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To account for water movements in a catchment or any other control volume, let us assume that we can
record the movements of small group of water molecules, called parcels, inside the control volume (cv) and
at its boundaries. We do some assumptions first:

e When it rains over the control volume we have a differently coloured rainfall for any different (clock)
time. Rain is whimsical and it does not fall at each time step but quite randomly.

e After falling, parcels move inside the control volume also with some randomness and gain the cv
boundaries (and beyond).

All the rainfall is monitored by three little water daemons, He, She and They. All of them have a clock
synchronised at the same time and date, and each one is able of an action, at any time step:

e She counts the parcels of any water color inside the cv
e He counts the parcels of any water of any color that exit the cv
e They made calculations with the data received in form of table from She and He

He and She annotate their action in two tables whose rows are marked by the current clock time and whose
columns are the injection times, t;, the times when rain have fallen. Clock time is continuous but sampled
at discrete time steps while ¢;,, is discrete cause the nature of precipitation. The matter can be presented in
a quite abstract manner, but here we rely on a simple example.

Therefore, assuming that we had three precipitations at time ¢;,, = {0,3,5} of mass (or volumes or moles,
the units specification is unnecessary at moment) P = {20, 18, 15}respectively , She and He can organise
their record according to the following tables which grow one row any time step and which we show here in
their definitive form, after all precipitations we are interested about exited the cv:

For She, it is:



tin — | 0 3 5
tol
0 20 - -
1 17 - -
2 13 - -
3 10 8 -
4 8 6 -
5 3 3 15
6 1 2 12
7 0 2 8
8 - 0 5
9 - - 3
10 - -0
11 - - -
For He, it is:
tin— 10 3 5
tBIL’ J/
0 0 -
1 3 - -
2 4 - -
3 3 0 -
4 2 2 -
5 5 3 0
6 2 1 3
7 1 0 4
8 0o 2 3
9 - 0 2
10 - - 3
11 - -0

When He marks a measure his time is by definition, te,. In their asymptotic form (ideally at ¢ = oo) the
two tables contain the same information (say the She table in a “integral” form, and the He table in a
“derivative” form), but for any time ¢, the tables contain mostly complementary information that They
must use jointly to reconstruct where waters went.

They found useful to build the cumulative He table , i.e.

tin — | O 3 5
tex J/
0 o - -
1 3 - -
2 7To- -
3 10 0 -
4 12 2 -
5 17 5 0
6 19 6 3
7 20 6 7
8 - 8 10
9 - 0 12
10 - - 15
11 - -0




to observe that the sum element by element of the She table and the of the cumulative He table gives
a constant in any column, equal to the the total amount of precipitation fallen at the time t;,. A more
colorful representation of the tables above was given in (Hrachowitz et al., 2013), Figure 4, and in the more
recent (Hrachowitz et al., 2016) which is rerpoduced here below
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Figure 1: Figure from Hrachowitz et al, 2016. The top Figure is the She table, the bottom Figure is the
He Table. The right side figures represent the storage at clock time t (top right) and the discharge (bottom
right). On top there is the hyetograph, on bottom the discharge is reproduced also, but it is misleading
because it would be more natural to represent a different function (see below). At the center the storage
selection function (see below) is also presented. Note: this figure should be modified and moved elsewhere
below.

Putting in formulas what He, She and made is, as They knows, requires some abstraction. They in fact
defines:



e vU(t,tin,ter) as the mass of the water stored in the cv at time ¢ which entered at time ¢;,, and will exit
at time t.,;.

The 3-dimensional function v is not actually accessible to They, because it reflects the whole story of water
parcels but They found useful to start to build definitions from it. They first assumed to have just one
rainfall to analyze. They observed then that, by definition, it is ¢;, < t.., while for the clock time there
exists various possibilities, and, for any ¢;,, there is a sequence of T., = {tes,, tews, ... tew, }, aS many
as the number of non zero entries, after ¢, for a t;, columns under scrutiny in He table (which could be
infinite). Therefore we have the following cases:

o t <ty < teg,: in this case v(t, tin, tez) = 0 because not any rain was received.

® tin < tey; =t < ey, then v(t,tin, tex) # 0 and a function of t.,, of value given by the appropriate
entry of asymptotic He table for any value of t., > t. (This means that the They algorithm ideally
runs over all the ¢ and over the t;, larger than t)

o tin < tey, <t: In this last case v(t,tin,tey) =0

If more than one t;, is present, the assignment of values must be repeated for any ¢;,. From the analysis it
is apparent that all the v(t, t;n, te,) information can be derived from the asymptotic He table using ¢ as an
index.

For instance, if we set t = 4,t;n = 0, to, = 4, the volume is v(t = 4,t;, = 0,tex = 4) = 2, as well as
O(t =4, tin = 4, Loy = 4) = 2.

We can also define:

o vy(t,tin,tes) as the mass of water which entered the cv at time at time ¢;, and exited at any time
tew < t, (ie. tip < tey <t). Then, it results:

v(tatin =T, te:r:) + ’Uq(totin =T, tex) = P(T) (1)

where 7 is the common water injection time (this is equivalent to sum the same column of the She and
cumulative He tables).

If we integrate v (t, t;n,te,) over all the future exit time, we obtain:

S(t, tzn) = / U(t7 tin, tE.L)dtel (2)
t

which is the mass of water inside the cv that entered at t;, (independently of when they will go out.
This s(t,t;,) is what She measures in her table. There is an apparent the conundrum that while integration
in (2) is on all future times, s (¢,t;,)it is known at time ¢ : but this is due simply to mass conservation of
which the future must be respectful. By definition:

t
/ ’U(tv Lins tea:)dtew =0 (3)
0

because at time ¢ all the parcels that have t., < t are already out of cv.

Symmetrically, we can integrate over t;,:



t
Vex (t7 tea:) = / U(t7 tina tea:)dtin (4)
0

which represents the mass of the parcels that entered any time prior to ¢ and will exit at t.,. The vey (£, tex)
is, for any row in the asymptotic She table, the sum over all the columns (all the existing ¢;, < t) containing
data. They observes also that vey (f,t.;) is essentially unknown at time ¢ because so are the specifications
of the future exit times. Therefore v, (t,te,) at present tremains a theoretical construct.

Besides, They suggests to further integrate (3) and (4) to obtain the total mass inside the cv:

e} t
S(t) = / / U<t7 tina tew)dtindtex (5)
t 0

S (t) is completely known at any time t because, as already remarked in comment to equation (2), the
integral over future time gives s (¢, t;,) which are the entries of She table at clock time ¢ in the column ¢;,,.
The reader can observe that

S(t, tln)

0 (6)

ps(t — tinlt) =

as defined in (Rigon et al., 2016), is the conditional probability distribution known as residence time pdf
, while

Penlten — 1) = "5 7)

is the (resident) parcels life expectancy pdf, conditional on ¢. To better understand what the previous
definitions mean, it is useful to understand how they can be visualisrd by They, using the She and He
tables. Please first observe that being at a time ¢ means to separate the tables into at least into the three
regions in figure below
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Figure 2: This is She table subdivided with respect to time ¢t = 4. What we exactly know at this time is the
left figure. The right figure represents what we do not know at that time, which is divided into two parts:
The future depending on past inputs to the system (say the known unknown) and the future depending on
external inputs (say the unknown unknown).

Let us consider at first the case of the past according to She table. The sequence of masses S (¢) is obtained
by They summing over all the columns belonging to the same row, obtaining the following pairs:

S(t) = {(0,20),(1,17),(2,13),(3,18), (4,14)}

where the first number of each pair is the clock time and the second number is the sum over the the columns
in the corresponding row. For instance, for t = 3 , the sum is S (3) = 10 + 8 = 18.

Within the past knowledge, as we already said, They is able to estimate s (¢, ¢;,) which is each single entry
visible in the left table, and therefore the residence time pdf, which is the ratio between each entry and the
row summation S () above. For the way the normalization factor S (¢) is obtained, They gets a different
probability function for each row.

To obtain the residence life expectancy we can relay on S (¢) (which is, for instance, 14 for ¢t = 4, i.e. S (4) =
14) but They has to use the He table to get the numerator appearing in the definition of equation (7).
Unfortunately the desired numerator numbers are in the future domain and it is unknown, unless some
divination have been acquired or some assumption have been made.
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Figure 3: This is the known unknown future of the He table at time ¢t =4

Therefore the entries of the numerator in equation (7) are given by the following v, (4, ter) =48, 3, 1, 2 }
with t., = {5,6,7,8} respectively.

They remarks that there is a difference between life expectation and age. In fact, parcels having different
ages, i.e. age = t — t;;,, can have the same life expectation le = t., —t. But obviously They can manage
to make the life expectation, le(t) conditional on the age, age (t).

The average age of resident parcels, according to definitions is given by:

t
age = / (t — tin)ps(t — tin|t)dtn (8)
0

while the average life expectation is:

Te— / (fon — pen(ton — t])dten ()
t

They also suggests that life expectancy can be further made conditional on age. i.e. on t;,. In this case a
new doubly conditioned probability should be introduced, which results, by Bayes formula:

_ pex(tex - t|t)

Dex tem —t tvtzn - 10
( [t,tin) oD (10)



By construction it is also,

Veg (tina tew)
S(t, tzn)

(11)

Pex (tex - t|tatzn) =

because, among the parcels inside the cv, injected at ¢;,,, measured by She, we are interested to those exiting
the cv after t. By comparison from (11) and (10) it follows that:

S(t, tzn)

0 (12)

P(tin|t) =

which is, coherently, the fraction of not exited parcels, over all the non exited parcels, or one element of the
She table, divided the sum over all the elements in the same row of the same table.

What obtained is not the only information got from the past. They can consider in fact q(teq, tin), i.e. the
entries of the He table to be normalized by S(t), the sum of the entries for ¢ = t., of the She table, being
the total water inside the cv at time ¢:

m@—mny:“%ga%w "

which is the backward probability of dicharges which is obviously known for any t., < t.

While not strictly necessary here, They finds useful also to define:

w(t,tin) = Pt = tinlt) _ s(t:tin) (14)
’ pQ(t - t2n|t) q(tvtzn

where the ws are called StorAge Selection functions (SAS), which can be used for some analytical manipu-
lation. Clearly, by definition, they are the element by element ratio of the She and the He tables.

As it is known, for instance from (Rigon et al., 2016), They can elaborate the He table in a different way.
In Figure 3 a single column of the He table, t;, = 0 is highlighted.
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Figure 4: He’s table with the situation subdivided in past and future with respect to clock time t = 4 . The
column for t;, = 0 is highlighted.

This column is the discharge at the cv boundaries conditional to the injection time t;, = 0, ¢(¢,0). They
can access also the additional information, coming from She table that the total input at time t = ¢;, =0
is equal to P (0) = s(t =0,t;, =0) = 20 (and must be equal to the total sum of the terms appearing in
column for t;, =0, performed after the concentration time).

Thus, They can then be properly normalise the column by subdividing all by P (0). In fact the response
time distribution, is defined by:

q(ta tln)
t—tinltin) := 15
Pt = tultin) = L0 (15)
Besides They can argue that q(¢,t;,) = Vex (t = tes, tin) if we are running the clock time ¢ for any of the

times larger than t;,. However, it is also, as we already mentioned s (t;n,tin) = P (tin) and therefore:

q(t7 tln) Vex (t7 tzn)
pq(t - tinltin) = J(t ) = P(t ) = p(tem - tin|t = tinztin> (16)

10



Therefore, the response time probability is the life expectation conditioned on t;, when t = t;,,. Once having
all the response pdf, for all the t;,, They can reconstruct the overall life expectancy probability, applying
the definitions.

They remarks that the response time pdf is actually more general that the life expectancy, because having
it, it is possible to get all the conditional life expectancies, just properly normalizing, for any time ¢, the
future age-ranked discharges. When in possess of all the response functions, for all t;,, is finally possible to
get the unrestricted life expectancy.
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