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1 Introduction

The time evolution of the density and the velocity of a general viscous isentropic compressible fluid
occupying a domain Ω ⊂ RN is governed by the compressible Navier-Stokes equations:

ρt + div(ρu) = 0, (t, x) ∈ (0,∞) × RN ,

(ρu)t + div(ρu ⊗ u) + ∇P = divT, (t, x) ∈ (0,∞) × RN ,

(ρ, u) |t=0= (ρ0(x), u0(x)), x ∈ RN ,

(ρ, u)→ (0, 0) as |x| → ∞, t > 0.

(1.1)

where ρ is the density, and u = (u1, · · · , uN)> ∈ RN(N = 2, 3), is the velocity of the fluid. We assume
that the pressure P satisfies

P = Aργ, γ > 1, (1.2)

where A is a positive constant, γ is the adiabatic exponent. T denotes the viscosity stress tensor with
the following form

T = µ(ρ)D(u) + λ(ρ)divuI2. (1.3)

The work is supported by the National Natural Sciences Foundation of China (No. 12001415,No.11801495, No.
11331005, No.11601423 ) and SRDPC 20136101110015.
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†Corresponding author. E-mail: suwenhuo@jxycu.edu.cn

1



Here I2 is the N × N identity matrix, µ(ρ) = αρ is the shear viscosity coefficient, and λ(ρ) = βρ is the
bulk viscosity coefficient, α and β are both constants satisfying

α > 0, α + β ≥ 0. (1.4)

We will establish the corresponding results on (1.1) - (1.4), then reveal the applications to various
shallow water models.

There are huge amounts of literature on the large time existence and behavior of solutions to the
system (1.1). When the viscosity coefficients were assumed to be fixed positive numbers, Kazhikhov
and Shelukhin [30] established the first existence result on the compressible Navier-Stokes equations
in one dimensional space. Due to the difficulty from the vacuum, the initial density should be bounded
away from zero in their work. It has been extended by [37] and Hoff [26] for the discontinuous initial
data. For the multidimensional case, Matsumura and Nishida [36] first established the global existence
with the small initial data. To remove the difficulty from the vacuum, Lions in [34] introduced the
concept of renormalized solutions to establish the global existence of weak solutions for γ > 9

5
concerning large initial data that may vanish, and then Feireisl et al.[20] and Feireisl [18] extended
the existence result to γ > 3

2 .
The problem becomes even more challenging when the viscosity coefficients depend on the den-

sity. Indeed, the system (1.1) is highly degenerated at the vacuum because when the density vanishes,
the velocity cannot even be defined. The vacuum makes estimates of the gradient on the velocity field
very difficult. To deal with this difficulty, Bresch [4] developed a new mathematical entropy for λ(ρ)
and µ(ρ) satisfying λ(ρ) = 2(µ′(ρ)ρ − µ(ρ)), see also in [1], [3] and [6] for the case with an additional
quadratic friction term rρ|u|u. This new entropy offers a nice estimate µ′(ρ) ∇ρ√

ρ
∈ L∞([0,T ]; L2(R2))

provided that µ′(ρ0) ∇ρ0√
ρ0
∈ L2(R2). For spherically symmetric case, see [17, 16, 24]. For our problem,

such an entropy exists when β = 0. Unfortunately, BD-entropy does not apply to many interest-
ing models, including the one in (1.11) and those bounds are not enough to treat the compressible
Navier-Stokes equations without additional control on the vacuum. In fact, we cannot expect too
much regularity results of Lions’s weak solutions since the result of Xin[40], who proved that there
is no global smooth solution to the Cauchy problem if the initial density with compact support. So
more and more people are beginning to investigate the mechanism for possible breakdown of smooth
solutions.

There are several works [13, 19, 28] trying to establish blowup criteria for the strong (smooth) so-
lutions to the barotropic compressible Navier-Stokes equations (1.3). When the viscosity coefficients
were assumed to be fixed positive numbers, In particular, it is proved in [19] for three dimensions, if
7µ > 9λ, then

lim
T→T̄

(
sup

0≤t≤T
‖ρ‖L∞ +

∫ T

0
(‖ρ‖W1,q0 + ‖∇ρ‖4L2)dt

)
= +∞,

where T̄ < ∞ is the maximal time of existence of a strong solution and q0 > 3 is a constant. Recently,
Huang and Xin [27] succeeded in removing the crucial condition above and established the blowup
criterion

lim
T→T ∗

∫ T

0
‖D(u)‖L∞dt = ∞.

When the viscosity coefficients depend on the density, several blowup criteria are given to the
local-in-time strong solution in [10]. Recently, Xin Zhong [39] proved the strong solution to the
problem exists globally if the gradient of velocity satisfies ‖∇u‖L2(0,T ;L∞) < ∞. However, all the
results mentioned above on the blow-up of the solutions of compressible flows are for viscosities with
a uniformly positive lower bound, i.e., both µ(ρ) ≥ µ and λ(ρ) ≥ λ, where λ, µ are positive constants.
Therefore, a natural question arises: when viscosities without a uniformly positive lower bound, how
we can describe the mechanism of blow up to ensure the global existence of strong (or classical)
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solutions to the system (1.1)? So, the aim of this paper is to establish the blowup criterion results for
the system (1.1) and shallow water equations with degenerate viscosities.

Before stating the main result, we explain the notations and conventions used throughout this
paper. We denote ∫

f dx =

∫
RN

f dx

For 1 ≤ r ≤ ∞, we denote the standard homogeneous and inhomogeneous Sobolev spaces as follows:

Lr = Lr(RN), Dk,r = {u ∈ L1
loc(RN)

∣∣∣ ‖∇ku‖Lr < ∞},

‖u‖Dk,r , ‖∇ku‖Lr , Wk,r = Lr ∩ Dk,r, Hk = Wk,2, Dk = Dk,2.

A detailed study of homogeneous Sobolev space can be found in [21].
By introducing a proper notion of solution class, Li et.al.[33] proved the local-in-time well-

posedness of this class of smooth solutions and established a Beale-Kato-Majda type blow-up criterion[29].
The definition of the solution class and main result are as follows:

Definition 1.1. (Regular solution to Cauchy problem (1.1). Let T > 0 be a finite constant. A solution
(ρ, u) to Cauchy problem (1.1) is called a regular solution in [0,T ] × R2 if (ρ, u) satisfies

(A) ρ > 0, ρ ∈ C1([0,T ] × R2), ρ
γ−1

2 ∈ C([0,T ]; H3), (ρ
γ−1

2 )t ∈ C([0,T ]; H2);

(B) ∇ρ/ρ ∈ C([0,T ]; L6 ∩ D1 ∩ D2), (∇ρ/ρ)t ∈ C([0,T ]; H1);

(C) u ∈ C([0,T ]; H3) ∩ L2([0,T ]; H4), ut ∈ C([0,T ]; H1) ∩ L2([0,T ]; D2)

(D) lim
|x|→∞

(ut + u · ∇u + Lu) = lim
|x|→∞

(
(∇ρ/ρ) · Q(u)

)
, f or t > 0.

Theorem 1.1. If the initial data (ρ0, u0) satisfy the regularity conditions

ρ0 > 0, (ρ
γ−1

2
0 , u0) ∈ H3, ∇ρ0/ρ0 ∈ L6 ∩ D1 ∩ D2. (1.5)

Then there exists a time T∗ > 0 and a unique regular solution (ρ, u) to be Cauchy problem 1.1,
satisfying

ρ
γ−1

2 ∈ C([0,T∗]; H3), (ρ
γ−1

2 )t ∈ C([0,T∗]; H2),

∇ρ/ρ ∈ C([0,T∗]; L6 ∩ D1 ∩ D2), (∇ρ/ρ)t ∈ C([0,T∗]; H1),

u ∈ C([0,T∗]; H3) ∩ L2([0,T∗]; H4), ut ∈ C([0,T∗]; H1) ∩ L2([0,T ]; D2), (1.6)

utt ∈ L2([0,T∗]; L2), t
1
2 u ∈ L∞([0,T∗]; D4),

t
1
2 ut ∈ L∞([0,T∗]; D2) ∩ L2([0,T∗]; D3), t

1
2 utt ∈ L∞([0,T∗]; L2) ∩ L2([0,T∗]; D1).

Moreover, if 1 < γ ≤ 3, then ρ(x, t) ∈ C1([0,T∗] × R2). If T̄ < ∞ is the maximal existence time, then
we have both

lim
T→T̄

(
sup

0≤t≤T

∥∥∥∥∥∇ρρ (·, t)
∥∥∥∥∥

L6(R2)
+

∫ T

0
‖D(u)(·, t)‖L∞(R2)dt

)
= +∞ (1.7)

and

lim sup
T→T̄

∫ T

0
‖D(u)(·, t)‖L∞∩D1,6(R2)dt = +∞. (1.8)

Our main result can be stated as follows:
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Theorem 1.2. Let (ρ, u) be a regular solution of the Cauchy problem (1.1) on [0,T ] × RN . Assume
that the initial data (ρ0, u0) satisfying

ρ0 > 0, (ρ
γ−1

2
0 , u0) ∈ H3, ∇ρ0/ρ0 ∈ L2 ∩ D1 ∩ D2.

If T̄ < ∞ is the maximal existence time, then we have

lim sup
T→T̄

∫ T

0
‖∇u(·, t)‖2L∞(RN )dt = +∞, (1.9)

where N = 2, 3.

We now comment on the analysis of this paper. Comparing the blow-up results established in [33],
the main work in this paper is getting the estimate of ‖∇ρ/ρ‖L∞(0,T ;L6). Besides the high degeneracy in
momentum equations, viscosity coefficients vanish as the density allows vacuum which preventing us
from using a similar method proposed by [10, 33, 39] et al. Form the observation of the usual energy
estimate and the mathematical entropy, as well as careful computation, we can see that the key step
in proving Theorem 1.2 is to derive the L∞(0,T ; L2)-estimate on ∇ρ/ρ which is essentially equivalent
to ∇ρ when the initial density has a uniformly positive lower bound. When inf ρ0 = 0, some of the
new difficulties are arise due to the appearance of vacuum. In order to overcome these difficulties, we
will study from a mathematical view point. Inspired by Bresch [4] and Guo [25], we found that the
boundedness of the temporal integral of the super-norm in space of the deformation tensor guarantee
estimate on ∇ρ/ρ and the velocity u. In the process of the proof, we can see that the estimates on
gradient of the velocity u can be derived from ‖∇ρ/ρ‖L∞(0,T ;L2), see Lemma 3.3 and Lemma 3.4. So,
the estimate on ‖∇ρ/ρ‖L∞(0,T ;L6) was also obtained, see Lemma 3.5. Thus a estimate by using the
effective stress tensor will lead to a prior estimates on the L∞(0,T ; L6) estimate on ∇ρ/ρ. The method
we use is motivated by [2]. The detail of the proof of Theorem 1.2 is given in Sect. 3.

Remark 1.1. For N = 2 and µ(ρ) = λ(ρ) = ρ in (1.1), the system is called the shallow water
equations, see also [34]. In fact, the shallow water systems, can also be modeled by another way.
In lakes and sea, the depth of the water is much smaller than the two other dimensions. So the
flows which govern the currents can be tentatively averaged to obtain a simpler two-dimensional set
of equations; these are known as Saint-Venant’s shallow water equations. The Cauchy problem of
shallow water equations reads as:

ht + div(hU) = 0,
(hU)t + div(hU ⊗ U) + ∇h2 = ν(h,U),
(h,U) |t=0= (h0(x),U0(x)), x ∈ R2,

(h,U)→ (0, 0) as|x| → ∞, t > 0.

(1.10)

Here h, U = (U1,U2)> ∈ R2 and ν(h,U) denote the height of the free surface, the mean horizontal
velocity of the fluid and the viscous term, respectively. There are various models (or approximations)
which are possible for viscous terms like for instance div(hD(U)), h∆U, div(h∇U),∆(hU) (see [5,
34]), where D(U) = 1

2 (∇U + ∇>U). Particularly, the case for ν = div(h∇D(U)) is corresponding
to the well-known viscous Saint-Venant model [23] and later, Gent [22] suggests ν = div(hD(U)).
Recently, by a more trivial computation, Marche [35] and Bresch-Noble[7, 8] suggest that

ν(h,U) = div(2hD(U) + 2hdivUI2). (1.11)

The shallow water equation (1.10) turns to isentropic compressible Navier-Stokes equations with
viscosities depending on density when replaces h with ρ. Clearly, when γ = 2, (1.1) - (1.4) include
most of shallow water models mentioned above.
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Remark 1.2. For N = 3, the local-in-time existence of this class of smooth solutions for Cauchy
problem (1.1) can also be established by a similar way in Li et.al.[33] which we omit here for sim-
plicity.

Remark 1.3. For µ(ρ) = ρα, λ(ρ) = ρβ in system (1.1), the blow-up result (1.9) are also hold for
Cauchy problem (1.1) which can also be established by a similar way in this paper, maybe some
proper change also needed.

2 Preliminaries

In this section, we present some known facts and importent inequalities we will use in our proof.
The first one is the following well-known Gagliardo-Nirenberg inequality which will be used later
frequently(see [31]).

Lemma 2.1. Let r ∈ (1,+∞) and h ∈ W1,p(R2) ∩ Lr(R2). Then

‖h‖Lq(R2) ≤ C‖∇h‖θLp(R2)‖h‖
1−θ
Lr(R2),

where θ =

(
1
r −

1
q

)(
1
r −

1
p + 1

2

)−1
. If p < 2, then q ∈ [r, 2p

2−p ] when r < 2p
2−p ; and q ∈ [ 2p

2−p , r] when

r > 2p
2−p . If p = 2, then q ∈ [r,∞). If p > 2, then q ∈ [r,∞).

Some common versions of this inequality can be written as

‖ f ‖L3(R2) ≤ C‖ f ‖
2
3
L2(R2)

‖∇ f ‖
1
3
L2(R2)

, ‖ f ‖L6(R2) ≤ C‖ f ‖
1
3
L2(R2)

‖∇ f ‖
2
3
L2(R2)

,

‖ f ‖L∞(R2) ≤ C‖∇ f ‖L2(R2), ‖ f ‖L∞(R2) ≤ C‖ f ‖
1
2
L6(R2)

‖∇ f ‖
1
2
L3(R2)

. (2.1)

which may be used in our following proof.

Lemma 2.2. For p ∈ [2, 6], q ∈ (1,∞), and r ∈ (3,∞), there exists some generic constant C > 0
which may depend on q, r such that for f ∈ H1(R3), we have

‖ f ‖p
Lp(R3)

≤ C‖ f ‖(6−p)/2
L2(R3)

‖∇ f ‖(3p−6)/2
L2(R3)

,

Next, the following well-known Gronwall’s inequality plays an important role in proving our
estimates on regular solutions.

Lemma 2.3. Suppose that h and r are integrable on (a, b) and nonnegative a.e. in (a, b). Further
assume that y ∈ C[a, b], y′ ∈ L1(a, b), and

y′(t) ≤ h(t) + r(t)y(t) f or a.e. t ∈ (a, b).

Then

y(t) ≤
[
y(a) +

∫ t

a
h(s) exp

(
−

∫ s

a
r(τ)ds

)]
exp

( ∫ t

a
r(s)ds

)
. t ∈ [a, b]

For the proof of this lemma, we refer [38], pp. [12 − 13], to readers.
Due to harmonic analysis, we have the following regularity estimate result for Lamó operator. For

problem
− α∆u − (α + β)∇divu = Lu = F, u→ 0 as |x| → ∞, (2.2)

we have

Lemma 2.4. If u ∈ D1,q(R2) with 1 < q < +∞ is a weak solution to problem (2.2), then

‖u‖Dk+2,q ≤ C‖F‖Dk,q ,

where C depends on α, β and q.

The proof can be obtained via the classical estimates from harmonic analysis.
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3 Proof of Theorem1.2

Let (ρ, u) be the unique regular solution to the Cauchy problem (1.1) with the maximal existence time
T̄ . To prove Theorem 1.2, we assume otherwise that

lim
T→T̄

∫ T

0
‖∇u(·, t)‖2L∞(R2)dt = C0 < +∞. (3.1)

From the definition of regular solutions, we know that, for φ = ρ
γ−1

2 , (φ, u) satisfies
φt + u · ∇φ +

γ−1
2 φdivu = 0,

(∇ ln ρ)t + ∇(u · (∇ ln ρ)) + ∇divu = 0,

ut + u · ∇u + 2θφ∇φ + Lu = ∇ρ/ρ · Q(u).

(3.2)

where θ =
aγ
γ−1 , Q(u) = ∇u + divuIN ,N = 2, 3.

Without loss of generality, we will command α = β = 1 in (1.3) and (1.4) in our calculations. By
assumptions (3.1) and (3.2), we first show that density ρ is uniformly bounded. The proof presented
as following can be seen from [12] and [33]. For the convenience of readers we will give here.

Lemma 3.1. Let (ρ, u) be the unique regular solution to the Cauchy problem (1.1) on [0,T ) satisfying
(3.2). Then

‖ρ‖L∞([0,T ]×Rn) + ‖φ‖L∞([0,T ];Lq(Rn) ≤ C, 0 ≤ T ≤ T̄ , (3.3)

where C > 0 depends on C0, constant q ∈ [2,∞] and T .

Proof. First, it is obvious that φ can be represented by

φ(t, x) = φ0(W(0, t, x)) + exp
(
−
γ − 1

2

∫ t

0
div(s, (W(s, t, x))ds

)
, (3.4)

where W ∈ C1([0,T ] × [0,T ] × Rn)) is the solution to the initial value problem
d
dt W(t, s, x) = u(t,W(t, s, x)), 0 ≤ T ≤ T̄ ,

W(s, s, x) = x, 0 ≤ s ≤ T, x ∈ R2.

(3.5)

Then it is clear that ‖φ‖L∞([0,T ] × Rn) ≤ |φ0| exp(CC0).
Next, multiplying (3.2)1 by 2φ and integrating over Rn, we get

d
dt
‖φ‖2L2 ≤ C‖divu‖∞‖φ‖2L2 . (3.6)

From (1.7) and Gronwall’s inequality, we immediately obtain the desired conclusions. �

The key estimates on ∇ ln ρ and ∇u will be given in the following lemma.

Lemma 3.2. Let (ρ, u) be the unique regular solution to the Cauchy problem (1.1) on [0,T ) satisfying
3.1. Then

sup
0≤t≤T

(
‖∇ ln ρ‖2L2 + ‖u‖2L2

)
+

∫ T

0
‖∇u‖2L2dt +

∫ T

0
‖∇φ‖2L2dt ≤ C, 0 ≤ T ≤ T̄ . (3.7)

where C only depends on C0 and T̄ .
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Proof. Firstly, from (1.1)1, we get

d
dt

∫
| ln ρ|dx

= −2
∫

divu ln ρdx +

∫
divu(ln ρ)2dx

≤ C(|div(u)|2L∞ + 1)
∫
| ln ρ|2dx +

α

4

∫
|∇u|2dx, (3.8)

and multiply (3.2)1 by ∇ ln ρ, integrate over RN , yields

d
dt

∫
|∇ ln ρ|dx + 2

∫
∇(divu)∇ ln ρdx

= −2
∫

∂ j ln ρ∂ jui∂i ln ρdx +

∫
u · ∇|∇ ln ρ|2dx

≤ C‖D(u)‖L∞
∫
|∇ ln ρ|2dx, (3.9)

where we have use the fact∫
∂ j ln ρ∂ jui∂i ln ρdx =

∫
D(u) : ∇ ln ρ ⊗ ∇ ln ρdx.

Secondly, multiplying (1.1)2 by u and integrating over RN , we have

1
2

d
dt

∫
|u|2dx +

∫
|∇u|2dx + 2

∫
|divu|2dx

=

∫
(−u · ∇u · u − θ∇φ2 · u + ∇ ln ρ · Q(u) · u)dx

≡: L1 + L2 + L3.

The right-hand side terms can be estimated as follows

L1 = −

∫
u · ∇u · udx ≤ C‖divu‖L∞‖u‖2L2 ,

L2 =

∫
θ∇φ2 · udx ≤ C‖φ2‖

2‖divu‖L∞ ≤ C‖divu‖L∞ ,

L3 =

∫
ψ · Q(u) · udx ≤ (‖∇ ln ρ‖2L2 + ‖u‖2L2)|Q(u)|∞

≤ ‖D(u)‖L∞(‖u‖2L2 + ‖∇ ln ρ‖2L2).

so we have

1
2

d
dt
‖u‖2L2 + ‖∇u‖L22

≤ C(‖D(u)‖L∞ + 1)(‖u‖2L2 + ‖∇ ln ρ‖2L2) + C‖divu‖L∞ . (3.10)

Thirdly, multiplying (1.1)2 by ∇ ln ρ
ρ , integrating over RN and using Sobolev inequality, we have∫

ρ(ut + u · ∇u)
∇ ln ρ
ρ

dx +

∫
∇P ·

∇ ln ρ
ρ

dx −
∫

div(ρD(u))
∇ ln ρ
ρ

dx −
∫
∇(ρdivu)

∇ ln ρ
ρ

dx = 0

7



which denoted by
∑7

i=4 Li = 0. And we have the fact that

L4 =

∫
ρ(ut + u · ∇u)

∇ ln ρ
ρ

dx

=

∫
(ut∇ ln ρ + u · ∇u · ∇ ln ρ)dx

=
d
dt

∫
u∇ ln ρdx −

∫
u(∇ ln ρ)tdx −

∫
∂i(u j∂ jui) ln ρdx

=
d
dt

∫
u∇ ln ρdx +

∫
divu

div(ρu)
ρ

dx −
∫

∂iu j∂ jui ln ρ −
∫

u j∂i∂ jui ln ρdx

=
d
dt

∫
u∇ ln ρdx +

∫
(divu)2dx −

∫
∂iu j∂ juilnρ +

∫
(divu)2 ln ρ + u jdivu∂ j ln ρdx,

L5 =

∫
∇P ·

∇ ln ρ
ρ

dx =
4θ

(γ − 1)

∫
|∇(ρ

γ−1
2 )|2dx,

L6 = −

∫
div(ρD(u))

∇ ln ρ
ρ

dx =
1
2

∫
ρ(∂ jui + ∂iu j)∂ j

(
∂i ln ρ
ρ

)
=

1
2

∫
(∂ jui + ∂iu j)∂ j∂i ln ρdx −

1
2

∫
(∂ jui + ∂iu j)∂i ln ρ∂ j ln ρdx

=
1
2

∫
(∂ jui∂i∂ j ln ρ + ∂iu j∂ j∂i ln ρ)dx −

1
2

∫
(∂ jui + ∂iu j)∂i ln ρ∂ j ln ρdx

= −

∫
∇divu∇ ln ρdx −

1
2

∫
(∂ jui + ∂iu j)∂i ln ρ∂ j ln ρdx,

and

L7 = −

∫
∇(ρdivu)

∇ ln ρ
ρ

dx =

∫
ρ∂iui∂ j

(∂ j ln ρ
ρ

)
dx

=

∫
∂iui∂ ju j ln ρdx −

∫
∂iui∂ j ln ρ∂ j ln ρdx

= −

∫
∇divu · ∇ ln ρdx −

∫
divu|∇ ln ρ|2dx.

So those equations above and using Young’s inequality, Sobolev inequality yield

d
dt

∫
u∇ ln ρdx +

∫
(divu)2 +

4θ
(γ − 1)

∫
|∇(ρ

γ−1
2 )|2dx − 2

∫
∇divu · ∇ ln ρdx

= −2
∫

udivu∇ ln ρdx +

∫
∂iu j∂ jui ln ρdx −

∫
(divu)2 ln ρdx

+

∫
divu|∇ ln ρ|2dx +

∫
D(u) : ∇ ln ρ ⊗ ∇ ln ρdx

≤ 2‖divu‖∞

∫
(|u|2 + |∇ ln ρ|2)dx + ‖D(u)‖∞

∫
|∇ ln ρ|2dx

+
1
4
‖D(u)‖∞

(
α

‖D(u)‖∞

∫
|∇u|2dx + C‖D(u)‖∞

∫
(ln ρ)2dx

)
≤ C‖Du‖2∞

∫ (
(ln ρ)2 + |∇ ln ρ|2 + |u|2

)
dx +

α

4

∫
|∇u|2dx (3.11)
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Finally, adding (3.8), (3.9), (3.10) and (3.11) yields

d
dt

∫
(|u + ∇ ln ρ|2 + (ln ρ)2)dx +

∫
[(∇u)2 + (divu)2]dx +

4γ
(γ − 1)2

∫
|∇φ|2dx

≤ C‖D(u)‖2∞

∫ (
(ln ρ)2 + |∇ ln ρ|2 + |u|2

)
dx.

According to Gronwall’s inequality, we complete the proof. �

Lemma 3.3. Let (ρ, u) be the unique regular solution to the Cauchy problem (1.1) on [0,T ) satisfying
(1.7). Then

sup
0≤t≤T

‖∇u(t)‖2L2 + sup
0≤t≤T

‖∇φ(t)‖2L2 +

∫ T

0
(‖∇2u‖2L2 + ‖u̇‖2L2)dt ≤ C,

where, u̇ = ut + u · ∇u, C only depends on C0 and T̄ .

Proof. Firstly, multiplying (3.2)3 by −Lu − θ∇φ2 and integrate over RN , we have

1
2

d
dt

(
α|∇u|22 + (α + β)|divu|22

)
dx +

∫
(−Lu − θ∇φ2)2dx

= −α

∫
(u · ∇) · ω′dx + (α + β)

∫
(u · ∇) · ∇divudx

−θ

∫
(u · ∇) · ∇φ2dx − θ

∫
ut · ∇φ

2dx + θ

∫ (
∇ ln ρ · Q(u)

)
· ∇φ2dx

−

∫ (
∇ ln ρ · Q(u)

)
· (α∆u + (α + β)∇divu)dx ≡:

11∑
i=8

Li. (3.12)

where we have used the following fact:

−∆u + ∇divu = (∂x2ω − ∂x1ω)> = ω′, ω = u2
x1
− u1

x2
, N = 2;

−∆u + ∇divu = ∇ × ω = ω′, ω = ∇ × u, N = 3.

From the standard elliptic estimate, we have

‖∇2u‖2L2 −C‖θ∇φ2‖2L2

≤ C‖α∆u + (α + β)∇divu‖2L2 −C‖θ∇φ2‖2L2

≤ C‖α∆u + (α + β)∇divu − θ∇φ2‖2L2 . (3.13)

Now we estimate the right-hand side of (3.12) term by term. According to

1
2
∇(|u|2) − u · ∇u = (u(2)ω,−u(1)ω)top = ω′′,

and Hölder’s inequality, Gagliardo-Nirenberg inequality and Young’s inequality, we obtain

|L8| = α

∣∣∣∣∣ ∫ (u · ∇) · ω′dx
∣∣∣∣∣ = α

∣∣∣∣∣ ∫ (
1
2
∇|u|2 − ω′′) · ω′dx

∣∣∣∣∣
= α

∣∣∣∣∣ ∫ −ω′′ · ω′dx
∣∣∣∣∣ =

α

2

∣∣∣∣∣ ∫ u(2)αx2ω
2 + u(1)αx1ω

2dx
∣∣∣∣∣

=
α

2

∣∣∣∣∣ ∫ ω2divudx
∣∣∣∣∣ ≤ C‖divu‖∞‖∇u‖22

9



|L9| = θ

∣∣∣∣∣ ∫ (u · ∇) · ∇φ2)2dx
∣∣∣∣∣

= θ

∣∣∣∣∣ − ∫
∇u : (∇u)>φ2dx −

∫
φ2u · ∇divudx

∣∣∣∣∣
= θ

∣∣∣∣∣ − ∫
∇u : (∇u)>φ2dx +

∫
(divu)2φ2dx +

∫
u · ∇φ2divudx

∣∣∣∣∣
≤ C‖∇u‖2L2 + C‖divu‖L∞‖u‖2‖∇φ2‖L2

≤ C(‖∇u‖2L2 + ‖divu‖L∞ + ‖divu‖L∞‖∇φ2‖2L2), (3.14)

L10 = −θ

∫
ut · ∇φ

2)2dx = θ
d
dt

∫
φ2divudx − θ

∫
(φ2)tdivudx

= θ
d
dt

∫
φ2divudx + θ

∫
u · φ2

∫
dx + θ(γ − 1)

∫
φ2(divu)2dx

≤ θ
d
dt

∫
φ2divudx + C‖∇u‖2L2 + C‖divu‖L∞‖∇φ2‖2L2 , (3.15)

L11 = −

∫ (
∇ ln ρ · Q(u)

)
· (α∆u + (α + β)∇divu)dx

≤ C‖∇ ln ρ‖2‖∇2u‖L2‖D(u)‖L∞ ≤ C(ε)(‖∇ ln u)‖2L2 + ε‖∇2u‖2L2 ,

where ε > 0 is a sufficiently small constant. Combining (3.12)-(3.15), we have

1
2

d
dt

∫ (
α|∇u|2 + (α + β)|divu|2 − θφ2divu

)
dx

≤ C((‖∇u‖2L2 + ‖∇φ2‖2L2)(‖divu‖L∞ + 1) + ‖divu‖L∞). (3.16)

Secondly, applying ∇ to (3.2)1 and multiplying by (∇φ)>, we have

(|∇φ|2)t + div(|∇φ|2u) + (γ − 2)|∇φ|2divu

= −2(∇φ)>∇u(∇φ) − (γ − 1)φ∇φ · ∇divu

= −2(∇φ)>D(u)(∇φ) − (γ − 1)φ∇φ · ∇divu. (3.17)

Integrating (3.17) over RN , we get

d
dt
‖∇φ‖2L2 ≤ C(ε)(‖D(u)‖L∞ + 1)‖∇φ‖2L2 + ε‖∇2u‖2L2 . (3.18)

Adding (3.18) to (3.16), from Gronwall’s inequality we immediately obtain

‖∇u(t)‖2L2 + ‖∇φ(t)‖2L2 +

∫ t

0
‖∇2u(s)‖2L2dt ≤ C, 0 ≤ t ≤ T.

Finally, due to u̇ = −Lu − 2θφ∇φ + ∇ ln ρ · Q(u), we deduce that∫ t

0
‖u̇‖2L2dt ≤ C

∫ t

0
(‖∇2u‖2L2 + ‖φ‖2L∞‖∇φ‖

2
L2 + ‖∇u‖2L2‖∇ ln ρ‖2L2)dt ≤ C.

�

Next, we proceed to improve the regularity of φ, ∇ ln ρ and u. To this end, we first drive some
bounds on derivatives of u based on the above estimates.
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Lemma 3.4. Let (ρ, u) be the unique regular solution to the Cauchy problem (1.1) on [0, T̄ ) satisfying
(3.1). Then

sup
0≤t≤T

‖u̇(t)‖2L2 + sup
0≤t≤T

‖∇2u(t)‖L2 +

∫ T

0
‖∇u̇‖2L2dt

≤ C‖∇u‖L∞‖u̇‖2L2 + ‖u̇‖2L2‖∇ ln ρ‖3L6 + ‖∇2u‖2L2 + C‖∇u‖L∞ + C,
(3.19)

where C only depends on C0 and T̄ .

Proof. Using Lu = −ut − u · ∇u − 2θφ∇φ + ∇ ln ρ · Q(u) and Lemma2.4, we have

‖∇2u‖l2 ≤ C(‖u̇‖L2 + ‖φ‖L∞‖∇φ‖L2 + ‖∇ ln ρ‖L2‖D(u)‖L∞), (3.20)

from Youngs inequality, which implies that

‖∇2u‖L2 ≤ C(‖u̇‖L2 + ‖∇φ‖L2 + ‖∇u‖L2) ≤ C(1 + ‖ut‖L2), (3.21)

Next, operating u̇ j[∂/∂t + div(u·)] 1
ρ to (3.2)3 , and integrating the resulting equation over R3, one

obtains (
1
2

∫
|u̇|2dx

)
t
−

1
2

∫
|u̇|2divudx

= −

∫
u̇ j[∂ j(ργ−1)t + div(u∂ j(ργ−1)]dx

+

∫
u̇ j{[

1
ρ

div(ρ∇u j)]t + div
(
u

1
ρ

div(ρ∇u j)
)
}dx

+

∫
u̇ j{[

1
ρ
∂ j(ρdivu)]t + div

(
u

1
ρ
∂ j(ρdivu)

)
}dx

,
3∑

i=1

Mi.

(3.22)

Now we calculate the right of (3.22) term by term. Integration by parts, using the equation (1.10)1
and Hölder inequality, M1 yieds that

M1 = −

∫
u̇ j[∂ j(ργ−1)t + div(u∂ j(ργ−1)]dx

=

∫
u̇ j[(γ − 2)∂ j(ργ−1)divu + (γ − 1)ργ−1∂ jdivu + ∂ jui∂i(ργ−1)]dx

≤ C‖divu‖L∞‖u̇‖L2‖∇φ‖L2 + C‖∇u̇‖L2‖∇u‖L2

(3.23)

where we have used the fact that

∂ j(P − P(ρ̃))t + div{u∂ j(P − P(ρ̃))} + (γ − 1)∂ jPdivu + ∂ jui∂iP + γP∂ jdivu = 0.

For M2 and M3, integration by parts and recalling the mass equation (1.10)1, then using Young’s
inequality leads to

M2 =

∫
u̇ j

{
[
1
ρ

div(ρ∇u j)]t + div
(
u

1
ρ

div(ρ∇u j)
)}

dx

=

∫
u̇ j

{
[
1
ρ
∂iρ∂iu j + ∂i∂iu j]t + ∂k[uk∂i∂iu j + uk 1

ρ
∂iρ∂iu j]

}
dx

=

∫
u̇ j

[
(
1
ρ
∂iρ∂iu j)t + ∂k(uk 1

ρ
∂iρ∂iu j)

]
dx +

∫
u̇ j

[
(∂i∂iu j)t + ∂k(uk∂i∂iu j)

]
dx

, I1 + I2.
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We computing I1 and I2, respectively, as following:

I1 =

∫
u̇ j

[
(
1
ρ
∂iρ∂iu j)t + ∂k(uk 1

ρ
∂iρ∂iu j)

]
dx

=

∫
u̇ j

[
(∂i ln ρ∂iu j)t + ∂k(uk∂i ln ρ∂iu j)

]
dx

=

∫
u̇ j

[
(∂i ln ρ)t∂iu j + uk∂k∂i ln ρ∂iu j

]
dx

+

∫
u̇ j

[
∂i ln ρ(∂iu j)t + ∂i ln ρ∂k(uk∂iu j)

]
dx

=

∫
u̇ j∂iu j

[
(∂i ln ρ)t + ∂i(uk∂k ln ρ) − ∂iuk∂k ln ρ

]
dx

+

∫
u̇ j∂i ln ρ

[
(∂iu j)t + ∂i(uk∂ku j) − ∂iuk∂ku j + ∂kuk∂iu j

]
dx

= −

∫
u̇ j∂iu j(∂idivu + ∂iuk∂k ln ρ)dx

+

∫
u̇ j∂i ln ρ

[
∂iu̇ j − ∂iuk∂ku j + ∂kuk∂iu j

]
dx

≤ C‖u̇‖2L2‖∇ρ‖
3
L6 +

1
8
‖∇u̇‖2L2 + ‖∇u‖2L∞‖u̇‖L2‖∇ ln ρ‖L2 + ‖∇u‖L∞‖u̇‖L2‖∇

2u‖L2 ,

where we use the fact that, when N = 2,

‖u̇‖L3‖∇ ln ρ‖L6‖∇u̇‖L2 ≤ ‖u̇‖
2
3
L2‖∇u̇‖

4
3
L2‖∇ ln ρ‖L6

≤ C‖u̇‖2L2‖∇ρ‖
3
L6 +

1
8
‖∇u̇‖2L2£

when N = 3,

‖u̇‖L4‖∇ ln ρ‖L4‖∇u̇‖L2 ≤ ‖u̇‖
1
4
L2‖∇u̇‖

7
4
L2‖∇ ln ρ‖

1
4
L2‖∇ ln ρ‖

3
4
L6

≤ C‖u̇‖2L2‖∇ρ‖
3
L6 +

1
8
‖∇u̇‖2L2 .

For I2, integration by parts, we have

I2 =

∫
u̇ j

[
(∂i∂iu j)t + ∂k(uk∂i∂iu j)

]
dx

=

∫
u̇ j

[
(∂i∂iu j)t + ∂kuk∂i∂iu j + uk∂i∂i∂ku j)

]
dx

=

∫
u̇ j

[
(∂i∂iu j)t + ∂kuk∂i∂iu j + ∂i(uk∂i∂ku j) − ∂iuk∂i∂ku j

]
dx

=

∫
u̇ j

[
(∂i∂iu j)t + ∂kuk∂i∂iu j + ∂i∂i(uk∂ku j) − ∂i(∂iuk∂ku j) − ∂iuk∂i∂ku j

]
dx

=

∫
u̇ j

[
∂i∂iu̇ j + ∂kuk∂i∂iu j − ∂i(∂iuk∂ku j) − ∂iuk∂i∂ku j

]
dx

= −

∫
∇u̇2dx +

∫
∂iu̇ j∂iuk∂ku jdx −

∫
∂iu̇ j∂iuk∂ku j

≤ −

∫
|∇u̇|2dx + ‖∇u‖L∞‖u̇‖L2‖∇u‖L2 .
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Thus, we have

M2 ≤ −

∫
|∇u̇|2dx + ‖u̇‖L3‖∇ ln ρ‖L6‖∇u̇‖L2 + ‖∇u‖2L∞‖u̇‖L2‖∇ρ‖L2

+ ‖∇u‖L∞‖u̇‖L2‖∇
2u‖L2 + ‖∇u‖L∞‖u̇‖L2‖∇u‖L2 .

Similarly,

M3 ≤ −

∫
(divu̇)2dx + ‖u̇‖L3‖∇ ln ρ‖L6‖∇u̇‖L2 + ‖∇u‖2L∞‖u̇‖L2‖∇ρ‖L2

+ ‖∇u‖L∞‖u̇‖L2‖∇
2u‖L2 + ‖∇u‖L∞‖u̇‖L2‖∇u‖L2 .

Thus, we have (
1
2

∫
|u̇|2dx

)
t
+

∫
|∇u̇|2dx +

∫
(divu̇)2dx

≤ C‖∇u‖L∞‖u̇‖2L2 + C‖∇u̇‖L2‖∇u‖L2 + C‖u̇‖2L2‖∇ρ‖
3
L6 +

1
8
‖∇u̇‖2L2

+ ‖∇u‖L∞‖u̇‖L2‖∇
2u‖L2 + C‖∇u‖L∞

≤ C‖∇u‖L∞‖u̇‖2L2 +
1
4
‖∇u̇‖2L2 + C‖∇u‖2L2 + ‖u̇‖2L2‖∇ ln ρ‖3L6

+ ‖∇2u‖2L2 + C‖∇u‖L∞ + C,

which imply (
1
2

∫
|u̇|2dx

)
t
+

∫
|∇u̇|2dx +

∫
(divu̇)2dx

≤ C‖∇u‖L∞‖u̇‖2L2 + ‖u̇‖2L2‖∇ ln ρ‖3L6 + ‖∇2u‖2L2 + C‖∇u‖L∞ + C.
(3.24)

Thus, we complete the proof of this Lemma.
�

Lemma 3.5. Let (ρ, u) be the unique regular solution to the Cauchy problem (1.1) on [0, T̄ ) satisfying
(3.1). Then

sup
0≤t≤T

(‖u̇‖L2 + ‖∇ ln ρ‖L6) +

∫ T

0
(‖∇u̇‖2L2 + ‖∇2u‖2L6)dt < C.

Proof. Firstly, apply ∇ to (1.1)1, and mulptiply the result equation by 6|∇ ln ρ|4∇ ln ρ, we have

d
dt

∫
|∇ ln ρ|6dx

= −6
∫
|∇ ln ρ|4(∂ j ln ρ∂ jui∂i ln ρ + ui∂i|∇ ln ρ|2)dx

−6
∫

∂ j∂iui|∇ ln ρ|4∂ j ln ρdx

≤ C‖D(u)‖L∞
∫
|∇ ln ρ|6dx + ‖∇2u‖L6‖∇ ln ρ‖5L6 .

That is

d
dt
‖∇ ln ρ‖6L6 ≤ C‖D(u)‖L∞‖∇ ln ρ‖6L6 + ‖∇2u‖L6‖∇ ln ρ‖5L6 . (3.25)
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When n = 2, according to Lu = u̇ − 2θφ∇φ + ∇ ln ρ · Q(u), we have

‖∇2u‖L6 ≤ C(‖u̇‖L6 + ‖u · ∇u‖L6 + ‖φ∇φ‖L6 + ‖∇ ln ρ · Q(u)‖L6)

≤ C(‖u̇‖
1
3
L2‖∇u̇‖

2
3
L2 + ‖∇φ‖6 + ‖∇ ln ρ‖L6‖D(u)‖L∞), (3.26)

Adding (3.26) to (3.25), yields

d
dt
‖∇ ln ρ‖3L6

≤ C(1 + ‖D(u)‖L∞)‖∇ ln ρ‖3L6 + C‖u̇‖
1
3
L2‖∇u̇‖

2
3
L2‖∇ ln ρ‖2L6

≤ C(1 + ‖D(u)‖L∞)‖∇ ln ρ‖3L6 +
1
4
‖∇u̇‖2L2 + C‖u̇‖

1
2
L2‖∇ ln ρ‖3L6 .

(3.27)

Adding (3.27) to (3.24), yields(∫
|u̇|2dx + ‖∇ ln ρ‖3L6

)
t
+

∫
|∇u̇|2dx +

∫
(divu̇)2dx

≤ C(‖∇u‖L∞ + ‖u̇‖2L2 + 1)(‖u̇‖2L2 + ‖∇ ln ρ‖3L6) + C‖∇u‖L∞ + C.
(3.28)

When n = 3, similarly,

‖∇2u‖L6 ≤ C(‖u̇‖L6 + ‖u · ∇u‖L6 + ‖φ∇φ‖L6 + ‖∇ ln ρ · Q(u)‖L6)

≤ C(‖∇u̇‖L2 + ‖∇φ‖6 + ‖∇ ln ρ‖L6‖D(u)‖L∞). (3.29)

Adding (3.29) to (3.25), we have

d
dt
‖∇ ln ρ‖2L6

≤ C(1 + ‖D(u)‖L∞)‖∇ ln ρ‖2L6 + C‖∇u̇‖L2‖∇ ln ρ‖L6

≤ C(1 + ‖D(u)‖L∞)‖∇ ln ρ‖3L6 +
1
4
‖∇u̇‖2L2 + C‖∇ ln ρ‖2L6 .

(3.30)

Adding (3.30) and (3.24) to get(∫
|u̇|2dx + ‖∇ ln ρ‖2L6

)
t
+

∫
|∇u̇|2dx +

∫
(divu̇)2dx

≤ C(‖∇u‖L∞ + ‖u̇‖2L2 + 1)(‖u̇‖2L2 + ‖∇ ln ρ‖2L6) + C‖∇u‖L∞ + C.
(3.31)

From the momentum equation (3.2)3 we have

‖u̇(τ)‖L2 ≤ C(‖φ‖L∞‖∇φ‖L2 + ‖∇2u‖L2 + ‖∇ ln ρ‖L2‖∇u‖L2), (3.32)

which combine (1.1), we have

lim
τ→0
‖u̇(τ)‖L2 ≤ C(‖φ0‖L∞‖∇φ0‖L2 + ‖∇2u0‖L2 + ‖∇ ln ρ0‖L2‖∇u0‖L2) ≤ C0.

In (3.31), let τ→ 0, by Gronwall’s inequality and Lemma 3.4, we have

sup
0≤t≤T

(‖u̇‖L2 + ‖∇ ln ρ(t)‖L6) +

∫ T

0
‖∇u̇‖2L2ds < C.

At last, by (3.26) and Lemma 3.4, we have∫ T

0
‖∇2u‖2L6ds ≤ C

∫ T

0
(1 + ‖∇u̇‖2L2 + ‖∇ ln ρ‖2L6)ds ≤ C.

Thus, we complete the proof of this Lemma. �
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We should point out that (3.2) is actually a parabolic-hyperbolic system. Then by a standard way,
we can get other higher order estimates for the regularity of the regular solutions. We will give the
following results.

Lemma 3.6. Let (ρ, u) be the unique regular solution to the Cauchy problem (1.1) on [0, T̄ ) satisfying
(3.1). Then

sup
0≤t≤T

(‖∇3φ(t)‖2L3 + |∇ ln ρ(t)‖2H2 + ‖φt(t)‖2L2 + t‖∇4u(t)‖2L2) < C,

sup
0≤t≤T

(‖(∇ ln ρ(t))t‖
2
H1 + ‖u(t)‖2H3 + ‖ut(t)‖2H1) +

∫ T

0
‖∇4u‖2L2dt < C,

sup
0≤t≤T

(t‖∇2ut(t)‖2L2 + t‖utt(t)‖2L2) +

∫ T

0
(t‖∇3ut‖

2
L3 + t‖∇utt‖

2
L2)dt < C.

where 0 ≤ T ≤ T̄ , and C only depends on C0 and T .

Proof. The method of this proof is similar to [33]. We omit the details here. �

Now, we will complete the proof of Theorem 1.2 for the sake of lemmas above. If (ρ, u) exists
up to the time T̄ > 0,withe the maximal time T̄ < ∞. From Lemmas 5.1 − 5.6 that we can extend
the regular solution (ρ

γ−1
2 ,∇ρ/ρ, u) beyond t ≥ T̄ . In fact, in view of lemmas above, the functions

(ρ, u)|t=T̄ = (ρ
γ−1

2 ,∇ρ/ρ, u)t=T̄ = limt←T̄ satisfy the conditions imposed on the initial data (1.5). That
is, (ρ, u)|t=T̄ satisfy (1.5) too. Therefore, we can take (ρ, u)|t=T̄ as the initial data and apply the local
existence Theorem 1.1 to extend the local regular solutions beyond T̄ . This contradicts the assumption
on T̄ .
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