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Abstract

Environmental temperature is a key driver of malaria transmission dynamics. Using detailed temperature records from four
sites (1800-3200m) in the western Himalaya, we model how temperature regulates parasite development rate (the inverse of the
extrinsic incubation period, EIP) in the wild. Using a Briére parametrization of the EIP, combined with Bayesian parameter
inference, we study the thermal limits of transmission for avian (P. relictum) and human Plasmodium parasites (P. vivax
and P. falciparum) as well as for two malaria-like avian parasites, Haemoproteus and Leucocytozoon. We demonstrate that
temperature conditions can substantially alter the incubation period of parasites at high elevation sites (2600-3200m) leading to
restricted parasite development or long transmission windows. We then compare estimates of EIP based on measures of mean
temperature versus hourly temperatures to show that EIP days vary in cold versus warm environments. We found that human
Plasmodium parasites experience a limited transmission window at 2600m. In contrast, for avian Plasmodium transmission was
not possible between September to March at 2600m. In addition, temperature conditions suitable for both Haemoproteus and
Leucocytozoon transmission were obtained from June to August and in April, at 2600m. Finally, we use temperature projections
from a suite of climate models to predict that by 2040, high elevation sites (~ 2600 m) will have a temperature range conducive
for malaria transmission, albeit with a limited transmission window. Our study highlights the importance of accounting for
fine-scale thermal effects in the expansion of the range of the malaria parasite with global climate change.

Abstract

Environmental temperature is a key driver of malaria transmission dynamics. Using detailed temperature
records from four sites (1800-3200m) in the western Himalaya, we model how temperature regulates parasite
development rate (the inverse of the extrinsic incubation period, EIP) in the wild. Using a Briére parametri-
zation of the EIP, combined with Bayesian parameter inference, we study the thermal limits of transmission
for avian (P. relictum ) and humanPlasmodium parasites (P. vivax and P. falciparum ) as well as for two
malaria-like avian parasites, Haemoproteus andLeucocytozoon . We demonstrate that temperature conditi-
ons can substantially alter the incubation period of parasites at high elevation sites (2600-3200m) leading
to restricted parasite development or long transmission windows. We then compare estimates of EIP based
on measures of mean temperature versus hourly temperatures to show that EIP days vary in cold versus
warm environments. We found that humanPlasmodium parasites experience a limited transmission window
at 2600m. In contrast, for avian Plasmodium transmission was not possible between September to March at
2600m. In addition, temperature conditions suitable for both Haemoproteus andLeucocytozoon transmission
were obtained from June to August and in April, at 2600m. Finally, we use temperature projections from a
suite of climate models to predict that by 2040, high elevation sites (~ 2600 m) will have a temperature ran-
ge conducive for malaria transmission, albeit with a limited transmission window. Our study highlights the
importance of accounting for fine-scale thermal effects in the expansion of the range of the malaria parasite
with global climate change.
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Introduction

Changes in climate are shifting the geographic ranges of species (e.g., birds; Chen et al . 2011, Freeman
et al . 2018). These have a significant influence on parasite transmission dynamics, either by exposing
immunologically näıve hosts to longer transmission seasons or bridging novel host-parasite interactions (Patz
et al . 2001). Among vector-borne pathogens, malaria parasites have remained the most virulent group, with
high sensitivity to climatic factors which continue to threaten both human and many wild animal populations
(van Riperet al . 1999).

Temperature is the key environmental driver influencing the transmission dynamics and distribution of
malaria parasites. The rate of malaria parasite transmission and intensity of infection is strongly determined
by the extrinsic incubation period (EIP: also known as the duration of sporogony), the time it takes for a
parasite to develop within a mosquito and become transmissible (Ohm et al . 2018). Therefore, the EIP
determines the parasite development rate in the midgut after many replication cycles before it migrates
as a sporozoite (infective stage) in the salivary glands of an arthropod vector. The development rate of a
parasite depends on host, parasite, and environmental conditions. These conditions must be conducive for
transmission of the parasite. For example, the EIP of human Plasmodium is dependent on temperature and
the parasite generally takes 8–14 days to develop, so if adult Anopheles mosquitoes die before or within a
12-day period, they are unlikely to contribute to parasite transmission (Killeen et al . 2000, Paijmans et al
. 2009, Ohm et al . 2018). In addition, temperature plays a central role in regulating mosquito population
dynamics, age-structure in a population, life-history traits, fitness and phenology of vectors and parasites,
leading to complex spatial and temporal patterns of distribution (Beck-Johnson et al . 2013).

Most mechanistic models of human Plasmodium transmission are based on the degree-day model of Detinova
(Detinova 1962). The Detinova model assumes a linear relationship between ambient temperature (T ) and
the parasite development rate (PDR). For example, forPlasmodium falciparum the following relationship is
assumed to hold: EIP (in days) =111/(T -16), where 111 is the cumulative number of degree-days required
for the parasite to complete development,T is the average ambient environmental temperature, and the
relationship assumes that the temperature threshold below which development cannot occur is 16°C. However,
although this equation is used in many studies, it fails to capture daily temperature fluctuations which
could potentially alter the rate of parasite development and malaria transmission in a population. Other
thermodynamic models propose a nonlinear relationship between temperature and growth or development
(Paaijmans et al . 2009). These models can be generalised to consider temperature fluctuations which alter
the length of parasite incubation period and malaria transmission rates. Therefore, epidemiological models
should benefit from combining local meteorological data and diurnal temperature fluctuations to understand
the biological significance of temperature in shaping parasite transmission dynamics.

Temperature is considered as the main driver for mosquito emergence and spring phenology (e.g., budburst,
leaf-out, and flowering) in temperate regions (e.g., Hӓllfors et al . 2020). In the context of epidemiology of
avian malaria, the overlap in seasonal emergence of vectors produces spring relapses in chronic infections
(parasite phenology) and new infections in breeding host populations (Applegate 1970, Beaudoin et al .
1971). However, the implications of temperature variation for avian malaria parasite development across
temperate regions are less understood.

The western Himalayas are a species-rich and highly seasonal ecosystem with distinct physiographic climatic
conditions which drives bird migration, spring phenology and vector emergence (Barve et al.2016, Ishtiaq
and Barve 2018). In general, birds harbour a huge diversity of three genera of haemosporidian parasites
-Plasmodium, Haemoproteus and Leucocytozoon, which are more ubiquitous and cosmopolitan (except
Antarctica) (Valkinũas 2005). These parasites are transmitted by dipteran insects, e.g., mosquitoes (Plas-
modium ), biting midges (Haemoproteus ) and black flies (Leucocytozoon ) and have significant negative
effects on the host survival and longevity (Asghar et al . 2015), reproductive success and body condition
(Marzal et al . 2005). In this montane system, birds exhibit two migration strategies; species are either
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. year-round high elevation residents (sedentary) or seasonal elevational migrants. Elevational migrants win-
ter at low elevations or in the plains ([?] 1500 m above sea level; a.s.l.) and move to breeding grounds at
higher elevations (2600–4000 m a.s.l. or even higher) during the summer season (Dixit et al . 2016). The
elevational migrants are exposed to a large suite of parasites and vector fauna, especially in low elevations
and move to high elevation breeding grounds only during the summer season (“migratory escape”, Loehle
1995). By contrast, sedentary counterparts potentially experience little or no exposure to parasites at high
elevations in winters. Given that a competent vector and optimal thermal conditions are present, elevational
migrants could act as ‘bridge hosts’ of parasite species and potentially increase transmission risk between
wintering and breeding areas. This potentially increases the risk of infection to näıve resident birds at high
elevations which might not have evolved to cope with parasite infection. In addition, the emergence of insect
vectors (e.g., Culicoides ) is driven by temperature and does not coincide with peak bird breeding season
(April-May) in a high elevation environment suggesting a mismatch in phenology of vectors and avian hosts
(Ishtiaq et al. unpubl., e.g., Gethigs et al . 2015). This mismatch potentially alters the degree of interaction
between host and vector species, thereby influencing parasite transmission dynamics. Only if the arrival of
infected birds (with infective stages in the bloodstream) coincides with the peak of vector abundance, can
transmission of pathogens from migratory birds to vectors be facilitated. There are currently no studies
undertaken to understand the influence of environmental factors on vector phenology and what changes in
parasites’ distribution ranges are expected with climate change.

In this study we model the change in temperature and parasite transmission dynamics in four western
Himalayan sites across an elevational gradient. Using fine-scale meteorological data, we explore limits of
parasite transmission as a function of temperature in the western Himalayan landscape. Specifically, we ask
the following questions:

(i) Is parasite transmission restricted by temperature in high elevation environments?

(ii) Is there spatial and temporal variation in parasite transmission dynamics?

(iii) How will climate change affect the distribution of malaria and the parasite transmission window?

MATERIALS AND METHODS

Study area and collection of temperature data

For micro-climate data, we deployed the Thermochron iButton (Maxim Integrated Products,
http://www.maxim-ic.com/) to record temperature data every hour on a round-the-clock basis at each
sampling site from 2014-2015: Mandal [1800m: N30.44685deg E79.27328deg], Anusuya [2000-2200m:
N30.47888degE79.28503deg], Kanchula [2600m: N30.45913deg E79.22744deg] and Shokharakh [3100-3400m:
N30.47860degE79.217980deg; Figure 1.] in the western Himalaya, Uttarakhand state, India.

Quantifying the effects of environmental temperature on parasite development (Extrinsic In-
cubation Period)

The extrinsic incubation period is the reciprocal of the parasite development rate (PDR). A convenient
representation of the PDR follows from the Briere equation (Briere et al . 1999)

PDRparasite (T) = c * T * (T – Tmin) * [?] (Tmax – T) (1)

where Tmin and Tmax are the minimum and maximum temperatures that can sustain

parasite development and c is a constant, the scaling parameter. These parameters must

be estimated or fit against experimental data. This model was based on thermodynamic

principles and shown to capture accurately the form of the EIP inPlasmodium falciparum and Plasmodium
vivax as described previously by others (Paaijmans et al . 2009, Cator et al.2013).

A Bayesian approach to the calculation of the extrinsic incubation period

3
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. Given the Briere equation (Briere et al . 1999) we first use Bayesian methods to find the best estimates for
the parameters Tmin, Tmax and c (Gelman et al . 2013, Bolstad et al . 2016, McElreath 2016). Bayesian
inference approach allows us to incorporate prior knowledge into a description of data, capturing parameter
uncertainties. It also provides a consistent framework for including prior information, while accounting for
uncertainty in inferred parameters.

We used thermodynamic models to estimate the influence of both mean and diurnal temperature fluctuation
on malaria transmission (Paaijmanset al . 2009). Specifically, we selected parasite species that have been
recorded in the western Himalayan birds. We extracted the temperature dependent EIP values for two
human malaria parasites -P. falciparum , P. vivax and avian parasites in the genusPlasmodium (Plasmodium
relictum ), Haemoproteus andLeucocytozoon using parasite specific temperature data summarised in Suppl.
Table 1. Specifically, for Haemoproteus , we choose the average (midpoint of the range) as only temperature
ranges were available (Suppl. Table 1).

To estimate the EIP of a parasite species, two main parameters are required: the lifespan of arthropod vectors
and temperature data. The two human malaria parasites - P. falciparum , P. vivax are transmitted by species
of Anopheles mosquito. The avian malaria,P. relictum, is primarily transmitted by Culex quinquefasciatus
. It takes the malaria parasite 56 days to develop in the mosquito at 18degC which is longer than the
lifespan of the mosquitoes. At 22degC it takes only 19 days and at 30degC only 8 days (Githeko 2007). The
upper limit of longevity of mosquitoes can be up to 56 days as used in previous studies (Craig et al . 1999,
Paaijmaans et al . 2009) depending upon environmental conditions. We considered an upper threshold for
the EIP for mosquitoes as 56 days. The vectors of Haemoproteus sp. are biting midges (Culicoides sp.) and
black flies (simulids) forLeucocytozoon . The lifespan of biting midges is ˜10 to 20 days (Sick et al . 2019)
whereas black flies can survive for two to three weeks (Adler 2004). We thus considered the upper threshold
for the EIP for both biting midges and black flies to be 20 days.

We describe our methods in more detail in subsections below:

(i) Estimation of model parameters

We estimate the parameters θ = {Tmin,Tmax, c, σ} using Bayesian inference methods (Gelman et al . 2013,
Bolstad et al . 2016, McElreath 2016) implemented using the available data. The parameters Tmin, Tmax

and c have been defined earlier. The quantity σ provides the scale factor for the width of the likelihood
between observed data and model.

Our implementation of the inference strategy uses STAN (https://mc-stan.org/), a platform for statistical
modelling and high-performance statistical computation. STAN performs Bayesian statistical inference with
Markov Chain Monte Carlo (MCMC) sampling. It also provides diagnostic tools to evaluate the accuracy
and convergence of the MCMC while allowing for posterior predictive checks.

(ii) Prior distribution

Bayesian approaches incorporate prior knowledge about the parameters into the model. Our choices for
these distributions are summarised in (Suppl. Table 2) below for each parasite. We choose a common prior
for Sigma, 1/gamma (0.0001,0.0001) and scale parameter (c), gamma (1,10), in all cases. We selected a
flat prior for Tmin and Tmax within a defined range. We used a gamma distribution as both the scaling
parameter and sigma are non-negative continuous positive values.

(iii) Likelihood

We choose a normal distribution with mean parameter μ given by the Briére equation (Briére et al . 1999) as
the likelihood of the data and standard deviation σ. We run STAN (https://mc-stan.org/ ) for four chains of
1000 iterations each, discarding 500 iterations in each case for warmup. R̂, the convergence statistic reported
by STAN, is close to 1 (< 1.05), indicating the 4 Markov chains are in close agreement with one another.

Calculation of the extrinsic incubation period (EIP)

4
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. The EIP was calculated using mean daily temperature and mean hourly temperature for P. falciparum ,
P. vivax , P. relictum , Leucocytozoon and Haemoproteus parasites. The mean hourly temperature is used
to estimate the effect of diurnal temperature fluctuation on EIP. The diurnal temperature range (DTR)
variation across these four sites is the difference between maximum and minimum temperatures on each day
of the month at each site. This was done for each day of the month for all four sites. Since all four sites
are at different elevations, it is possible that for a few days of a month, the temperature was marginally
above the minimum threshold temperature for the development of parasites. The EIP calculated using these
temperatures can thus become anomalously high. We thus set the EIP to 90 days whenever the computed
EIP exceeded that number. We calculated the mean EIP using both the mean daily temperature as well as
mean hourly temperatures for the month with the following procedure: We calculate the EIP using the mean
temperature for each day of the month. We then average this EIP over the entire month. We use a similar
procedure for the mean hourly temperature. We set the upper threshold temperature to about 5oC above
the maximum threshold temperature (Tmax) following Hu and Appel (2004) and Cator et al . (2013). The
upper threshold temperature is lethal for parasite development. Once the temperature exceeds this lethal
temperature the development of parasites does not occur and no estimate of EIP is possible.

Modelling future parasite range expansion with warming climate

We used a series of climate-based models to predict the change in parasite range with temperature. First, we
extracted monthly values for minimum temperature and maximum temperature for the year 2021-2040 for
four Himalayan sites. We used Madhmaheshwar as a nearby site (30°38’13”N 79deg12’58”E) as an alternative
to Shokharakh due to non-availability of data.

We used data from eight global climate models available on WorldClim (www.worldclim.org) . These global
climate models (GCM) are BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1, CanESM5, IPSL-CM6A-LR,
MIROC-ES2L, MIROC6, MRI-ESM2-0. We extracted temperature data for the year 2021-2040 at a spatial
resolution of 2.5 minutes to estimate the effect of future climate change on malaria transmission. A set of
scenarios have been chosen to provide a range of distinct end of century climate change outcomes by the
energy modelling community, which mainly deals with greenhouse gas emission scenarios driven by different
socioeconomic assumptions. We considered the shared socioeconomic pathway SSP2-4.5, which provides one
scenario for global emissions, consistent with certain assumptions about how socio-economic trends might
evolve in the future. We selected SSP2-4.5 because it represents a “middle of the road” scenario i.e., the
world follows a path in which social, economic, and technological trends do not shift markedly from historical
patterns.

To extract the minimum temperature and maximum temperature for the year 2021-2040 values, we use the
GIS software QGIS (https://www.qgis.org). We compute the average of predicted monthly mean temperature
across all eight GCM models.

Comparison of EIP calculated using local meteorological data and WorldClim data

The temperature collected from data loggers is the real temperature experienced by the malaria vectors in
the field. Therefore, data from loggers can be expected to provide more precise and local results as compared
to the weather station temperature data. To understand variation in temperature modelling based on the
local temperature records and WorldClim (www.worldclim.org) data, we calculated the EIP using mean
temperature collected from both datasets from May to April 2014 to 2015.

Results

We estimated the extrinsic incubation temperature of threePlasmodium and two malaria-like parasites-
Haemoproteus andLeucocytzoon using one-year field-collected data across four sites in the western Himalaya.
Mean daily temperatures were warmest (18degC) for the low elevation site at 1800m (Mandal), followed by
the mid elevation site (13degC). The two high elevation sites at 2600m (Kanchula) and 3200m (Shokharakh)
had the coolest temperatures, 10degC and 8degC, respectively (as shown in Figure 2).

Explicit formulae for the Extrinsic incubation period
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. The EIP of each parasite, in the Briere parametrization, requires three parameters to be specified. The
distributions of these parameters must be obtained using prior knowledge and the available data, together
with statistical methods. We obtained parameter values describing the EIP using the Bayesian methods
described above, for P. relictum, Haemoproteus and Leucocytozoon. The parameter values obtained together
with the appropriate confidence interval are shown in Table 1. We display our results in Figure. 3, together
with those derived earlier for P. falciparum and P. vivax by Catoret al . (2013).

For P. falciparum and P. vivax, we rederived the forms obtained by Cator et al . (2013) through these
Bayesian methods. The work of Cator et al . (2013) used an alternative method involving simple curve-
fitting using SPSS (IBM SPSS v20). We find exact consistency with these earlier results, demonstrating the
validity of our numerical methods. Our results extrapolate from the limited data available, together with
non-informative estimates of the relevant priors, to obtain what appear to be reasonable fits to the data,
together with uncertainty bounds.

Effects of environmental temperature on parasite development (Extrinsic Incubation Period)

Using the thermodynamic parasite development model, we estimated the effect of using the mean daily
temperature and mean hourly temperature on the calculation of the EIP for each site (1800-3200m). Our
methods described the rate of parasite development for Plasmodium species (two human and one avian
Plasmodium ), Haemoproteus , andLeucocytozoon parasites (Figure 3) at varying temperatures. For high
elevation sites (3200m), the EIP estimates for all parasites using both measures suggested that transmission
was not possible throughout the year. Below, we describe where results from both measures coincide, for
other elevations and parasites, as well as where they differ in detail. We find that both measures, based
on either the diurnal temperature range or the mean temperature, very largely give similar results for the
periods of the year where the EIP is within the allowable range for transmission. However, for specific
months, it is possible that transmission is possible within one scheme but not within the other (Figure 4).

For the 2600m site, there was no parasite transmission predicted using the EIP based on both temperature
measures for P. falciparum andP. vivax from May to March. However, in June, the mean temperature range
predicted no transmission of P. vivax whereas the EIP days of 46.9+-15.71 using the diurnal temperature
range. In April, the EIP days for P. vivax were longer by 13.95 days using the diurnal temperature range (EIP
days: 36.08+-3.5) than the mean temperature (EIP days: 22.13+-4.04). The EIP days for P. falciparum were
5.62 days shorter using mean temperature measures (EIP days:40.29+- 12.11) than the diurnal temperature
(EIP days: 45.91+-10.64) in April.

For avian Plasmodium relictum , using both mean temperature and diurnal temperature range, September
to March was predicted as no transmission period and May to August and April as predicted transmission,
at 2600m. In April, the EIP was 18.7 days longer using the diurnal temperature range (EIP days:32.95+-
16.29) than the mean temperature range (EIP days:14.25+-2.25). For two malaria-like avian parasites,
Haemoproteus and Leucocytozoon , September to March were predicted as no transmission period and
June to August was predicted as the transmission period (< 1 day difference in EIP estimates) using both
temperature measures. However, diurnal temperature range predicted no parasite transmission in April
whereas mean temperature range estimated the EIP days of 8.27+-1.1 and 5.62+-0.75, for Haemoproteus
and Leucocytozoon , respectively.

For the 2000m site (Anusuya), October to March was predicted to have no transmission period for P.
falciparum and P. vivax using both temperature measures. In April, using the mean temperature predicted
EIP days of 37.12+-27.34 for P. falciparum and 34.73+-9.66 for P. vivax , however no transmission was
obtained using the diurnal temperature range. Using the mean temperature, there was no P. falciparum
transmission predicted for May and September. However, the diurnal temperature range approach predicted
EIP days of 51.7+-17.94 in May and 50.7+-17.02 in September.

Among avian parasites, P. relictum transmission window was predicted from May to September using both
temperature measures. However, there was no P. relictum transmission predicted in October using mean
temperatures while the diurnal temperature range method estimated EIP days of (47.4+-19.46). In March,
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. use of the diurnal temperature range predicted no P. relictum transmission whereas the mean temperature
range measure suggested EIP days of 46.03+-17.43. In April, both temperature measures predicted P. re-
lictumtransmission, however, EIP days using diurnal temperature range were 3.06 longer than for the mean
temperature. For two malaria-like parasites, Haemoproteus and Leucocytozoon, transmission was predicted
from June to September using both temperature measures. There was no Haemoproteus transmission pre-
dicted for October to April using both temperature measures. In May, Haemoproteusshowed no transmission
using mean temperature whereas, using the diurnal temperature, transmission was predicted with showed
EIP days of 15.44+-8.54. However, Leucocytozoon transmission was not predicted from November to Febru-
ary, while only the mean temperature supported EIP days of 17.71+-13.56 in March and April. The diurnal
temperature range method indicated transmission in October with EIP days of 19.81+-7.8.

For the lowest elevation site (1800m), P. falciparum and P. vivax showed no transmission from December
to February using both measures, the DTR and the mean temperature. An exception was for P.vivax where
the use of the diurnal temperature range showed an EIP of 51.6+-10.72 days in the month of February. The
effect of daily temperature variations on P. falciparum and P. vivaxpredicted a transmission window from
May to October, March, and April. In November, there was no transmission using the mean temperature
for both P. falciparum and P. vivax. The use of the diurnal temperature range predicted transmission for
both parasites in that month, with EIP more than 45 days in both cases.

In contrast, for P. relictum , use of the diurnal temperature range suggested transmission throughout the
year. However, the use of the mean temperature showed no transmission across the months December
to February. For the two malaria-like parasites, transmission months ranged from May to October for
Haemoproteus and May to November, as well as April, for Leucocytozoon. The exceptions were: using the
mean temperature led to transmission in March while using the diurnal temperature range led to transmission
in April forHaemoproteus . In March, there was no transmission predicted using the diurnal temperature
range while mean temperature range predicted EIP days of 12.79+-11.96 for Leucocytozoon .

Our comparisons of mean temperature collected using experimental logger data and WorldClim data from
2014-2015 showed threshold temperature not supporting parasite transmission at the high elevation site
(3200m) throughout the year (Suppl. Fig. S1). However, at the 2600 m site,P. vivax transmission was
predicted from May to September and April whereas experimental data suggested only in April. For avian
parasites, P. relictum , Haemoproteus andLeucocytozoon the window in which transmission is predicted is
largely similar using these two source datasets, albeit leading to longer EIP days with experimental data,
with the only exception for the month of April where this systematics are reversed. This larger pattern
was reversed at 1800 m, with shorter EIP days with experimental data as compared to using WorldClim
data, with the only exception again being for the month of April. The 2000m site showed closely similar
transmission patterns for all parasites using both datasets, again except for the months of March and April,
for P. relictum andLeucocytozoon .

Predicting parasite range expansion

Using computed monthly mean temperatures extracted from global climate projections (2021-2040) and our
field data collected from 2014-2015, we compared the EIP for avian as well as the human malaria parasites
across the four Himalayan sites (Figure 5). The main point was that for virtually all parasites, climate
change scenarios lead to an expansion of the transmission period in which parasite survival is guaranteed
as well as the lower EIP. The only exception was the low elevation site, Mandal (1800m) where a decrease
in average temperature is predicted leading to an increase in EIP. The effects of climate change are known
to be inhomogeneous, in general, even as there is a secular increase in overall mean temperatures. This
counterexample to the general trend supports that observation.

Comparison of EIP using historical and future climate data

To understand the effect of climate change with the historical and future climate temperature on the EIP,
we have used average temperature for the year 2000-2018 (historical temperature data) and average temper-
ature of 2021-2040 (future temperature data), using data from WorldClim (www.worldclim.org ). The EIP
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. calculated using both these data is shown in Figure 6. The effects of global warming are clearly seen, i.e.,
with high temperature for the year 2021-2040, the EIP is shorter as compared to the lower temperatures
across the period 2000-2018.

Discussion

Understanding how changing global temperature affects the period during which parasite development can
occur is crucial to modelling how the range of viability of the malaria parasite changes with time. We
explore these questions using a thermodynamic model that describes the nonlinear relationship between
developmental rate and temperature, for five blood-borne parasites and their arthropod hosts. For this we
use a parametrization of the EIP proposed by Briere et al . (1999), using Bayesian inference methods to
estimate the relevant parameters using prior knowledge assembled using an extensive literature search. For
avian haemosporidia – P. relictum , Leucocytozoonspp., Haemoproteus spp. - we are not aware of any prior
attempt to obtain the constants defining the EIP as parameterized for the Briere equation. We believe this
calculation presents those results for the first time

Using measures of mean temperature versus the diurnal fluctuating temperature in the field, we demonstrated
both spatial and temporal variation in malaria transmission risk in the western Himalayan region. Both
human malaria and avian malaria prevalence vary with season and intensity across these sites. We showed
that for all five vector-borne parasites transmission was most strongly constrained by temperature in high
elevation (3200 m) environments throughout the year, and that different models provided largely consistent
results for lower elevations.

Whilst the temperature and transmission windows we calculate could fit within the lifespan of Anopheles
species in general, it is important to note here that our study was primarily designed for the forested habitat
with no records of Anopheles species (FI unpublished data). Malaria incidence has been reported from human
dominated hilly areas below 2000 m with high prevalence forAnopheles mosquitoes incriminated as prime
malaria vectors (Shukla et al . 2007). Our analysis showed that the temperature conditions are not conducive
for malaria transmission in the current scenario and the diurnal temperature fluctuation has no effect on
malaria transmission biology. In line with the Government of India’s National Framework for Malaria
Elimination in India 2016–2030 Program (NVBDCP 2016), it is crucial now to apply such approaches for
identification of hotspots using fine-scale data which can help in addressing the ecological drivers of malaria
transmission (Mishraet al . 2016). These temperature estimates have implications on defining the parasite
transmission limits across spatio-temporal scales: i) EIP responds in a non-linear fashion to temperature and
is sensitive to small changes in temperature which could have significant effects on the parasite transmission
window (e.g., Blanford et al . 2013); ii) hourly fluctuations in temperature are experienced in the field by
both mosquito and parasite which could provide site-specific insights into parasite transmission range at a
small spatial scale. While our data do capture these effects explicitly using mean versus DTR measures, we
emphasised that using site-specific data is important for deriving insights into malaria transmission range.
Our comparisons of EIP calculated using local meteorological data and WorldClim data showed that relying
on weather station data might underestimate the parasite development in a highly seasonal ecosystem with
distinct physiographic climatic conditions.

The changing climate has rapidly influenced the rainfall, temperature, and vegetation phenology. These
changes are causing shifts in the timing of species activity. For example, a surge in temperature has shifted
timing and length of breeding season in birds (Hallfors et al . 2020) leading to mismatch with optimal
resource abundance which is vital for reproductive success. For short-lived ectotherms, the spread of mosquito
species to new habitats in high elevations, short generation times, high population growth rates and strong
temperature-imposed selection could lead to fast adaptation (Couper et al . 2021).

In the western Himalayan context, the thermodynamic model showed that the EIP days do not support
transmission of avian haemosporidians parasites at high elevation sites (3200m). However, EIP days have
limited transmission windows for Plasmodium , Haemoproteusand Leucocytozoon from 1800-2000 m. This
further implies that low to mid elevation sites have optimal conditions and lack thermal constraints for
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. parasite transmission during peak breeding season (April-May). Ishtiaq and Barve (2018) showed that the
probability of infection with Plasmodium parasite declines steeply with elevation. In contrast, Leucocytozoon
spp. infection risk increases with elevation, however, most of these infections were sub microscopic in high
elevation in breeding season (April-May). This contrasts with studies on the ecology of haemosporidia
in temperate regions where birds with latent infections return to the breeding grounds and experience a
relapse, with increase in parasites visible in the blood stages (Applegate 1970, Becker et al . 2020). In
general, parasite intensity showed a significant decline with elevation in the breeding season (April-May) and
an increase across mid-elevations in the nonbreeding season. The absence of gametocytes (infective stage)
in the blood during spring season or late emergence of vectors due to environmental conditions could lead
to the disruption of transmission cycles (migratory mismatch).

Our data support the hypothesis that avian Plasmodium ,Haemoproteus and Leucocytozoon are currently
restricted by thermal gradient and provide an ecological explanation for absence of gametocytes in breeding
season at high elevation. This further implies that fledgelings might be at the risk of haemosporidian (Haemo-
proteus ) infections from June-August which coincides with peak emergence of Culicoides spp. in 2000-2600
m sites (Ishtiaq et al. unpublished data). Using a thermodynamic model, we supported thePlasmodium
relictum transmission scenario in Hawaiian Islands using Degree-day models with 13degC as minimum tem-
perature and 30deg C as maximum temperature threshold to complete sporogonic development (LaPointe
et al . 2010).

We used climate models to interrogate how changing temperature from 2021-2040 could potentially lead to
an expansion of the temperature range conducive for malaria transmission in high elevation zones. Using
mean temperature data, we found low elevation sites (1800m) might experience unsuitable conditions for
parasite transmission in the future which suggests that some habitats that are currently too cool to sustain
vector populations may become more favourable in the future, whereas others that are drying may become
less conducive to vector reproduction. Therefore, the geographic ranges of mosquitoes may expand or be
reduced, which may cause parallel changes in the population of malaria pathogens they transmit. Such
expansion also increases the time window of malaria transmission resulting in a larger number of generations
of parasites per year that can positively affect parasite abundance (Schroderet al . 2008).

One of the limitations of our study is the use of one year data to define these thermal effects at a small
spatial scale. To quantify these temperature effects at a fine scale, we need long-term data across multiple
sites. Nevertheless, the mean temperature variation using field data and WorldClim records exhibited similar
patterns in parasite transmission range. Furthermore, our modelling using mean versus hourly temperatures
captures the EIP variation which is corroborated by the prevalence and intensity of parasites characterised
in avian hosts. Our data illustrates the contrasting thermal environments that can exist across relatively
small spatial scales within a region and can have divergent effects on parasite development.
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Figure 1. Daily temperature sampling site of the western Himalaya Mandal (1800 m), Anusuya (2000 m),
Kanchula (2600 m) and Shokharakh (3200 m). We have used the Madhmaheshwar site as an alternative to
Shokharakh for modelling future parasite range expansion, as explained in the main text.

Figure 2. Daily temperature records at an hour interval across four sites in the western Himalaya. Mean
temperature (upper panel) and DTR (Diurnal temperature range) (Lower panel) for all four sites. Each
point shown in colour represents a value of daily temperature (inOC, right hand bar) from May 2014 to April

11



P
os

te
d

on
A

u
th

or
ea

18
M

ar
20

22
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
64

76
01

83
.3

04
87

26
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. 2015 of that site. The solid lines represent average temperature. The black vertical bar represents standard
deviation.

Figure 3: Relationship between temperature and parasite development rate for P. falciparum, P. vivax, P.
relictum, Haemoproteus and Leucocytozoon obtained using Bayesian modelling as described in the text. The
available empirical data (circle), summarised in the Suppl. Table 1, is fitted to the Briére equation. The prior
distributions for all the estimated parameters are provided in Suppl. Table 2. The solid line is the fit to the
empirical data. The bands show the uncertainty (confidence interval) in inferred parameters.
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.

Figure 4: Extrinsic incubation period (EIP) in days of P. falciparum, P. vivax, P. relictum, Haemoproteus
and Leucocytozoon for four sites of the western Himalaya. These are calculated using mean temperature
(circle) and diurnal temperature range (DTR) (star) from May 2014 to April 2015. Bar represents the
standard deviation.
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.

Figure 5: Comparison of extrinsic incubation period (EIP) in days of P. falciparum, P. vivax, P. relictum,
Haemoproteus and Leucocytozoon for four sites of the western Himalaya. using mean temperature data (May
2014 to April 2015, circle) and future climate data (2021 to 2040, triangle). Bar represents the SD.
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Figure 6: Comparison of extrinsic incubation period (EIP) in days of P. falciparum, P. vivax, P. relictum,
Haemoproteus and Leucocytozoon for four sites of the western Himalaya. using mean temperature data (May
2000 to April 2018, hexagon) and future climate data (2021 to 2040, triangle).

Parasite Tmin (oC)
(2.5, 97.5) %CI

Tmax (oC) (2.5,97.5) %CI C (2.5,97.5) %CI σ (2.5, 97.5) %῝Ι

P. falciparum 15.624
(15.02, 17.09)

34.921
(33.38, 36.97)

0.000116
(9.6e-5, 1.5e-4)

0.01
(9.0e-3, 0.03)

P. vivax 13.51
(13.02, 14.58)

34.08
(31.97, 36.81)

0.000122 (9.8e-5, 1.5e-4) 0.02
(0.01, 0.03)

P. relictum 12.56
(9.06, 14.41)

34.46
(31.38, 37.72)

0.000157 (1.0e-4, 2.2e-4) 0.01
(6.3e-3, 0.03)
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. Haemoproteus spp. 12.01
(11.04, 13.79)

29.48
(28.03, 31.78)

0.000299 (1.4e-4, 4.7e-4) 0.08
(0.05, 0.16)

Leucocytozoon spp. 11.92
(11.03, 12.94)

29.95
(28.1, 31.94)

0.000425 (1.9e-4, 7.0e-4) 0.11 (0.05, 0.23)

Table 1. Estimated parameter values of minimum and maximum temperature, scaling parameter c and sigma
using Bayesian method for all parasites. % CI is the confidence interval.
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