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Abstract

Tillage practices can influence soil microbial carbon use efficiency (CUE), which is critical for carbon cycling
in terrestrial ecosystems. The effect of tillage practices could also be regulated by nitrogen (N) addition.
However, the soil microbial mechanism about N fertilizer effect on microbial CUE under no-tillage is still
unclear. We investigated how N fertilizer regulates the effect of tillage management on microbial CUE
through changing microbial properties and further assessed the impact of microbial CUE on particulate
(POC) and mineral-associated organic matter carbon (MAOC) using a 16-yr field experiment with no-tillage
(NT) and conventional tillage (CT), both of which combined with 105 (N1), 180 (N2), and 210 kg N ha!
(N3) N application. We found that microbial CUE increased with increasing N application rate. NT increased
microbial CUE compared with CT under N1. The bacterial and fungal diversities of NT was higher than
CT and N application decreased their diversities in the 0-10 cm layer. The partial least squares path model
showed that bacteria diversity, fungal diversity, and fungal community structure played more critical roles
in increasing microbial CUE. Furthermore, POC and MAOC under NT were higher than CT and they also
increased with increasing N application rate. This could be explained by the finding that increasing microbial
CUE induced by N application had the potential to increase POC and MAOC. Overall, N addition is an
important pathway to influence microbial CUE, which is mainly regulated by bacterial and fungal diversities
rather than their biomass under no-tillage.
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1. Introduction

Soil biodiversity loss induced by agricultural practices threatened the provision of soil ecosystem functions
(De valenca et al. , 2017; Huang et al. , 2019). One of the functions is soil organic carbon (SOC) storage
(Chen et al. , 2017; Novara et al. , 2017), which is crucial to the determination of carbon (C) cycling in
ecological systems. The C stock is susceptible to microbial carbon use efficiency (CUE) that is the fraction
of C taken up by microbial cells and retained in biomass as opposed to being respired (Li et al., 2019; Li et
al., 2014; Zhou et al., 2020). Furthermore, tillage practices could influence soil microbial CUE by changing
some soil properties (e.g., temperature and moisture) (Domeignoz-Hortaet al. , 2020; Manzoni et al. , 2012).
Soil microbial CUE can also be regulated by nitrogen (N) addition (Kallenbach et al. , 2019; Widdig et
al. , 2020). Previous studies further found that microbial community structure and compositions are critical
factors influencing microbial CUE (Nunes et al. , 2020; Sinsabaughet al. , 2016; Wang et al. , 2020). Therefore,
it is essential to study the soil microbial mechanism responsible for the effect of N application on microbial
CUE to better understanding carbon sequestration under tillage management.

No-tillage is one of the main conservation tillage practices and numerous studies have investigated its effect
on microbial CUE (Kallenbach et al. , 2019; Mo et al. , 2021; Yang et al. , 2020a). Some studies have shown
that no-tillage increased microbial CUE compared with conventional tillage (Kallenbach et al. , 2019; Mo
et al. , 2021; Sauvadet et al. , 2018), but no effect was also found (Van Groenigen et al. , 2013). A possible
reason for the different effects is that N application could influence microbial CUE (Kallenbach et al. , 2019;
Mo et al. , 2021; Van Groenigen et al. , 2013) and its application rate is different among these studies. N
application can also affect microbial growth and respiration by changing soil nutrient availability, particularly



for N, because decomposer cells need to maintain balanced compositions of C and N (Manzoni et al. , 2012).
In addition, the limitation of N increases over-flow respiration or C excretion rather than microbial growth,
which further decreases microbial CUE (Qiao et al. , 2019). Previous studies showed that no-tillage with
straw retention could decrease soil N availability (Gentile et al. , 2011; Thierfelder et al. , 2018). These
findings indicate that N application is a promising way to induce no-tillage systems to increase microbial

CUE.

Microbial CUE can be influenced by microbial populations that have different rates of organic matter de-
composition and absorption (Waldrop & Firestone, 2004). Adu and Oades (1978) found that fungi played a
more important role than bacteria on microbial CUE. The main reason is that the C:N variation range of
fungi is generally wider than that of bacteria and fungi have a higher demand for C element than bacteria
(Keiblinger et al. , 2010). However, other studies showed no significant difference in the effect of microbial
CUE induced by fungi and bacteria (Six et al. , 2006; Thiet et al. , 2006). One reason for these conflicting
results is that N application could also influence microbial CUE by stimulating microbial activity and decre-
asing microbial respiration metabolism (Lee & Schmidt, 2014; Liu et al. , 2018; Thiet et al. , 2006) and the
difference N application rates under these studies could contribute to the discrepancy. Another reason is that
these studies only focused on the influence of microbial populations and biomass on microbial CUE (Keib-
linger et al. , 2010; Waldrop & Firestone, 2004) and ignore the key role of microbial diversity on microbial
CUE (Domeignoz-Horta et al. , 2020). Hence, studying the impact of N application on microbial CUE based
on its effects on microbial diversity and community structure could provide a comprehensive perspective to
reveal the effect of N addition on C cycling.

Furthermore, the increase of microbial CUE is an effective means of increasing SOC sequestration (Bradford
et al. , 2013; Haddixet al. , 2016). SOC fractions, especially for particulate organic matter carbon (POC) and
mineral-associated organic matter carbon (MAOC), are more sensitive to microbial CUE than total SOC
(Averill & Waring, 2018; Chenet al. , 2018; Ye et al. , 2018). Averill and Waring (2018) found that substrate
use efficiency can also directly affect C cycling through changing POC and MAOC. In addition, N addition
significantly influenced on soil POC and MAOC (Chenet al. , 2020b, 2019; Ye et al. , 2018). However, it
remains unclear how N application regulates the effect of soil microbial CUE on POC and MAOC under
tillage management. Therefore, studying the effects of N application is essential to understanding the role of
soil microbial CUE on carbon sequestration potential.

This study was conducted to investigate the influence of N application on microbial CUE under tillage prac-
tices from a microbiological perspective. We hypothesized that: (i) the responses of soil microbial diversity,
community structure, biomass, and CUE to N application under CT and NT were different, and (ii) micro-
bial diversity plays a more important role than microbial biomass in microbial CUE. The objectives of this
study were to (i) evaluate the effects of tillage management and N application on soil microbial diversity,
community compositions, and soil microbial CUE, (ii) reveal how N application influences soil microbial
CUE by regulating microbial diversity, community structure, and biomass, and (iii) assess the influence of
microbial CUE on soil POC and MAOC under tillage management with different N application rates.

2. Materials and methods
2.1 Study site

We conducted a continuous field experiment from 2003 to 2019 at a Dryland Farming Experimental Station in
Shouyang (112-113°E, 37-38°N), Shanxi Province in northern China. The climate of the station is continental
monsoon and its average annual potential precipitation and evaporation is 484 mm and 1750 mm, respectively
(Wang et al. , 2019). The annual frost-free season lasts on average 131 days. The sandy loam cinnamon soil
in experimental site was classified as Calcaric-Fluvic Cambisols (Li et al. , 2020). Table 1 shows soil chemical
and physical properties initially.

2.2 Fxperimental design

The long-term experiment was set up in 2003 using a randomized complete block design with three replicates.



Each plot size was 5 m x 5 m, the crop was continuous spring maize and there was a fallow period from
November to March.

Three N fertilizer rates were applied under two tillage treatments in this study and the two tillage practices
were CT (conventional tillage with maize stalk removed after harvesting, plowed twice to about 25 cm depth
using moldboard plow after harvesting and before seeding, and fertilized before plow in April) and NT (no-
tillage with the maize stalk mulched after harvesting, then seeded with a no-till planter and N fertilizer were
applied in small holes between two maize in each row in April). The three N fertilizer rates were N1 (105 kg
N hat), N2 (180 kg N ha), and N3 (210 kg N ha'!) using urea. The row and plant spacings were 60 and
30 cm, respectively.

2.8 Soil sampling

We collected soil samples from depths of 0-10 cm and 10-25 cm using a 10 cm diameter soil auger on 1
August 2019. The sampling date corresponded to the tasseling stage. The soil samples were stored in airtight
polypropylene bags and placed in a cool box at 4°C during transportation to the laboratory. Litter, roots,
and gravel in soil samples were removed and the soil was divided into several samples for further analyses.

2.4 Soil analysis
2.4.1 biochemical analysis

We assessed the soil microbial biomass carbon (MBC) and nitrogen (MBN) by the chloroform fumigation
extraction method (Cleveland & Liptzin, 2007). Fresh soil samples transported in an ice-cooled box were
separated into two aliquots (15 g on a dry weight basis). One set of soil subsamples was extracted using 0.5
M K3S04 to measure the MBC and MBN. Organic C in the K3;SOyextracted solution was analyzed using a
TOC analyzer (Vario TOC, Elementar, Germany). Both MBC and MBN concentrations were corrected for
unrecovered biomass using a k factor of 0.45 (Jenkinson et al. , 2004).

Microplate-scale fluorometric procedures were employed to assay the activity of the following hydrolases
(Sinsabaugh et al. , 1997): B-1, 4-glucosidase (BG), B-1, 4-N-acetyl-glucosaminidase (NAG), and leucine
aminopeptidase (LAP). We prepared substrates and buffer solutions in sterile deionized water. In this study,
1 g of fresh soil sample was homogenized in 125 mL 50 mM sodium acetate buffer. The 50 pl of 50 mM
buffer was dispensed into 16 replicate sample wells (sample solution + substrate), eight blank wells (sample
solution + buffer), eight reference standard wells (buffer + standard), and eight negative control wells (buffer
+ substrate). The prepared microplates were then placed in a dark microcosm for 4 h at 20 °C. Finally,
the reaction was stopped by adding 1 ul of 1 M NaOH to each well. The fluorescence was measured using
an automated fluorometer (BioTek Synergy H1 microplate reader, Winooski, VT, USA) with an excitation
wavelength of 365 nm and an emission wavelength of 450 nm. After correction of the assay wells’ fluorescence
measurements for the negative controls, blanks, and quench standard wells, the enzymatic activities were
expressed as nanomoles of substrate released per hour per gram of dry soil (Saiya-Cork et al. , 2002).

2.4.2 Ecoenzymatic stoichiometry and CUE estimation

We used the activities of the enzymes, the C and N contents of the soil microbial biomass, and labile organic
matter to calculate the CUE according to the previous studies (Geyer et al. , 2019; Sinsabaugh et al. |
2016; Sinsabaugh & Shah, 2012). The labile nutrient content was also replaced with soil organic matter
(Sinsabaugh et al. , 2016)(Zhou et al. , 2020). Previous study also found that the CUE calculated from
stoichiometric models was similar to it according to direct measurements of bacterial and fungal growth and
respiration (Sinsabaugh et al. , 2016).

The microbial carbon use efficiency was calculated using the following equation:
CUEc.y =CUEyMax [Sc-n [(Sc:n+kn )] (1)

where Se.y = (1/EEAc.y )(Beo:n /Le:n ), Sc.x is a scalar that reflects the ability of the microorganisms to
adjust the imbalance between the elemental composition of the available resources and the composition of the



microbial biomass through the allocation of enzymatic activities. Ky is the half-saturation constant with a
value of 0.5. Based on the thermodynamic constraints, CUE,,x is assumed to be 0.6 for the highest microbial
growth efficiency. EEAc.x is the ratio of the C-acquiring activity to the N-acquiring activity, FEEFA¢c.y = BG
/(NAG 4+ LAP ). Be.n represents the molar ratio of C to N of the soil microbial biomass. L¢.nrepresents
the molar ratio of SOC to TN for the soil substrate that is consumed.

The threshold element ratios (TER) for C:N were estimated by the following function:
TERc.n = Loy xEEAcy (2)

where Le.y and EEAc.n have the same meanings as in Eq. (1).

2.4.3 PLFA analysis

Total microbial biomass and microbial community structure were assessed using phospholipid fatty acid
(PLFA) analysis. We used a modified Bligh and Dyer method to extract PLFAs (Bérjesson et al. , 1998).
Total lipids were extracted overnight from 5 g freeze-dried soil in a solvent phase of 3.0 ml 50 mM phos-
phate buffer (pH = 7.0), 3.8 ml chloroform, 7.6 ml methanol, and 4 ml Bligh and Dyer reagent (chloro-
form/methanol/phosphate buffer (1:2:0.8, v/v/v)). The extracted lipids were subsequently added to Disco-
very@®) DSC-Si SPE Tubes (Sigma-Aldrich), then separated into neutral lipids, glycolipid, and phospholipid
by sequential addition of chloroform, acetone, and methanol solutions. We added PLFA 19:0 (Larodan
Malmé, Sweden) to the phospholipid fraction as an internal standard. PLFAs were transesterified to fatty
acid methyl esters using 1 ml 0.2 M methanolic-KOH (Chowdhury & Dick, 2012). We analyzed the extracts
using a gas chromatograph equipped with a flame-ionization detector (Agilent 6890, Agilent Technologies,
Palo Alto, CA, United States). Fungal biomass was the sum of PLFAs 18:2w6¢ and 18:1w9¢ (Frostegard &
Baath, 1996; White et al. , 1996). PLFAs al5:0, al7:0, i14:0, i15:0, i16:0, i17:0 were used as markers for
Gram-positive bacteria, whereas PLFAs 16:1w9c¢c, 16:1w1lc, 18:1wbc, 18:1w7c, cyl17:0, and cy19:0 were used
as markers for Gram-negative bacteria (Brockett et al. , 2012; Frostegard & Baath, 1996). Actinomycetes
biomass was calculated based on the fatty acid: 10Mel6:0 and 10Mel8:0 (Willers et al. , 2015). Total bacte-
rial biomass was the sum of GT, G, and Actinomycetes biomass. We further calculated the ratio of fungal
to bacterial biomass (F: B ratio) in soil samples using PLFAs data.

2.4.4 DNA extraction

Five grams aliquots of soil samples were mixed with 25 mL 0.1 mol/L Tris-HCI (pH 8.0), shaken and filtered
through three layers of sterile gauze. The filtrate was then centrifuged at 10000 x ¢ for 20 min at 4 °C.
DNA was subsequently extracted from the pellets using a GMO food DNA Extraction Kit (Illumina MiSeq
250 PE, Auwigene Company, Beijing, China) according to the manufacturer’s protocols. The total DNA
concentration and quality were checked using a spectrophotometer (NanoDrop, ND2000, ThermoScientific,
United States) and agarose gel electrophoresis.

2.4.5 16S rRNA gene amplicon sequencing and ITS amplicon sequencing

Variable regions V3-V4 on microbial 16S rRNA gene of bacteria and the ITS2 region of fungi were amplified
using PCR, (95 °C for 3 min, followed by 30 cycles at 98 °C for 20 s, 58 °C for 15 s, 72 °C for 20 s and a
final extension at 72 °C for 5 min). The microbial 16S rRNA gene was amplified by forwarding primer 338F
(5-ACTCCTACGGGAGGCAGCAG-3’) and reverse primer 806R (5- GGACTACVVGGGTATCTAATC -
3’) (Lee et al. , 1993). The ITS was amplified with the following forward/reverse primer set: ITS1F/ITS2R
(CTTGGTCATTTAG AGGAAGTAA/GCTG-CGTTCTTCATCGATGC) (Luanet al. , 2015). PCR reac-
tions were performed in 30 yL mixture containing 15 uL of 2 x KAPA Library Amplification ReadyMix,
1 uL of each primer (10 ymol/L), 10 ng of template DNA, and ddH20. The PCR products were detected
using 1% agarose gel electrophoresis, then purified with an AxyPrep DNA gel Extraction Kit (Axygen Bio-
sciences, Union City, CA, United States). Amplicon libraries were quantified using a Fluorometer (Applied
Biosystems 7500, Thermo Fisher Scientific, United States), after which amplicons were sequenced (Illumina
MiSeq PE250, Allwegene Technologies, China).



2.4.6 Soil fractions separation

We used the soil wet-sieving method to separate different soil fractions (Curtin et al. , 2019; Fang et al. |
2019). To separate soil organic matter into labile and stable C fractions, we conducted a combined density
and particle size fractionation (Herath et al. , 2014; Six et al. , 1998). The physical fractionation to separate
two soil C fractions: light fraction, defined as f~POM, and the heavy fraction that contained aggregate
protected organic matter (o-POM, > 53 ym fraction) and mineral protected organic matter (MAOM< 53
pm fraction) (Fanget al. , 2019). Density fractionation of the soils was then performed to isolate light
fraction and heavy fraction using sodium polytungstate (SPT, IMBROS, Australia) (Herath et al. , 2014;
Sixet al. , 1998).

All fractions were dried (60 °C) and weighed to obtain the mass proportion of each fraction relative to the
bulk soil. The soil fractions were ground to < 53 um for C% analyses. Samples were then acidified with 1.0
M HCI to decompose the carbonate, after which they were dried for 8 hours at 60. After drying, the samples
were ground (< 0.149 mm) with a mortar and pestle and the SOC was measured by dry combustion method
using an elemental analyzer (Vario Macro C/N, Elementar, Germany).

Statistics

The data were analyzed by three-way ANOVA to compare the effects of soil depth, tillage management,
nitrogen application rates, and their interaction on enzyme activities, microbial CUE, PLFAs, and microbial
diversity. We compared the means by using the least significant difference with a significance level of P
< 0.05. Statistical analyses were performed using the SPSS 18.0 software (SPSS Inc., Chicago, United
States). Sequences were processed using Quantitative Insights Into Microbial Ecology (QIIME) version 1.9.1
(Caporaso, 2010). Operational taxonomic units clustering at 97% of identity were collected using UCLUST
in QIIME software. Changes in the microbial community structures of the soil samples were evaluated
by principal coordinate analysis (PCoA) in R (v. 3.4.1). The relationships among agricultural practices,
soil microbial diversity and community structure, microbial biomass, soil microbial CUE, and soil POC
were explored by using partial least squares path modeling (PLS-PM). Estimates of path coefficients and
coefficients of determination (R?) in our path model were validated by R (v.3.4.1) with the ‘plspm’ package
(Ai et al. , 2018). The model was assessed using the Goodness of Fit (GoF) statistic, where the GoF value
was set to 0.69.

3. Results
3.1 Changes in enzyme activities and microbial CUEc.n

NT significantly increased BG and NAG activities on average relative to CT (Fig. 1). BG and NAG activities
decreased with soil depth under N'T, whereas soil depth had no influence under CT. Moreover, both variables
of N2 was higher than N1 and N3. Compared with N2, N1 and N3 significantly decreased BG and NAG
activities at 0-10 cm and 10-25 cm depths (Fig. 1). Moreover, the average value of LAP activity under CT
treatment was higher than that of NT (Fig. lec-d) and it was higher under N2 than under N1 and N3 for
CT treatment.

The average value of CUEq.y under CT was increased by 16.2% compared with NT and soil depth did
not influence it under the two tillage practices (Fig. 2g—h). The value of CUE.nincreased with increasing
N application. NT increased the CUEq.y compared with CT in the 0-10 cm and 10-25 cm layers under
N1, whereas there was no significant difference between NT and CT under N3. These results showed that
increasing N application rates under NT could enhance CUEc.y.

3.2 Soil microbial community

The PLFA contents of the total and grouped soil microorganisms under tillage and N application treatments
are shown in Fig. 3. All of the PLFA contents in the 0-10 cm layer were greater than in the 10-25 c¢cm
layer under NT, but the total PLFAs and bacterial PLFAs did not change with soil depth under CT. The
average values of bacteria, fungi, and actinomycetes PLFAs were higher under NT than CT. In addition,



only fungi and the F:B ratio were significantly affected by N level (Table S3). Overall, the total PLFAs were
increased by 19.2% under NT compared with CT and not significantly affected by N level (Fig. 3a-b). For
each grouped soil microorganism, bacterial PLFAs and actinomycetes PLFAs under NT were increased by
21.2% and 24.4%, respectively, compared with CT, but not significantly affected by N level at both depths
(Fig. 3c—d and Fig. 3g-h). Fungal PLFAs also increased under NT compared with under CT. The fungal
PLFAs of N2 was the highest than N1 and N3 under NT, while there was no effect of N application rate
under CT in the 0-10 cm layer (Fig. 3e—f). Moreover, the GT:G™ ratio was insignificantly affected by soil
depth, tillage treatments, and N application rates (Table S3). The GT:G™ ratio increased with increasing N
application rates under NT and there was no effect of N application rate under CT at 0-10 cm (Fig. 3i-j).
In addition, the F:B ratio was not significantly affected by tillage management. N2 produced a higher F:B
ratio than the other two N levels under NT, whereas there was no effect of N application rate on F:B ratio
under CT in both depths (Fig. 3k-1).

3.8 Soil bacteria community compositions

According to 16S rRNA gene sequences, the number of sequences per sample ranged from 31458 to 172704
at a 97% sequence identity threshold. Overall, a total of 8232 OTUs were identified. Actinobacteria (14.5%—
32.6% relative abundance), Proteobacteria (16.5%-28.7% relative abundance), Acidobacteria (15.5%-37.1%
relative abundance), Chloroflexi (10.5%—21.6% relative abundance), and Gemmatimonadetes (4.0%-6.9%
relative abundance) were considered the dominant phyla associated with residue decomposition (Fig. 4a-b).
These five phyla accounted for 96.4% of all sequence reads (Fig. 4).

N application, tillage x soil depth, and N x tillage interaction significantly influenced the bacterial (16S)
community compositions (Table S4). For the dominant phyla, the relative abundances of Acidobacteria,
Planctomycetes, and Firmicutes increased with soil depth, while the relative abundances of Proteobacteria,
Actinobacteria, Bacteroidetes, and Verrucomicrobia declined with soil depth (Fig. 4). Compared with CT,
NT increased the relative abundances of Proteobacteria and Bacteroidetes in the 0-25 cm layer. The relative
abundances of Bacteroidetes increased with an increasing in N application under NT, while N application
had no effect on them under CT. Tillage management also had no influence on the relative abundances of
Chloroflexi. Furthermore, N2 increased the relative abundances of Chloroflexi compared with N1 and N3
under CT, whereas the relative abundances of Chloroflexi of N1 were higher than N2 and N3 under NT in
both layers.

3.4 Soil fungi community composition

Fungi were clustered at the phylum level. The histogram of community structure constructed according to
OTU sequence abundance after clustering (Fig. 4c-d) revealed structural and abundance differences among
N application rates and tillage treatments. There were five phyla of eumycota with an abundance > 0.01%
in these treatments. Ascomycota and Mortierellomycota were the two most dominant, accounting for > 60%
of all phyla.

N application, tillage, and soil depth significantly affected the fungal ITS community composition (Table
S5). The abundance of Basidiomycota was higher under NT than under CT and showed a trend of first
decreasing, then increasing with increasing N application rates under NT. We also found that the relative
abundance of Mortierellomycota was higher under CT than NT in both layers.

3.5 Diversity of soil bacteria and fungi

NT significantly increased soil bacterial diversity on average compared with CT (Fig. 5). Its diversity decrea-
sed with soil depth under NT. N application also significantly affected bacterial diversity under N'T, whereas
N application and soil depth had no effect under CT. NT had higher bacterial diversity than CT in the 0-10
cm layer. Bacterial diversity decreased with an increase in N application rates under NT in the 0-10 cm
layer, while N application had no influence in the 10-25 cm layer. Similarly, NT significantly enhanced the
average value of soil fungi diversity compared with CT (Fig. 6). Soil fungal diversity decreased as the soil
depth and N application increased under NT. However, fungal diversity of CT was not influenced by soil



depth and N application also had no influence on it in 10-25 cm layer.

Principal component analysis of bacterial composition at the phylum level showed that two principal com-
ponents accounted for 47.7% and 42.4% of the overall variances among these treatments in the 0-10 cm and
10-25 cm layers, respectively (Fig. 7). We also found that PCoA of the fungal composition showed that two
principal components accounted for 46.5% and 39.2%, respectively. We revealed that the two fractions (CT
and NT) formed their clusters separated by PC1 in both layers. For fungi, the samples under the three N
application rates of CT clustered closely, while samples within the NT differed more distinctly in the two
layers.

3.6 Soil fractions

The POC and MAOC contents decreased with depth and were significantly affected by N application (Fig.
8a-b). NT increased the POC and MAOC contents by 12.1% and 10.1% compared with CT in the 0-10 cm
layer, respectively. The POC and MAOC contents increased with increasing N application rates and the rate
of increase under NT was higher than under CT in the 0-10 cm layer. However, tillage and N treatment had
no influence on MAOC in the 10-25 cm layer.

3.7 PLS-PM analysis

To better integrate the interrelationships among N application, tillage practices, microbial communities, soil
enzyme activities, soil microbial CUE¢.n, POC, and MAOC, we constructed a partial least squares path
model (Fig. 9). The indirect effect of tillage treatments (0.38) on soil microbial CUEq.x was larger than
that of N application (0.13). We further found that tillage management and N application affected microbial
CUEc.n through changing soil bacterial diversity, fungal community structure, and fungus diversity more
than bacterial and fungal biomass. The responses of microbial CUEc.N to bacterial and fungal diversity were
also different (Fig. 9). Moreover, the results showed that microbial CUEq.x and soil enzyme activities had
a direct effect on soil POC.

4. Discussion
4.1 Soil microbial diversity and community structure

Soil microbial communities are essential to maintaining soil ecosystem function and can be affected by tillage
and N application (Birlocher & Boddy, 2016; Keszthelyi et al. , 2008). We found that NT treatment increased
bacterial and fungal diversity in 0-10 cm layer compared to CT treatment (Tables S6 and S7). The difference
between CT and NT could be due to the reduction of soil physical disturbance and protection from fungal
hyphae and their mycelial network under the no-tillage system (Ceja-Navarro et al. , 2010; Verbruggen &
Toby Kiers, 2010; Wanget al. , 2017).

Furthermore, soil fungal and bacterial diversity decreased with increasing N application rates in the 0-10
cm layer and was higher under NT treatment than under CT (Figs. 5 and 9). One possible reason is that
the straw in no-tillage has a wide C/N ratio (Thierfelder et al. , 2018), which leads to an N limitation under
this tillage system because microbe needs more N under this condition. A previous meta-analysis showed
that appropriate N addition (<100 kg N halyear!) is essential to stimulate microbial growth in no-tillage
systems because it regulates soil C/N (Thierfelder et al. , 2018; Zhou et al. , 2017). However, excessive
N fertilization suppresses the diversity of soil microbes because of the toxic effect of urea (Omar & Ismail,
1999; Wang et al. , 2018). In this study, high N application rate (210 kg N ha™) could induce toxicity,
resulting in lesser microbial diversity. In addition, CT had lower soil SOC (Liet al. , 2010; Liu et al. , 2021)
and C/N ratio compared with NT (Fiorini et al. , 2020), which leads to carbon limiting for microorganisms.
Hence, the effect of N application had a smaller effect on microbial diversity under CT than NT. Previous
studies showed that low N application (35-140 kg N ha'!) decreased soil bacterial diversity (Wanget al. ,
2015) and our study highlighted that there was the same conclusion under high N application rate (105-210
kg N ha!), which extends our knowledge of the effect of N application on microbial diversity. In addition,
increasing N application rates had a negative effect on some dominant flora such as Chloroflexi (Fig. 4),
which also degrades SOM because Chloroflexi plays an important role in the decomposition of refractory C



compounds (Li et al. , 2019b; Piazzaet al. , 2019). These results further indicate that N application needs
to be considered when studying the effect of tillage management on microbial properties.

Tillage management could also influence the vertical distribution of soil microbial communities (Nunes et
al. , 2020). We found no difference in enzyme activities, total PLFAs, and bacterial and fungal diversity
among soil layers under CT treatment (Figs. 1, 2, 5, and 6). The main reason was that soil microbial
communities in different soil layers would be similar to each other after homogenization induced by plowing
under CT (Sun et al. , 2018). However, fungal and bacterial diversity decreased as soil depth increased
under NT(Figs. 5 and 6), which was supported by the previous study (Jumpponen et al. , 2010). This was
likely because no-tillage creates heterogeneous soil (Sun et al. , 2018). Moreover, the decrease rate of fungal
and bacterial diversity with increasing soil depth was higher under N1 than N2 and N3 for NT treatment,
indicating that a low N rate can enhance top soil bacterial and fungal diversity under NT. Hence, it is not
sufficient to only consider the surface layer when investigating bacterial and fungal diversity response to N
application rates in no-tillage systems.

4.2 Relationship of soil microbial characteristic and microbial CUEc. N

Soil microbial CUE can affect soil C cycling (Spohn et al. , 2016). We found that NT increased the soil
microbial CUEq,n on average compared with CT (Fig. 2) because no-tillage can decrease soil temperature
by surface mulching and further increase microbial CUE (Apple et al. , 2006; Wetterstedt & Agren, 2011).
In addition, higher residue production under NT is constantly supplying fresh and labile organic substrates
for microbial activity and biomass thus explaining the greater CUE observed under NT compared with CT
(Alvaro-Fuentes et al. , 2013). Microbial CUE.nyincreased with increasing N application under both tillage
treatments (Fig. 2). The reason is that N addition can reduce microbial respiration metabolism (Liuet al. ,
2018; Spohn et al. , 2016; Thiet et al. , 2006) and increase microbial biomass (Jha et al. , 2020), resulting
in higher microbial CUE¢.y.

Furthermore, although a recent study showed that microbial diversity drives CUE in artificial soil
(Domeignoz-Horta et al. , 2020), to the best of our knowledge, few experimental studies have directly
demonstrated the interaction effect of tillage management and N application on microbial CUE in a field ex-
periment. In this study, the PLS-PM showed that tillage and nitrogen influenced microbial CUE.N through
the microbial diversity and community structure (Fig. 9). We also found that the bacterial and fungal
diversity had different influences on microbial CUEq.x(Fig. 9) under two tillage and these relationships were
regulated by N application (Fig. S1) under no-tillage. Bacterial diversity positively influenced microbial
CUEc.N, whereas fungal diversity had an adverse impact on microbial CUEc.x (Fig. 9). The difference
points to the importance of studying the diversity of fungal and bacterial communities separately for pre-
dicting soil C cycling. In addition, microbial network complexity driving carbon cycling with direct feedback
effects on multiple ecosystem functions (Morrien et al. , 2017; Wagg et al. , 2019; Zhou et al. , 2010), which
could also influence microbial CUE. Further research should be undertaken to explore the effect of bacterial
and fungal networks on microbial CUEc.x.

4.8 The influence of microbial CUEqc.Ny on soil POC and MAOC fractions

POC is a functional soil component for persistent soil organic carbon (Witzgall et al. , 2021). In contrast
to POC, MAOC is more physically or chemically protected, which makes it less vulnerable to mineralization
(Abramoff et al. , 2018). We found that high N application (210 kg N ha'!) increased POC and MAOC
content under two tillage practices (Fig. 9), which is similar to the previous study (Ye et al. , 2018). The
possible reason was that plant biomass (Stewartet al. , 2016; Thomas et al. , 2010; Wang et al. , 2018) and
microbial residues (Chen et al. , 2020a) increased with increasing N application. However, some discrepant
findings showed that N addition decreased (Ye et al. , 2018) or had no significant influence on MAOC (Yuan
et al. , 2020). The main reason for the inconsistent results could be that microbial residues controlled the
changes of soil MAOC pool under N addition and the microbial residues were different due to different N
application rates among these studies (Averill & Waring, 2018; Chen et al. , 2020a; Su et al. , 2020; Yang
et al. , 2020Db).



We further found that the CUEc.ywas significantly positively correlated with POC and MAOC and the
increase rates were higher under NT than CT, which was influenced by nitrogen application (Fig. S2).
Moreover, the POC also had a positive effect on MAOC (Fig. 9) because a portion of POC was degraded
by microbes and then formed part of the MAOC (Su et al. , 2020). Therefore, these results highlight that
nitrogen regulates the influence of microbial CUE.x on soil organic carbon fractions under tillage practices.

5. Conclusions

N application could alter the effects of tillage practices on soil microbial diversity, community composition,
biomass, and CUE. Bacterial and fungal diversities were more responsible for soil microbial CUEc.n than
their biomass. Although microbial CUEc.n was more susceptible to tillage management than N application, it
increased with an increasing in N application rate under the two tillage practices. Furthermore, soil microbial
CUEc.n increased soil POC and MAOC contents and N application also increased the two SOC fractions.
This research underscores the importance of N application to reveal the effect of tillage management on
POC and MAOC from the perspective of soil microbial properties, which contributes to understanding the
potential C sequestration benefits of N application under no-tillage.
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