A trait-based approach to thermal niches: linking movement and metabolism to predict thermal tolerances of terrestrial invertebrates Jördis Terlau¹, Thomas Boy¹, Ulrich Brose², Benoit Gauzens³, Malin Pinsky⁴, Samraat Pawar⁵, and Myriam Hirt³ February 1, 2022 ## Abstract The survival of animals under global warming strongly depends on their individual thermal niches, which result from the balance between energy loss and gain. Active movement is an important component of this energetic balance, as it affects not only energy gain via food intake but also energy loss via activity metabolism. Here, we develop a novel trait-based approach for how thermal niches arise from temperature-dependent movement. Therefore, we used image-based tracking to quantify the unimodal responses of the movement speed of carabid beetles to temperature. We used these empirical data to parameterize a mathematical model based on metabolic and predator-prey theory for net energy gain to derive a general mechanistic concept of thermal niches. This trait-based approach allows a relatively rapid and cost-effective assessment of climate change vulnerability for a wide range of animal taxa on broad geographic scales. ## Hosted file manuscript_movement_energy_2022-January.docx available at https://authorea.com/users/458337/articles/554907-a-trait-based-approach-to-thermal-niches-linking-movement-and-metabolism-to-predict-thermal-tolerances-of-terrestrial-invertebrates ¹German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig ²German Centre for Integrative Biodiversity Research Halle-Jena-Lepizig ³iDiv ⁴Rutgers University ⁵Imperial College London