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Abstract

In this paper, we propose a numerical scheme of the predictor-corrector type for solving nonlinear fractional initial value

problems, the chosen fractional derivative is called the Atangana-Baleanu derivative defined in Caputo sense (ABC). This

proposed method is based on Lagrangian quadratic polynomials to approximate the nonlinearity implied in the Volterra integral

which is obtained by reducing the given fractional differential equation via the properties of the ABC-fractional derivative.

Through this technique, we get corrector formula with high accuracy which is implicit as well as predictor formula which is

explicit and has the same precision order as the corrective formula. On the other hand, the so-called memory term is computed

only once for both prediction and correction phases, which indicates the low cost of the proposed method. Also, the error bound

of the proposed numerical scheme is offered. Furthermore, numerical experiments are presented in order to assess the accuracy

of the new method on two differential equations. Moreover, a case study is considered where the proposed predictor-corrector

scheme is used to obtained approximate solutions of a coupled non-autonomous ABC-fractional differential system.
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1. Introduction

Despite the fact that fractional calculus has a lengthy history in mathematics, it has only recently seen a considerable number of

real-world applications [1]. Fractional derivatives are important due to their attractive characteristics, (e.g. memory effect) [2, 3],

including their wide dynamical range [4, 5]. Many definitions of fractional derivatives and integrals exist, including Riemann-

Liouville, Caputo, Grunwald-Letnikov [6, 7]. In 2015, Caputo and Fabrizio (CF) have suggested a new idea of fractional derivatives

based on the exponential decay [8]. Following that, Atangana and Baleanu proposed a novel concept of fractional derivative with

non-singular and non-local kernel based on the Mittag-Leffler function [9].

Due to the difficulty or impossibility to obtain exact solutions of nonlinear differential equations involving fractional derivatives,

numerical techniques are required to provide approximate solutions. Over the past few decades, numerical methods to solve initial

value problems have attracted great interest from the research community, which support various disciplines, including medicine

[10, 11], chemistry [12, 13], biology [14], and physics [9, 15], etc. Where computational algorithms are implemented. Moreover,

numerical analysis techniques are the perfect tools to evaluate the behavior of real-life complicated models. Therefore, the

implementation of accurate numerical methods is suitable in the problems representing real world phenomena.

Over the past twenty years, several numerical approaches have been developed by researchers for solving fractional ordinary

differential equations with general nonlinearity and various definitions of fractional derivatives.

For fractional diffential equations with the Caputo fractional derivative, Diethelm et al. [16, 17, 18], Nguyen and Jang [21]

used the linear or quadratic Lagrange interpolating polynomials to approximate the nonlinear term in Volterra integral equation, in

order to solve it numerically with the so-called Adams-type predictor-corrector method, which is identical to the numerical solution

Math. Meth. Appl. Sci. 0000, 00 1–17 Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using mmaauth.cls [Version: 2009/09/02 v2.00]



Mathematical
Methods in the
Applied Sciences S. Aljhani, M.S.Md. Noorani, R. Douaifia, S. Abdelmalek

of the fractional differential equation. Li et al. [23] obtained the approximate solution for Volterra integral equation based on

higher-order piecewise interpolation polynomial, and use the Simpson method to design a higher-order scheme for the fractional

differential equation. The fractional Adams-Bashforth-Moulton method developed with Newton linear/quadratic interpolations,

by Atangana and Araz, Douaifia et al. [19, 14]. For the fractional differential equations which involving variable-order (VO)

fractional derivative (FD) in sense of Caputo (it is an extension of constant-order FD). Moghaddam et al. [24], Douaifia and

Abdelmalek [25], got the numerical solutions of VO fractional differential equations with/without delay, using predictor-corrector

approach. Also, the authors [27, 28] applied spectral collocation method to obtain solutions of the VO differential equations

with/without integrals term.

Based on the previous mentioned approaches, several numerical techniques have developed to solve fractional differential

equations with Atangana-Baleanu fractional derivative. Toufik and Atangana, Shah et al. [15, 29] used the two-step Lagrange

polynomial interpolation to obtain solution of fractional differential equations. Baleanu et al. [30] constructed Adams-type

predictor-corrector method. Sadeghi et al. [31] obtained the approximate solution based on Genocchi polynomials. Ganji et al. [26]

applied the fifth-kind Chebyshev polynomials to obtain solution of the ABC-fractional multi-variable orders differential equations.

Ganji and Jafari [32] used the spectral technique for solving integro-differential equations. Abdeljawad et al. [33] developed a

predictor-corrector method to solve fractional differential equations involving a generalized Atangana-Baleanu derivative with a

three-parameter Mittag-Leffler function in its kernel. Then, Baba et al. [34] used it to solve COVID-19 Awareness model in the

setting of a generalized fractional Atangana-Baleanu derivative.

In the current paper, by following [21, 22] we suggest a high-order (i.e. lead to O(h3) accuracy) numerical approach of the

predictor-corrector type for solving nonlinear ABC-fractional differential equations by using quadratic lagrange interpolation to

approximate the nonlinearity involving in the Volterra integral which is obtained by reducing the given fractional initial value

problem via the properties of the ABC-fractional derivative. Thus, we obtain two formulas, an implicit corrector formula with

high accuracy as well as an explicit predictor formula with the same precision order as the corrector formula. Furthermore, the

memory term which appeared in each the previous formulas, is computed just once for both, which highlighting the low cost of

the proposed approach.

The remainder of this paper is arranged as follows: Basic definitions and notations, including the Atangana-Baleanu fractional

derivatives and integral, are introduced in Section 2. In Section 3, a new numerical method is proposed for solving fractional initial

value problems involving the Atangana-Baleanu fractional derivative in Caputo sense. The schemes’ error estimates are obtained

in Section 4. Finally, in Section 5, we present numerical examples to demonstrate the efficacy of the proposed scheme, and we

also compare the solutions with other methods [15, 30]. Also, numerical simulation of a coupled non-autonomous ABC-fractional

differential system is discussed via the proposed scheme.

2. Preliminaries

The Atangana-Baleanu fractional derivative in the Caputo sense (ABC) is defined as (cf. [9]):

ABC
0D

α
t f (t) =

AB(α)

1− α

∫ t

0

f ′(s)Eα

(
−α

1− α (t − s)α
)
ds, (2.1)

where α ∈ (0, 1), AB(α) > 0 is a normalization function obeying AB(0) = AB(1) = 1

(
e.g. AB(α) = 1− α+

α

Γ(α)

)
, Eα(.)

denotes the Mittag-Leffler function of order α defined by

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, z, α ∈ C, and Re(α) > 0, (2.2)

and Γ(.) denotes Gamma function, defined as

Γ(α) =

∫ +∞

0

tα−1e−tdt, Re(α) > 0. (2.3)

The fractional integral in the sense of Atangana-Beleanu, is defined as follows (cf. [38]):

ABC
0I
α
t f (t) =

1− α
AB(α)

f (t) +
α

AB(α)Γ(α)

∫ t

0

f (s)(t − s)α−1ds. (2.4)

We consider the initial-value problem with Atangana-Baleanu derivative
ABC

0D
α
t y (t) = f (t, y (t)) , 0 < t < T <∞,

y (0) = y0,

(2.5)

2 Copyright c© 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–17
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where f is a smooth nonlinear function that guarantees the existence of a unique solution for (2.5), with the fractional order

α ∈ (0, 1), and y0 ∈ R. A continuous function y(t) is the solution of (2.5) if and only if it is the solution of following Voltera-

integral equation:

y(t) = y0 +
1− α
AB(α)

f (t, y(t)) +
α

AB(α)Γ(α)

∫ t

0

f (s, y(s)) (t − s)α−1
ds. (2.6)

At point tn+1 = h(n + 1), n = 0, 1, . . . , N ∈ N with h = T
N

, we get

yn+1 = y0 +
1− α
AB(α)

fn+1 +
α

AB(α)Γ(α)

∫ tn+1

0

f (s, y(s)) (tn+1 − s)α−1
ds

= y0 +
1− α
AB(α)

fn+1 +
α

AB(α)Γ(α)

(∫ tn

0

f (s, y(s)) (tn+1 − s)α−1
ds +

∫ tn+1

tn

f (s, y(s)) (tn+1 − s)α−1
ds

)
= y0 +

1− α
AB(α)

fn+1 + y lagn+1 + y incn+1

(2.7)

where, y lagn+1 and y incn+1 are called lag term and increment term respectively, which take the following forms:

y lagn+1 :=
α

AB(α)Γ(α)

∫ tn

0

(tn+1 − s)α−1f (s, y(s))ds, (2.8)

and

y incn+1 :=
α

AB(α)Γ(α)

∫ tn+1

tn

(tn+1 − s)α−1f (s, y(s))ds. (2.9)

3. Predictor-corrector scheme with quadratic interpolation

To start presenting the proposed numerical method to solve the initial-value problem (2.5), we need the following lemma:

Lemma 1 ([21]) Assume that ψ ∈ P2([0, T ]), where P2([0, T ]) is the space of all polynomials of degree less than or equal to

two. Let ψk , k = 0, ...., N be the restricted value of ψ(t) on tk ( 0 ≤ k ≤ N ). Then there exist reals b0
n+1, b

1
n+1 and b2

n+1, such

that ∫ tn+1

tn

(tn+1 − s)α−1ψ(s)ds = B

2∑
j=0

bjn+1ψn+j−2. (3.1)

Where, B =
hα

α(α+ 1)(α+ 2)
, b0

n+1 =
α+ 4

2
, b1

n+1 = −2(α+ 3), b2
n+1 =

2α2 + 9α+ 12

2
.

Now, we use quadratic Lagrange polynomial of f (s, y(s)) over the intervals [ti−1, ti+1] , 1 ≤ i ≤ N − 1:

f (s, y(s)) ≈
i+1∑
l=i−1

flq
i
l (s), (3.2)

where

q il (s) =

i+1∏
k=i−1
l 6=k

s − tk
tl − tk

. (3.3)

But, on [t0, t1] we can interpolate f (s, y(s)) with the points
{
t0, t 1

2
, t1

}
, then we get

f (s, y(s)) ≈ f0q0
0 (s) + f 1

2
q0

1
2

(s) + f1q
0
1 (s), (3.4)

where

q0
0 (s) =

(s − t0)(s − t 1
2

)

(t1 − t0)(t1 − t 1
2

)
, q0

1
2

(s) =
(s − t0)(s − t1)

(t 1
2
− t1)(t 1

2
− t1)

, q0
1 (s) =

(s − t0)(s − t 1
2

)

(t1 − t0)(t1 − t 1
2

)
. (3.5)

The approximation of y(tn+1) denoting by ỹn+1, according to (3.2)-(3.5), ỹn+1 takes the following form:

ỹn+1 = y0 + AB f̃ Pn+1 + ỹ lagn+1 + ỹ incn+1, (3.6)

Math. Meth. Appl. Sci. 0000, 00 1–17 Copyright c© 0000 John Wiley & Sons, Ltd. 3
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where
AB f̃ Pn+1 =

1− α
AB(α)

f (tn+1, ỹ
P
n+1), (3.7)

ỹ lagn+1 =
α

AB(α)Γ(α)

(
2∑
j=0

aj,0n+1 f̃ j
2

+

2∑
j=0

n−1∑
k=1

aj,kn+1 f̃k+j−1

)
(3.8)

and

ỹ incn+1 =
α

AB(α)Γ(α)

(
1∑
j=0

aj,nn+1 f̃n+j−1 + a2,n
n+1 f̃

P
n+1

)
(3.9)

with

aj,kn+1 =

∫ tk+1

tk

(tn+1 − s)α−1qk
ĵ

(s)ds, for j ∈ {0, 1, 2} , (3.10)

where,

ĵ =


j

2
if k = 0,

j + k − 1 if 1 ≤ k ≤ n.
(3.11)

The predictor term can be approximated as follows:

ỹPn+1 = y0 + AB f̃ apprxn+1 + ỹ lagn+1 +
αhα

AB(α)Γ(α+ 3)

2∑
j=0

bjn+1 f̃n+j−2, (3.12)

where
AB f̃ apprxn+1 =

1− α
AB(α)

(fn−2 − 3fn−1 − 3fn) , n ≥ 2. (3.13)

4. Error analysis

Throughout this section, we need the following lemmas:

Lemma 2 Let f ∈ Cn+1([a, b]) and Pn ∈ Pn([a, b]) (where Pn([0, T ]) is the space of all polynomials of degree less than or equal

to n) interpolate the function f at tk , 0 ≤ k ≤ N, with t0 = a, tN = b,, then there exists ξ ∈ (a, b)such that, for any s ∈ [a, b]

f (s)− Pn(s) =
f n+1(ξ)

(n + 1)!

n∏
k=0

(s − tk). (4.1)

Lemma 3 ([21]) For δ > 0, we have
n−1∑
k=0

∫ tk+1

tk

(tn+1 − s)δ−1ds ≤ T δ

δ
. (4.2)

Lemma 4 ([36]) (Discrete Gronwall’s Inequality) Let {an}Nn=0 , {bn}
N
n=0 be non-negative sequences with second one is monotonic

increasing and satisfy that

an ≤ bn +Mhθ
n−1∑
k=0

(n − k)θ−1ak , 0 ≤ n ≤ N, (4.3)

where, M > 0 is independent of h > 0, and 0 < θ ≤ 1. Then,

an ≤ bnEθ
(
MΓ(θ)(nh)θ

)
. (4.4)

Lemma 5 ([21]) There exist K1, K2 > 0 such that for α ∈ (0, 1), and j = 0, 1, 2, we have∣∣∣aj,kn+1

∣∣∣≤ {K1(n − k)α−1hα if 0 ≤ k ≤ n − 1,

K2 if k = n.
(4.5)

Let T Pn+1 be the truncation error of prediction at point tn+1, defined by

T Pn+1 =

∣∣∣∣∣ α

AB(α)Γ(α)

∫ tn+1

0

(tn+1 − s)α−1f (s, y(s))ds − α

AB(α)Γ(α)

2∑
j=0

aj,0n+1f j
2

(4.6)

− α

AB(α)Γ(α)

2∑
j=0

n−1∑
k=1

aj,kn+1fk+j−1 −
αhα

AB(α)Γ(α+ 3)

2∑
j=0

bjn+1fn+j−2

∣∣∣∣∣.

4 Copyright c© 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–17
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Theorem 1 Assume that f (., y(.)) ∈ C3([0, T ]). Then, there exists C > 0 (independent of all grid parameters) such that:

T Pn+1 ≤ Ch3. (4.7)

Proof: We set the notation, ABg =
α

AB(α)Γ(α)
, then

T Pn+1 ≤
3∑
j=1

Ij , (4.8)

where,

I1 := ABg

∫ t1

0

(tn+1 − s)α−1
∣∣∣f (s, y(s))−

2∑
j=0

f j
2
q0
j
2

(s)
∣∣∣ds, (4.9)

I2 := ABg

n−1∑
k=1

∫ tk+1

tk

(tn+1 − s)α−1
∣∣∣f (s, y(s))−

2∑
j=0

fk+j−1q
k
k+j−1(s)

∣∣∣ds, (4.10)

I3 :=
∣∣∣ABg ∫ tn+1

tn

(tn+1 − s)α−1f (s, y(s))− Γ(α)ABg
hα

Γ(α+ 3)

2∑
j=0

bjn+1fn+j−2

∣∣∣. (4.11)

Thanks to lemma 2, there exists C1 > 0, such that

Ij ≤ C1h
3, j = 1, 2. (4.12)

The Taylor expansion of f around tn gives:

f (t) = P2(t) +
1

3!
f ′′′(ξn)(t − tn)3 +O(h3), ξn ∈ (tn, t), (4.13)

where,

P2(t) = fn + f ′(tn)(t − tn) +
1

2
f ′′(tn)(t − tn)2, (P2 ∈ P2([0, T ])). (4.14)

According to lemma 2 and (4.11), we have

I3 =
∣∣∣ABg ∫ tn+1

tn

(tn+1 − s)α−1(P2(s) +
1

3!
f ′(ξn)(s − tn)3 +O(h3))ds

− Γ(α)ABg
hα

Γ(α+ 3)

2∑
j=0

bjn+1fn+j−2

∣∣∣, (4.15)

it follows that

I3 ≤ Γ(α)ABg
hα

Γ(α+ 3)

(
| b0

n+1 || P2(tn−2)− fn−2 − fn−2 | + | b1
n+1 || P2(tn−1)− fn−1 |

)
+ ABg

∣∣∣∣∫ tn+1

tn

(tn+1 − s)α−1
(1

6
f ′′′(ξn)(s − tn)3

)
ds

∣∣∣∣+O(h3). (4.16)

According to (4.8) and (4.13), we have∣∣∣P2(tn−2)− fn−2

∣∣∣≤ 4Mh3

3
, where M := max {| f ′′′(ξk) | : 0 ≤ k ≤ N} , (4.17)

and ∣∣∣P2(tn−1)− fn−1

∣∣∣≤ M

6
h3. (4.18)

We thus obtain the estimate

I3 ≤ Γ(α)ABg
hα

Γ(α+ 3)

(
b0
n+1

4Mh3

3
+
∣∣b1
n+1

∣∣ M
6
h3
)

+
Mh3+α

6AB(α)Γ(α)
+O(h3). (4.19)

Consequently, there exists C2 > 0 such that

I3 ≤ C2h
3. (4.20)

According to (4.8), (4.12) and (4.20), proof of theorem is achieved. �
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Theorem 2 (Global Predictor Error) Assume that f (., y(.)) ∈ C3([0, T ]) and is Lipschitz continuous in its second argument, i.e.

∃L > 0, such that |f (t, y1)− f (t, y2)| ≤ L |y1 − y2| , ∀y1, y2 ∈ R. (4.21)

Then, there exist K1, K2 > 0 such that, the global predictor error satisfies

EPn+1 :=
∣∣∣yn+1 − ỹPn+1

∣∣∣ ≤ T Pn+1 +K1ABgLh
αE 1

2
+K2ABgLh

α
n∑
k=1

(n − k + 1)α−1Ek +O(h3). (4.22)

Where, ABg :=
α

AB(α)Γ(α)
.

Proof: We set ABfn+1 :=
1− α
AB(α)

f (tn+1, yn+1). Thus

EPn+1 =

∣∣∣∣∣ABfn+1 + ABg

∫ n+1

0

(tn+1 − s)α−1f (s, y(s))ds − AB f̃ apprxn+1 − ỹ lagn+1 −
Γ(α)ABgh

α

Γ(α+ 3)

2∑
j=0

bjn+1 f̃n+j−2

∣∣∣∣∣ , (4.23)

therefore

EPn+1 =

∣∣∣∣∣ABfn+1 + ABg

∫ tn+1

0

(tn+1 − s)α−1f (s, y(s))ds − ABg
2∑
j=0

aj,0n+1f j
2

− ABg
2∑
j=0

n−1∑
k=1

aj,kn+1fk+j−1 − ABghα
2∑
j=0

bjn+1fn+j−2 + ABg

2∑
j=0

aj,0n+1f j
2

+ ABg

2∑
j=0

n−1∑
k=1

aj,kn+1fk+j−1 −
Γ(α)ABgh

α

Γ(α+ 3)

2∑
j=0

bjn+1fn+j−2 − AB f̃ apprxn+1 − ỹ lagn+1

− Γ(α)ABgh
α

Γ(α+ 3)

2∑
j=0

bjn+1 f̃n+j−2

∣∣∣∣∣, (4.24)

it follows that

EPn+1 ≤ T Pn+1 +
∣∣∣ABfn+1 − AB f̃ apprxn+1

∣∣∣ (4.25)

+ ABg

2∑
j=0

∣∣∣aj,0n+1

∣∣∣ ∣∣∣f j
2
− f̃ j

2

∣∣∣+ ABg

2∑
j=0

n−1∑
k=1

∣∣∣aj,kn+1

∣∣∣ ∣∣∣fk+j−1 − f̃k+j−1

∣∣∣
+

Γ(α)ABgh
α

Γ(α+ 3)

2∑
j=0

∣∣∣bjn+1

∣∣∣ ∣∣∣fn+j−2 − f̃n+j−2

∣∣∣ .
Hence, according to the lemma 3 there exist C1, K1 > 0, such that

EPn+1 ≤ T Pn+1 + C1

2∑
j=0

En+j−2 +K1ABgLh
αnα−1(E 1

2
+ E1)

+K1ABgLh
α

2∑
j=0

n−1∑
k=1

(n − k)α−1Ek+j−1 +
Γ(α)ABgLh

α

Γ(α+ 3)

2∑
j=0

∣∣∣bjn+1

∣∣∣En+j−2 +O(h3). (4.26)

On the other hand, for α ∈ (0, 1) we have

(n + 1− i)α−1 + (n − 1)α−1 + (n − i − 1)α−1 ≤ 6(n + 1− i)α−1, 1 ≤ i ≤ n − 2. (4.27)

Consequently, there exists K2 > 0 such that the estimate (4.26), becomes

EPn+1 ≤ T Pn+1 +K1ABgLh
αE 1

2
+K2ABgLh

α
n∑
k=1

(n + 1− k)α−1Ek +O(h3). (4.28)

�
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Theorem 3 Assume that f (., y(.)) ∈ C3([0, T ]). Then there exists positive constants C1 and C2 (independent of grid parameters)

such that:

T Cn+1 ≤ C1h
3 + C2E

P
n+1, (4.29)

where,

T Cn+1 =

∣∣∣∣∣ABg
∫ tn+1

0

(tn+1 − s)α−1f (s, y(s))ds − ABg
2∑
j=0

aj,0n+1f j
2

− ABg

(
2∑
j=0

n−1∑
k=1

aj,kn+1fk+j−1 +

1∑
j=0

aj,nn+1fn+j−1 + a2,n
n+1f

P
n+1

)∣∣∣∣∣, (4.30)

with, ABg =
α

AB(α)Γ(α)
.

Proof: It follows immediately that,

T Cn+1 ≤ ABg
∫ t1

t0

(tn+1 − s)α−1
∣∣∣f (s, y(s))−

2∑
j=0

q0
j
2

(s)f j
2

∣∣∣ds
+ ABg

n−1∑
k=1

∫ tk+1

tk

(tn+1 − s)α−1
∣∣∣f (s, y(s))−

2∑
j=0

qkk+j−1(s)fk+j−1

∣∣∣ds
+ ABg

∫ tn+1

tn

(tn+1 − s)α−1
∣∣∣f (s, y(s))−

1∑
j=0

qnn+j−1(s)fn+j−1 − qnn+1(s)f Pn+1

∣∣∣ds. (4.31)

Thus, according to the lemma 2, there exist Ĉ, C̃ > 0 such that

T Cn+1 ≤
C̃T α

6AB(α)Γ(α)
h3 +

Ĉhα

AB(α)Γ(α)
EPn+1 +O(h3). (4.32)

The desired estimate (4.30) can be derived by direct consideration of the last inequality (4.32). �

Theorem 4 (Global Error of the proposed method) With the same assumptions as those of Theorem 2. Then, we have

En+1 := |yn+1 − ỹn+1| ≤ Ch3, (4.33)

where C > 0 (independent of grid parameters), given E1, E2 ≤ Ĉ1h
3, and E 1

2
≤ Ĉ2h

3−α, with Ĉ1, Ĉ2 > 0.

Proof: By taking into account the previous results, there exist Cj > 0 (with j = 1, . . . , 10), such that

En+1 ≤ T Cn+1 + ABg

∣∣∣f Pn+1 − f̃ Pn+1

∣∣∣+
L(1− α)

AB(α)
EPn+1 + ABg

2∑
j=0

∣∣∣aj,0n+1

∣∣∣ ∣∣∣f j
2
− f̃ j

2

∣∣∣
+ ABg

2∑
j=0

n−1∑
k=1

∣∣∣aj,kn+1

∣∣∣ ∣∣∣fk+j−1 − f̃k+j−1

∣∣∣+ ABg

1∑
j=1

∣∣∣aj,nn+1

∣∣∣ ∣∣∣fn+j−1 − f̃n+j−1

∣∣∣
≤ T Cn+1 +

L(1− α)

AB(α)
EPn+1 + ABgLh

αE 1
2

+
C̃1h

α

AB(α)Γ(α)
EPn+1

+ ABgC̃2Lh
α

n∑
k=1

(n − k + 1)α−1Ek +O(h3)

≤ C̃3h
3 + C̃4E

P
n+1 +

L(1− α)

AB(α)
EPn+1 + ABgLh

αE 1
2

+
C̃5h

α

AB(α)
Epn+1 + ABgC̃6Lh

α
n∑
k=1

(n − k + 1)α−1Ek

≤ C̃7h
3 + C̃8T

P
n+1 + C̃9h

αE 1
2

+ C̃10h
α

n∑
k=1

(n − k + 1)α−1Ek . (4.34)

Consequently, by the discrete Gronwall’s inequality (i.e. lemma 4) the desired result holds. �

Remark 1 Since the global error indicated in the Theorem 4 is dependent on that of the start-up (E 1
2
, E1, and E2). We suggest

employing the start-up scheme described in Appendix A to generate approximate solutions for the first stages (i.e. ỹ 1
2
, ỹ1, and

ỹ2).
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Table 1. The absoluate error of various numerical methods for problem (5.3) with n = 2, N=40, and various values of α.

Methods α = 0.5 α = 0.7 α = 0.9 α = 0.99

PPC (3.6)-(3.12) 5.3e−15 1.8e−15 3.6e−15 9.0e−16

BJH-PC [30] 4.1e−4 6.2e−4 7.7e−4 8.3e−4

TAE [15] 1.3e−1 7.4e−2 2.5e−2 6.1e−3

5. Numerical Illustrations and Simulation

In this section, we give some numerical experiments through the proposed predictor-corrector scheme (PPC) (3.6)-(3.12), the

predictor-corrector method introduced by Baleanu-Jajarmi-Hajipour (BJH-PC) [30], and the explicit numerical scheme introduced

by Toufik-Atangana (TAE) [15], to show the efficiency and accuracy of our new method. The experimental order of convergence

(EOC) is computed by

EOC = log2

AE
(
N
2

)
AE (N)

, (5.1)

where AE is the absolute error, which takes the following form:

AE := AE(N) = max
16k6N

|y (tk)− ỹk | . (5.2)

Example 1 Consider the following fractional Initial value problem (IVP):
ABC

0D
α
t y (t) = tn, 0 < t ≤ 2,

y (0) = 1,

(5.3)

where α ∈ (0, 1), and n ∈ N. On account of [30], the exact solution of (5.3) is given by

y (t) = 1 +
1− α
AB (α)

tn +
αΓ (n + 1)

AB (α) Γ (α+ n + 1)
tα+n. (5.4)

In addition, the problem (5.3) is numerically solved. Table 1 and table 2 show the comparison of absolute error of different

numerical methods ((PPC) (3.6)-(3.12), BJH-PC [30], and TAE [15]) for (5.3) with n = 2, 3, t ∈ [0, 2] and various values of

fractional order α ∈ {0.5, 0.7, 0.9, 0.99}, where we notice that our method is superior to them in terms of accuracy (i.e. PPC

(3.6)-(3.12) achieves a lower error than TAE and BJH-PC). Moreover, table 1 and table 2 offer that EOC for TAE are roughly

1, for BJH-PC are roughly 2, and for PPC (3.6)-(3.12) are roughly 3. Also, we note that the approximate solutions obtained

by our proposed scheme get closer to the exact solutions by the increase in α. From Figure 1 and Figure 2, we note that

the approximate solution obtained by PPC (3.6)-(3.12) almost matches with the exact solution with small step size compared

to its counterparts. These figures and tables, indicate the efficacy of the current predictor-corrector numerical method (PPC)

(3.6)-(3.12).

Example 2 Consider the following Atangana-Beleanu-fractional differential equation:
ABC

0D
α
t y (t) = t − y(t), 0 < t ≤ 1,

y (0) = 0,

(5.5)

where α ∈ (0, 1). According to [30], the exact solution of (5.5) is given by

y (t) =
1

AB (α) + 1− α

(
(1− α) tEα,2

(
− α

AB (α) + 1− αt
α

)
+ αtα+1Eα,α+2

(
− α

AB (α) + 1− αt
α

))
, (5.6)

with Eα,β(.) denotes the Mittag-Leffler function of two parameters α and β, which defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + 1)
, z, α, β ∈ C, and Re(α), Re(β) > 0, (5.7)

and the exact solution (5.6) is calculated using the algorithm mlf .m (see [39]) evaluated with accuracy 10−12. Furthermore,

the problem (5.5) is numerically solved. Table 3 and table 4 show the comparison of absolute error of different numerical

methods ((PPC) (3.6)-(3.12), BJH-PC [30], and TAE [15]) for (5.5) with AB(α) = 1, AB(α) = 1− α+ α
Γ(α)

, t ∈ [0, 1] and

various values of fractional order α ∈ {0.5, 0.55, 0.7, 0.9, 0.95}, where we notice that our method is superior to them in terms

of accuracy (i.e. PPC (3.6)-(3.12) achieves a lower error than TAE and BJH-PC). From Figure 3 and Figure 4, we note that

the approximate solution obtained by PPC (3.6)-(3.12) almost matches with the exact solution with small step size compared

to its counterparts. These figures and tables, again confirm the efficacy of the current predictor-corrector numerical method

(PPC) (3.6)-(3.12).
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Table 2. The absolute error, experimental order of convergence, and CPU time in seconds (CTs) of various numerical methods

for problem (5.3) with n = 3.

Methods α = 0.5 α = 0.7 α = 0.9

N AE EOC CTs AE EOC CTs AE EOC CTs

PPC (3.6)-(3.12) 10 1.8e−3 − 3.8e−2 2.7e−3 − 2.4e−3 3.4e−3 − 2.2e−3

20 2.4e−4 2.94 7.7e−3 3.6e−4 2.94 7.3e−3 4.4e−4 2.93 6.4e−3

40 3.1e−5 2.97 2.0e−2 4.6e−5 2.97 2.1e−2 5.7e−5 2.97 2.1e−2

80 3.9e−6 2.98 7.5e−2 5.8e−6 2.99 7.6e−2 7.2e−6 2.98 7.5e−2

160 4.9e−7 2.99 0.31 7.2e−7 2.99 0.29 9.0e−7 2.99 0.29

320 6.2e−8 2.99 1.12 9.1e−8 3.00 1.14 1.1e−7 3.00 1.15

BJH-PC [30] 10 2.4e−2 − 2.7e−2 3.4e−2 − 1.8e−3 3.9e−2 − 9.0e−4

20 6.3e−3 1.95 3.5e−3 8.6e−3 1.98 1.7e−3 9.7e−3 2.00 1.9e−3

40 1.6e−3 1.97 3.7e−3 2.2e−3 1.99 3.9e−3 2.4e−3 2.00 4.0e−3

80 4.1e−4 1.98 9.3e−3 5.4e−4 1.99 1.0e−2 6.1e−4 2.00 1.0e−2

160 1.0e−4 1.99 2.6e−2 1.4e−4 2.00 3.1e−2 1.5e−4 2.00 3.1e−2

320 2.6e−5 1.99 8.4e−2 3.4e−5 2.00 0.10 3.8e−5 2.00 0.11

TAE [15] 10 1.5e−0 − 9.6e−3 9.5e−1 − 2.6e−3 4.1e−1 − 1.3e−3

20 7.7e−1 1.01 4.7e−3 4.5e−1 1.07 4.6e−3 1.7e−1 1.28 4.8e−3

40 3.9e−1 1.00 1.7e−2 2.2e−1 1.04 1.8e−2 7.4e−2 1.18 1.8e−2

80 1.9e−1 1.00 8.4e−2 1.1e−1 1.02 7.0e−2 3.4e−2 1.10 7.0e−2

160 9.6e−2 1.00 0.27 5.4e−2 1.01 0.33 1.7e−2 1.06 0.29

320 4.8e−2 1.00 1.11 2.7e−2 1.00 1.13 8.1e−3 1.03 1.15
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Figure 1. Comparison of the exact and the numerical solutions of problem (5.3) with n = 2, and N = 10.

Example 3 In the previous examples, we have considered some differential equations with known exact solutions. Let us now

analyze numerically the following coupled non-autonomous ABC-fractional differential system:
ABC

0D
α
t u(t) = − sin2(t)u(t)− sin(t) cos(t)v(t), t > 0,

ABC
0D

α
t v(t) = − sin(t) cos(t)u(t)− cos2(t)v(t), t > 0,

u(0) = u0 > 0, v(0) = v0 = 0,

(5.8)

where α ∈ (0, 1). The Caputo-fractional version of (5.8) has been previously investigated in [35]. It is classical task to prove the

existence of unique solution for system (5.8) (see e.g. [29, 40, 41]).

Next, we present some numerical simulations of the coupled non-autonomous ABC-fractional differential system (5.8) through

several sets of parameters to examine the effectiveness of the proposed predictor-corrector scheme in the current work (i.e. PPC

(3.6)-(3.12)).
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Figure 2. Comparison of the exact and the numerical solutions of problem (5.3) with n = 3, and N = 10.

Table 3. The absolute error, experimental order of convergence, and CPU time in seconds (CTs) of various numerical methods

for problem (5.5) with AB(α) = 1.

Methods α = 0.55 α = 0.75 α = 0.95

N AE EOC CTs AE EOC CTs AE EOC CTs

PPC (3.6)-(3.12) 10 1.5e−3 − 3.4e−2 3.5e−4 − 1.1e−3 2.7e−5 − 6.0e−4

20 7.4e−4 1.03 2.9e−3 8.8e−5 1.99 1.1e−3 3.2e−6 3.05 1.1e−3

40 3.7e−4 0.99 3.5e−3 2.3e−5 1.93 3.0e−3 4.4e−7 2.89 3.0e−3

80 1.8e−4 1.03 1.0e−2 6.1e−6 1.91 1.0e−2 6.7e−8 2.70 1.0e−2

160 9.0e−5 1.03 3.8e−2 2.7e−6 1.21 3.7e−2 1.2e−8 2.51 3.7e−2

320 4.4e−5 1.03 0.14 1.3e−6 1.03 0.14 2.3e−9 2.33 0.14

BJH-PC [30] 10 2.6e−2 − 1.7e−2 8.9e−3 − 8.0e−4 1.8e−3 − 1.0e−3

20 1.2e−2 1.18 3.3e−3 3.7e−3 1.26 1.5e−3 6.7e−4 1.41 1.7e−3

40 5.3e−3 1.13 3.4e−3 1.7e−3 1.16 3.3e−3 2.8e−4 1.25 3.3e−3

80 2.5e−3 1.09 8.2e−3 7.8e−4 1.09 8.3e−3 1.3e−4 1.15 8.2e−3

160 1.2e−3 1.06 2.5e−2 3.8e−4 1.06 2.4e−2 6.0e−5 1.08 2.4e−2

320 5.8e−4 1.04 7.9e−2 1.8e−4 1.03 7.9e−2 2.9e−5 1.04 7.7e−2

TAE [15] 10 3.6e−2 − 5.6e−3 2.5e−2 − 7.0e−4 9.6e−3 − 6.0e−4

20 1.7e−2 1.06 2.5e−3 1.2e−2 1.12 2.2e−3 3.7e−3 1.40 2.2e−3

40 8.4e−3 1.05 8.8e−3 5.5e−3 1.08 8.6e−3 1.5e−3 1.26 8.4e−3

80 4.1e−3 1.03 3.6e−2 2.6e−3 1.05 3.4e−2 6.8e−4 1.16 3.4e−2

160 2.0e−3 1.02 0.14 1.3e−3 1.03 0.13 3.2e−4 1.09 0.14

320 9.9e−4 1.02 0.55 6.4e−4 1.02 0.54 1.5e−4 1.05 0.55

The following is a description of the results:

• Figures 5 and 6 provide numerical comparisons of solutions for system (5.8), with the ordinary derivative, Caputo-

fractional (α = 0.8), and ABC-fractional (α = 0.8) derivatives.

• Figures 7 and 8 depict simulations of system (5.8) solutions for α = 0.5, 0.7, 0.9, and AB(α) = 1. The results shown in

these figures show that the dynamical behavior of the system (5.8) is highly dependent on the fractional order α.

• Figures 9 and 10 depict simulations of system (5.8) solutions for α = 0.5, 0.7, 0.9, and AB(α) = 1− α+ α
Γ(α)

. The

results shown in these figures show that the dynamical behavior of the system (5.8) is highly dependent on the fractional

order α and AB(α).
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Table 4. The absolute error, experimental order of convergence, and CPU time in seconds (CTs) of various numerical methods

for problem (5.5) with AB(α) = 1− α+ α
Γ(α)

.

Methods α = 0.55 α = 0.75 α = 0.95

N AE EOC CTs AE EOC CTs AE EOC CTs

PPC (3.6)-(3.12) 10 2.3e−2 − 3.4e−2 5.5e−4 − 1.1e−3 2.9e−5 − 6.0e−4

20 9.7e−3 1.25 2.7e−3 1.3e−4 2.03 1.2e−3 3.5e−6 3.05 1.1e−3

40 4.3e−3 1.17 3.5e−3 3.4e−5 1.99 3.0e−3 4.7e−7 2.88 3.1e−3

80 2.0e−3 1.12 1.1e−2 1.2e−5 1.45 1.0e−2 7.3e−8 2.70 1.0e−2

160 9.3e−4 1.09 3.8e−2 6.1e−6 1.01 3.7e−2 1.3e−8 2.51 3.7e−2

320 4.5e−4 1.06 0.14 3.0e−6 1.01 0.14 2.6e−9 2.33 0.14

BJH-PC [30] 10 4.9e−2 − 1.6e−2 1.2e−2 − 9.0e−4 1.9e−3 − 8.0e−4

20 2.1e−2 1.23 3.2e−3 4.9e−3 1.26 1.5e−3 6.9e−4 1.41 1.5e−3

40 9.5e−3 1.15 3.3e−3 2.2e−3 1.17 3.4e−3 2.9e−4 1.25 3.2e−3

80 4.4e−3 1.10 8.2e−3 1.0e−3 1.11 8.3e−3 1.3e−4 1.15 8.3e−3

160 2.1e−3 1.07 2.4e−2 4.8e−4 1.07 2.4e−2 6.2e−5 1.08 2.4e−2

320 1.0e−3 1.05 7.8e−2 2.4e−4 1.04 7.8e−2 3.0e−5 1.04 8.5e−2

TAE [15] 10 4.2e−2 − 5.5e−3 2.8e−2 − 6.0e−4 9.9e−3 − 6.0e−4

20 2.0e−2 1.06 2.5e−3 1.3e−2 1.11 2.2e−3 3.8e−3 1.39 2.3e−3

40 9.7e−3 1.04 8.8e−3 6.1e−3 1.08 8.5e−3 1.6e−3 1.26 8.7e−3

80 4.8e−3 1.03 3.5e−2 3.0e−3 1.05 3.4e−2 7.0e−4 1.16 3.4e−2

160 2.3e−3 1.02 0.14 1.4e−3 1.03 0.14 3.3e−4 1.09 0.14

320 1.2e−3 1.02 0.56 7.2e−4 1.02 0.55 1.6e−4 1.05 0.57
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Figure 3. Comparison of the exact and the numerical solutions of problem (5.5) with N = 10, and AB(α) = 1− α+ α
Γ(α)

.

• Figure 11 depicts simulations of the solution u(t) of system (5.8) for α = 0.8, and AB(α) = 1, considering different

values of initial data (u0, v0) ∈ {(−1, 0); (1, 0); (2, 0)}.

• Figure 12 depicts simulations of phase portrait of the solutions of system (5.8) for α = 0.55, 0.75, 0.95, and AB(α) = 1.

The results shown in these figure shows that the dynamical behavior of the system (5.8) is highly dependent on the

fractional order α.
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Figure 4. Comparison of the exact and the numerical solutions of problem (5.5) with N = 10, and AB(α) = 1.
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Figure 5. The approximate solution u(t) of system (5.8) by PPC (3.6)-(3.12), ordinary derivative, and Caputo-fractional, subject to (u0, v0) = (1, 0), and

α = 0.8.

6. Conclusion

In this article, an efficient predictor-corrector method to solve ABC-fractional order (for the fractional order 0 < α < 1) nonlinear

diferential equations is established by using Lagrange quadratic interpolation. We decreased total processing costs by using

the same discretization approach for the lag term in both the prediction and correction stages. This is the algorithm’s most

notable benefit, as the convergent order of this technique is shown to be O(h3). This confirms the accuracy which has been

numerically obtained, of the proposed approach through numerous numerical tests and simulations. The same approach with or

without changes can be used to solve ABC-fractional differential equations with multi-variable orders, delay, and a generalized
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Figure 6. The approximate solution v(t) of system (5.8) by PPC (3.6)-(3.12), ordinary derivative, and Caputo-fractional, subject to (u0, v0) = (1, 0), and

α = 0.8.
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Figure 7. The approximate solution u(t) of system (5.8) by PPC (3.6)-(3.12), subject to (u0, v0) = (1, 0), AB(α) = 1, and different values of fractional order

α.

ABC-fractional derivative with a three-parameter Mittag-Leffler function in its kernel, as future works.
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Appendix A. Start-up of the Scheme

To find a desired accuracy for ỹ1 and ỹ2, we find the approximate solutions at points t 1
4

and t 1
2

using the constant, linear

and quadratic interpolation. Let I0(fa) be the constant interpolation of f at point t = a that is I0(fa) = f (a). Let I1(fa, fb)

and I2(fa, fb, fc) be linear and quadratic interpolation of f with grids (a, b) and (a, b, c) respectively. In the algorithm below we

describe how to find the approximate solution of y(t) at points t 1
4
, t 1
2
, t1, and t2 (i.e. ỹ 1

4
, ỹ 1
2
, ỹ1, and ỹ2) using a predictor-corrector

scheme:

• Approximate solution of y(t) at point t 1
4

:

ỹP1
4

= y0 + ABf f̃ (t 1
4
, ỹ0) + ABy

∫ 1
4

0

(t 1
4
− s)α−1I0(f̃0)ds,

ỹ 1
4

= y0 + ABf f̃
P
1
4

+ ABg

∫ t 1
4

0

I1(f̃0, f̃
P
1
4

)(t 1
4
− s)α−1ds.

• Approximate solution of y(t) at point t 1
2

:

ỹP11
2

= y0 + ABf (2f̃ 1
4
− f̃0) + ABg

∫ t 1
2

0

I0(f̃ 1
4

)(t 1
2
− s)α−1ds,

ỹP21
2

= y0 + ABf f̃
P1
1
2

+ ABg

∫ t 1
2

0

I1(f̃ 1
4
, f̃ P11
2

)(t 1
2
− s)α−1ds,

ỹ 1
2

= y0 + ABf f̃
P2
1
2

+ ABg

∫ t 1
2

0

I2(f̃0, f̃ 1
4
, f̃ P21
2

)(t 1
2
− s)α−1ds.

• Approximate solution of y(t) at point t1:

ỹP11 = y0 + ABf (6f̃ 1
2
− 8f̃ 1

4
− 3f̃0) + ABg

∫ tn

0

I0(f̃ 1
2

)(tn − s)α−1ds,

ỹP21 = y0 + ABf f̃
P1
1 + ABg

∫ t1

0

I1(f̃ 1
2
, f̃ P11 )(t1 − s)α−1ds,

ỹ1 = y0 + ABf f̃
P2
1 + ABg

∫ t1

0

I2(f̃0, f̃ 1
2
, f̃ P21 )(t1 − s)α−1ds.

• Approximate solution of y(t) at point t2:

ỹP12 = y0 + ABf (6f̃1 − 8f̃ 1
2
− 3f̃0) +

∫ t2

0

I0(f̃1)(t2 − s)α−1ds,

ỹP22 = y0 + ABf f̃
P1
2 +

∫ t2

0

I1(f̃1, f̃
P1
2 )(t2 − s)α−1ds,

ỹ2 = y0 + ABf f̃
P2
2 +

∫ t2

0

I2(f̃0, f̃1, f̃
P2
2 )(t2 − s)α−1ds.

where {
ABf =

1− α
AB(α)

and ABg =
α

AB(α)Γ(α)

}
.
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