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Abstract

1. The foraging and nesting performance of bees can provide important information on bee health and is of interest for risk
and impact assessment of environmental stressors. While radio-frequency identification (RFID) technology is an efficient tool
increasingly used for the collection of behavioral data in social bee species such as honey bees, behavioral studies on solitary bees
still largely depend on direct observations, which is very time-consuming. 2. Here, we present a novel automated methodological
approach of individually and simultaneously tracking and analyzing foraging and nesting behavior of numerous cavity-nesting
solitary bees. The approach consists of monitoring nesting units by video recording and automated analysis of videos by a
machine learning based software. This Bee Tracker software consists of four trained deep learning networks to detect bees that
enter or leave their nest and to recognize individual IDs on the bees’ thorax as well as the IDs of their nests according to their
positions in the nesting unit. 3. The software is able to identify each nest of each individual nesting bee, which permits to
measure individual-based measures of reproductive success. Moreover, the software quantifies the number of cavities a female
enters until it finds its nest as a proxy of nest recognition, and it provides information on the number and duration of foraging
trips. By training the software on 8 videos recording 24 nesting females per video, the software achieved a precision of 96%
correct measurements of these parameters. 4. The software could be adapted to various experimental setups by training it to
an according set of videos. The presented method allows to efficiently collect large amounts of data on cavity-nesting solitary
bee species and represents a promising new tool for the monitoring and assessment of behavior and reproductive success under

laboratory, semi-field and field conditions.
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Abstract



1. The foraging and nesting performance of bees can provide important information on bee health and is of
interest for risk and impact assessment of environmental stressors. While radio-frequency identification
(RFID) technology is an efficient tool increasingly used for the collection of behavioral data in social bee
species such as honey bees, behavioral studies on solitary bees still largely depend on direct observations,
which is very time-consuming.

2. Here, we present a novel automated methodological approach of individually and simultaneously
tracking and analyzing foraging and nesting behavior of numerous cavity-nesting solitary bees. The
approach consists of monitoring nesting units by video recording and automated analysis of videos by
a machine learning based software. This Bee Tracker software consists of four trained deep learning
networks to detect bees that enter or leave their nest and to recognize individual IDs on the bees’
thorax as well as the IDs of their nests according to their positions in the nesting unit.

3. The software is able to identify each nest of each individual nesting bee, which permits to measure
individual-based measures of reproductive success. Moreover, the software quantifies the number of
cavities a female enters until it finds its nest as a proxy of nest recognition, and it provides information
on the number and duration of foraging trips. By training the software on 8 videos recording 24 nesting
females per video, the software achieved a precision of 96% correct measurements of these parameters.

4. The software could be adapted to various experimental setups by training it to an according set of
videos. The presented method allows to efficiently collect large amounts of data on cavity-nesting
solitary bee species and represents a promising new tool for the monitoring and assessment of behavior
and reproductive success under laboratory, semi-field and field conditions.
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Introduction

Bees provide pollination services to wild plants and crops and are essential for biodiversity and human food
supply (Klein et al., 2007; Ollerton et al., 2011). They hold important flagship and indicator species and
are used for the monitoring and impact assessment of environmental stressors such as habitat degradation,
pesticide exposure or pathogens (Potts et al., 2010; Potts et al., 2016; Schonfelder & Bogner, 2017; Woodard et
al., 2020). An important component in the evaluation of bee health is the assessment of reproductive success
and foraging behavior, as key drivers of population development and provisioning of pollination services
(Artz & Pitts-Singer, 2015; Ganser et al., 2020; Henry et al., 2012; Siviter et al., 2021). Such assessments
requires, however, accurate and efficient tools to collect the often large amount of data required to assess bee
health, especially if data on individual bees shall be collected (Crall et al., 2018; Nunes-Silva et al., 2019).
Recent research and environmental risk assessments have mainly focused on the honey bee, Apis mellifera ,
and a few other social bee species (e.g. Bombus terrestris) as indicator species (Goulson et al., 2015; Potts et
al., 2016). Only relatively recently research and risk assessments increasingly consider also other bee species
for the monitoring of impacts of stressors on bee pollinators, prominently including cavity-nesting solitary
bee species (Boff et al., 2020; Rundlof et al., 2015; Stuligross & Williams, 2020; Zurbuchen et al., 2010).
In Europe for example, the European Food Safety Authority (EFSA) has proposed to integrate two cavity-
nesting solitary bee species, Osmia bicornis and O. cornuta for risk assessment of plant protection products
on bees, including higher-tier assessments of sub-lethal effects on reproductive success (EFSA, 2013; Franke
et al., 2021). This development has been fueled by the increased recognition of the fact that the effect of
different environmental drivers can substantially vary between bee species and depend on their functional
and life-history traits such as sociality, body size, foraging or nesting traits (Brittain & Potts, 2011; Sgolastra
et al., 2019).

Bees can respond through changes in their nesting and foraging behavior to various environmental stressors
as pesticides, habitat degradation or pathogens (Leonhardt et al., 2016; Li et al., 2013; Siviter et al., 2021).
However, while foraging behavior of individuals of social bee species such as A. mellifera can automatically
be recorded with RFID technology (Nunes-Silva et al., 2019), no such tool is, to our knowledge, currently
available for the collection of such data for solitary bees. As studies with cavity-nesting solitary bees typically
require nesting units with numerous scattered nesting cavities (Fig. 1), RFID, which has a short reach of



the signal (Nunes-Silva et al., 2019), is difficult to implement. Furthermore, tracking foraging behavior and
reproductive success of multiple individual females requires correct identification and assignment of the
cavities used for nesting by individual females, which can only be achieved with a large number of readers at
high costs. So far, studies on solitary bee species have therefore largely depended on direct visual observation
to monitor foraging behavior or the nesting progress of individual females (Artz & Pitts-Singer, 2015; Franke
et al., 2021), which is very time consuming, hampering research and environmental risk assessment with
solitary model bee species.

Software can be used to automatically detect animals in images or analyze animal behavior recorded with
videos (Eikelboom et al., 2019; Pennington et al., 2019). Here, we present a new machine learning based
software, which can automatically extract and analyze data on the foraging and nesting behavior of indivi-
dually marked, cavity-nesting solitary bees from videos. The Bee Tracker analyses videos of nesting units
and records the entering and leaving of cavities by individually marked bees. The software is provided free
and open-source including the underlying Python code, as well as a user manual, which makes the software
also accessible to users who have no programming background. The above-mentioned measurements of bee
behavior are provided as csv files and can easily be further processed (e.g. for statistical analysis). Additio-
nally, the software creates visualization videos of the machine learning based analysis, which allows users
to evaluate software performance including the precision of the provided measurements. The machine lear-
ning networks that permit to train the software and parameters of the input file can be adapted to specific
requirements, which allows to use the software in a wide range of experimental setups.

Methods
Bee Tracker software

The Bee Tracker software is able to recognize bees entering and leaving cavities at a nesting unit. Individual
bees can be identified if they are marked with ID tags from marking kits conventionally used for honeybee
queen rearing (Fig. 1). In the published open-source version of the software digits from 1 to 8 and the colors
white, yellow and green (up to 24 unique digit-color combinations) can be recognized. Moreover, the software
can identify each nesting cavity of nesting units (constructed as in Fig. 1). Cavities get an ID based on their
position in the nesting unit (according to its “row” and “column” in the nesting unit, see manual provided in
the Supporting Information for further details). In the published version of the software, cavities of up to 12
rows and 10 columns (up to 120 cavities) per nesting unit can be identified. The software is further capable
to detect and measure the entering and leaving of a cavity by an individual bee and the video timestamp
of each of these events. From the collected list of events and some set input parameters (see below), the
software can assign females to the cavity they are nesting in, calculate flight duration and count the number
of cavities a bee probes until it finds the one it is nesting in (nest orientation; see Artz & Pitts-Singer, 2015).

Before the software can be used for the collection of this data, the precision of the software needs to be
evaluated for the setup in use and, if unsatisfactory, the software must be trained on a set of representative
videos. The machine learning network can further be used to expand the spectra of bee and cavity IDs that
the software is able to recognize.

Input videos

The input videos must be in MP4 format and have an aspect ratio of 16:9. The software was developed and
validated with an aspect ratio of 3860x2160 (4K) which returns well-resolved images that generate outputs
with a high measurement precision. A lower resolution could impair the precision, but the software can still
process the input.

Generated output

The software will create a new sub-folder within the selected results folder for each input video. Inside each
sub-folder the following outputs are stored by the software:

1. all _events unfiltered: Inside this csv file, all detected events are listed containing the video ti-



mestamp, the bee ID, the event type (entering or leaving) and the cavity ID. This list is completely
unfiltered and may contain errors.

2. error _corrected events: This csv file contains all events that remain after error correction: the
software identifies missing events within sequences of enter — leave — enter. Sequences with missing
events are not considered for the creation of below described output files (address book, nest reco-
gnition, flight list). The file contains the video timestamp, the bee ID, the cavity ID and the type of
event (entering or leaving a cavity). Additionally, it is indicated for each event whether it was used
for the output files address _book, nest recognition and flight list. Note that some events might be
missing in these files due to the strict error correction of the software.

3. address_book: This csv file contains all bees that were assigned to a nest and lists the according bee
and cavity IDs. This data (assignments between individual bees and the cavity (or cavities, respectively)
they are nesting in) is of interest for assessments of nesting progress and reproductive success of
individual nesting females. In order to assign only cavities to females which are used for nesting (in
contrast to simply probed cavities not used for nesting), a cavity is only assigned to an individual bee
if (i) the bee stays inside the cavity for a time span that is minimally required by a nesting bee to
unload collected pollen for offspring provision, and (ii) the bee does not enter another cavity during
a time span that is minimally required by a bee to collect pollen or material such as mud for nest
construction (e.g., construction of brood-cell walls). The default setting of these two time spans are
both 40 s in the published open-source version of the software. These values were chosen based on
over 20 h of direct observation of Osmia bicornis females nesting in a natural habitat in Switzerland
(Battig D., unpublished data). However, the species under study or experimental setting may require
adjustment of these threshold values. This can be done in the “config” file of the software, which can be
selected as an optional input file for the analysis (see software manual in the Supporting Information).

Nesting progress, i.e. the number of produced brood cells and offspring, can be tracked by repeatedly
photographing the nest cavities (Fig. 1), e.g. before and after an assessment day. Linking this data with
theaddress_book file (created form a video recorded on the same assessment day) based on cavity IDs per-
mits to measure individual per female reproductive success for this time period.

nest recognition: This csv file contains the number of cavities a female enters before finding its nest (i.e.
number of probed “wrong” cavities before finding the “correct” nesting cavity). Besides the bee ID and the
number of probed cavities, the file also lists the video timestamp.

flight list: This csv file provides flight durations of individual females from leaving the nesting cavity until
returning to it again (i.e., foraging trip or mud collection duration). Besides the bee ID and the flight duration
the file also lists the video timestamp.

If of interest, flight activity can be assessed by classifying females that perform flights as active and are
therefore listed in the flight list file. For this measurement, the number of total, alive females needs to be
known however, which can be assessed by taking pictures of the nest layer (Fig. 1) during the night when
females are roosting inside cavities.

6. visualization: Through the “visualize results” option a video file in mp4 format can be created with all
detected events visualized. This file can be used to visually check the performance of the software and to
find potential errors, which can be used to retrain the software (see below) and improve the precision.

Measurement of precision

To measure the precision of the software in a set of videos, the correctness of classifications can be visually
checked in the visualization videos. Only events listed in the error corrected events file as events that were
used to create measurements in output files (last column contains a yes) should be checked and used for the
measurement of precision. Precision can be calculated as the proportion of correct classifications as Precision
= TP /(TP + FP) , where TP is the number of true positives and FP the number of false positives.

Machine learning algorithms and training of models



The Bee Tracker software uses a combination of three machine learning algorithms to generate the above
mentioned outputs: the Faster R-CNN object detection pipeline (Ren et al., 2017), a YoloV3 (Redmon &
Farhadi, 2018) object detection network and a custom Keras image classification network (Chollet, 2015).
The software takes a video of a nesting unit as describe above as input and as a first step detects all marked
bees and cavities in each video frame using two trained Faster R-CNN networks. Subsequently, the marker
tags (unique digit-color combination; Fig. 1) are identified by a YoloV3 network on each previously detected
bee. Additionally, all identified markers are further classified into the digits 1-8 by a custom Keras network.
Knowing the cavity positions and bee positions alongside with the bee ID for each individual frame, a custom
object tracking algorithm is applied to this data in order to link the individual frames together and obtain
a movement path for each bee. By analyzing the start and end point of each detected movement path, the
software is able to detect cavity entering and leaving events.

The software relies on the four previously mentioned trained machine learning models. The model for de-
tecting the bees was trained on 1303 individual images. The cavity detection model was trained on 120
individual images of nesting units, whereas each nesting unit contained between 60 and 130 cavities. The
color tag detection model was trained on 4921 individual images of bees and the digit classification model was
trained with 10347 individual images of number tags. Additionally, various data augmentation techniques
were applied such as rotations, random brightness adjustments, random contrast adjustments and random
saturation. Further detailed information about the model trainings are provided in the software manual (see
Supporting Information).

Software evaluation

To evaluate the software and measure the precision of the analyses and generated outputs, we recorded a total
of 23 videos from 15 nesting units during two consecutive days using the nesting units as described in Fig. 1.
All nesting units were placed in large flight cages (54 m2) that contained sufficient floral sources for offspring
provisioning by nesting female Osmia bicornis (sown purple tansy, buckwheat and/or field mustard). A total
of 24 females marked with the above described 24 unique digit-color ID tags were released into each of these
flight cages and videos were recorded after initiation of nesting. Each video was recorded between 9 AM and
3 PM when flight activity was high for 2 to 4 hours. Cameras were placed with a distance of 1 m from the
nesting unit with frontal view (camera placed at same height as nesting unit). From the recorded videos 8
randomly selected ones were used to train the software to this experimental setup while the remaining 15
videos were used to measure precision. Precision was assessed by visually checking 180 randomly selected
events (12 events per video) for their correctness using the visualization option of the software (see above).
Ounly events that were used for the generation of output csv files (after error correction) were inspected as
described above.

For the comparability of bee health under different environmental conditions (e.g., different field sites with
variable habitat quality or flight cages with/without pesticide application) a similar precision across videos
is required. We therefore tested if precision varied between videos in our set of evaluated videos. Therefore,
a generalized linear model with a binomial distribution was used. The correctness of the detected event
(correct or wrong) was included as response variable and the video as explanatory variable. We further fitted
a regression to test if the proportion of females that can be assigned to a nest cavity depends on the video
recording time. The analysis was done in R 4.1. (R Core Team, 2021).
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Fig. 1 (a) Nesting Osmia bicornis female bee marked with an ID tag (unique color-digit combination)
attached to its thorax, (b) nesting unit composed of layers (wooden boards) with 10 cavities each, (c) layer
with cavities covered with plastic foil for which nesting progress and offspring production can be tracked,
(d) specifications of layers used for nesting units: black :170 mm; red: 18 mm, green: 11.5 mm; blue: 9 mm;
yellow: 8 mm

Results

The Bee Tracker software could successfully assign 67% of the alive females to a nest. The proportion of
assigned females did not depend on video recording time (t = 1.25, P = 0.23) which was between 2 and
4 h. Of each video, the software generated nest recognition files with a sample size of 80 h™! on average
while the flight list files contained a mean sample size of 61 h™'. 96.1% of the checked events were detected
correctly (including the color and digit of the bee ID, the cavity ID and the direction of the movement). This
precision is valid for all extracted measurements: assignment of females to their nest cavity, flight duration
and number of probed cavities. The 7 errors that were found all related to the bee ID. Three errors were
caused by a wrong color detection: green was classified falsely as yellow in all these cases. The remaining
4 errors were caused by an ID swap between two bees that had crossing movement paths, which led to a
commutation of the IDs between bees. Precision did not depend on the video that was used for the analysis
(x? = 13.949, P = 0.45; Fig. 2).

Hosted file

image2.emf available at https://authorea.com/users/444560/articles/544260-bee-tracker—
an-open-source-machine-learning-based-video-analysis-software-for-the-assessment-of-
nesting-and-foraging-performance-of-cavity-nesting-solitary-bees

Fig. 2 Number of events that were detected correctly or with an error by the Bee Tracker software in the
15 videos that were checked visually

Discussion

The Bee Tracker software is a helpful tool to collect large amounts of data on the nesting and foraging
behavior of solitary, cavity-nesting bees in an automated way. It identifies individual nesting females and
assigns them to their nests. This permits to obtain robust data on per female reproductive success, if nesting
progress within nests is additionally recorded. Moreover, the software counts the number of cavities a female
probes until it finds its nest, collects information on the flight duration and allows to assess flight activity.
Once the software is trained for the experimental setup in use, the method requires low labor input but can
generate large data sets with a high measurement precision. Here we showed that a precision of 96% can
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be achieved with a relatively low training effort of about 30 working hours. Minor adaptations may further
improve the performance of the software.

The software is designed to achieve a high precision at the expenses of the recall (fraction of events that
was retrieved), which is of minor interest in this type of analysis as it only affects the sample sizes but not
the extracted measurements themselves. The precision of the Bee Tracker therefore exceeds precision values
typically found in automated image analysis software (Eikelboom et al., 2019; Gallmann et al., 2020). The
software may, however, only achieve the here reported precision of 96% in experiments with a similar setup,
with respect to light conditions during video recording, hues and digits of bee IDs as well as the shape, size
and location of the nest cavities in the nesting units. For variant setups, the training of the software may
need to be repeated to achieve a comparable measurement precision of the software analysis. While errors by
bee ID swapping cannot be entirely avoided due to the limitations of the centroid object tracking algorithm
used by the software, errors caused by color misclassifications between green and yellow were probably caused
by the convergence of spectra under different light conditions and could likely be reduced by choosing colors
for ID tags with more distinct spectra. Thus, while an increased training effort may reduce the error rate,
replacing either green or yellow by e.g. blue or red ID tags may completely eliminate color misclassifiactions,
which would increase the precision to 98% in our data set.

Direct observations of the nesting activity of individually marked bees is very challenging and nearly impos-
sible in most experimental setups, as several bees frequently aggregate in front of the nesting unit and the
bee IDs are small for human vision while the bees move quickly. Researchers therefore used visual analysis
of videos for the assessments of individual nesting and foraging behavior in solitary bees (McKinney & Park,
2012). In comparison to direct observations, a main advantage of the Bee Tracker is the large data sets that
can be collected with relatively low time and labor input. Despite these advantages, the method also has
some limitations. The main disadvantage of the software is its restriction to relatively large bee species that
allow fixing ID tags on the bees’ thorax (e.g. tags produced for the marking of honey bee queens). Further-
more, the current version of the Bee Trackersoftware was trained on the model solitary bee species Osmia
bicornis. Although bee recognition and the classification of movement (entering or leaving a cavity) seemed
to work equally precise when tested on the closely related species O. cornuta (Knauer A., personal observa-
tion), further training may be required when working with other solitary bee species to obtain full precision
of the software. Furthermore, the current version of the software can only analyze the above described 24
unique color-digit based bee IDs and identify cavities with a certain size and shape that are arranged in
the nesting unit as described (Fig. 1). These limits can, however be adapted by training the software to
additional bee IDs (with more digits or colors) and different nesting units. After such additional training,
the software could be used in various experimental setups to study the behavior of solitary, cavity-nesting
bees that can be established in standardized nesting units.

In social bee species, the number of adult bees, brood cells and the amount of food stores (honey and pollen)
are used as indicators of colony strength and vitality (Dainat et al., 2020; Hernandez et al., 2020), while
in solitary bees reproductive success measured by brood cell or offspring production is the most important
proxy of fitness (Rundlof et al., 2015; Stuligross & Williams, 2020; Zurbuchen et al., 2010). RFID technology
has furthermore been used for the monitoring of foraging behavior in social species. RFID can automatically
perform individual bee recognition and detect the inbound and outbound movements of tagged bees at the
nest entrance where the antenna and reader are placed (Nunes-Silva et al., 2019). With this technology, flight
activity, homing ability and flight duration of social bees can be studied (Henry et al., 2012; Schneider et al.,
2012; Stanley et al., 2016; Tenczar et al., 2014). Such behavioral data can contribute to the understanding
of behavior mediated impacts of environmental stressors on colony development (Henry et al., 2012). In
addition, the measurements of behavior can be a powerful tool to assess the impact of specific stressors in
(semi-)field experiments, especially as colony strength and development can be biased by various confounding
factors (Oldroyd et al., 1992; Sandrock et al., 2014; Schmid-Hempel & Schmid-Hempel, 1998). Similarly,
the Bee Tracker software can be used to collect large amounts of behavioral data to supplement and better
understand measurements of reproductive success and fitness in solitary, cavity-nesting bees.



To our knowledge, the Bee Tracker software is the first automated tool that allows to efficiently collect
large amounts of behavioral data on cavity-nesting solitary bee species. Foraging behavior can respond to
various environmental stressors. Pesticide exposure for example, can impair orientation and memory in bees
(Siviter et al., 2018) and increase flight duration or cause a reduction in homing or foraging activity (Artz &
Pitts-Singer, 2015; Henry et al., 2012; Stanley et al., 2016). Flight duration may also be increased by habitat
degradation or food competition, which can cause increased flight distances to food sources (Leonhardt et
al., 2016; Thomson, 2004). Pathogens can reduce homing ability in honey bees (Li et al., 2013) or cause a
premature onset of foraging and reduce the total activity span of foragers (Benaets et al., 2017). Overall,
understanding bees’ foraging and flight activities can provide valuable information for evaluating the impact
of a wide range of environmental stressors on bees. For example, behavioral data collected with RFID
contributed to the detection of sublethal adverse effects of neonicotinoids which finally led to the ban of
several compounds from this class of insecticides in the European Union (Gross, 2013).

The effect of different stressors can vary between species and depend on their functional traits such as body
size, sociality or mode of nesting (Brittain & Potts, 2011; Sgolastra et al., 2019). A range of solitary bee
species are therefore increasingly studied for the assessment and monitoring of stressors on pollinators (Boff
et al., 2020; Ganser et al., 2020; Klaus et al., 2021; Stuligross & Williams, 2020; Zurbuchen et al., 2010).
The Bee Tracker software can be a helpful tool to efficiently collect robust data on individual nesting and
foraging behavior, of cavity-nesting solitary bees.

Data availability
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made available on dryad upon acceptance of the paper.
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