PASM). Top of each figure: Effects plot
showing the difference in means between home and away soils and sterilization status of those soils. The
horizontal black bars show 95% confidence intervals of the effects. The horizontal dashed line shows where
there is no difference between groups, a 95% confidence interval that crosses this dashed line indicates no
significant difference in the effects of contrasting pairs of treatment groups. The x-axis scale is log10(biomass,
mg). The Y-axis lists the contrasts between each pairing of treatment types. Bottom of each figure: This
portion of each plot shows the modeled response to each treatment pair, where the large solid dot is the
mean and the vertical bars are the modeled 95% confidence intervals. Dots illustrate the raw data for each
treatment combination. Blue indicates live (L) soils and orange indicates soils that were sterilized (S).
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