Relativistic Pure Rotational Energy for Diatomic Molecules

Nicola Aladrah¹, Adel Almoukhalalati¹, and Suleiman Dibo¹

¹Al Baath University

January 24, 2022

Abstract

This paper provides a simplified solution of the Dirac equation for the pure rotational energy of the diatomic molecules and a discussion of the non-relativistic limit. The last works [1-2] led to a complicated form of the relativistic energy of the molecular rotation-vibrational energy with high computational cost based on Schrödinger-like equation. The present work provides a way to determine the pure rotational energy without exclusion of the wavefunction components or using the Schrödinger-like equation, where the selection rule $\Delta J = \pm 1$, where J is the rotational quantum number, appears as a prerequisite for solving the equations. Based on the anti-hermitian spin-orbit operator (L) that been introduced in this paper, which excludes the derivatives, the computational cost expects to decrease.

Hosted file

Relativistic Pure Rotational Energy for Diatomic Molecules.docx available at https: //authorea.com/users/455088/articles/553894-relativistic-pure-rotational-energy-fordiatomic-molecules