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Abstract

Environment drives the host movements that shape pathogen transmission through three mediating processes: host density, host
mobility, and contact. These processes combine with pathogen life-history to give rise to an “epidemiological landscape” that
determines spatial patterns of pathogen transmission. Yet despite its central role in transmission, strategies for predicting the
epidemiological landscape from real-world data remain limited. Here, we develop the epidemiological landscape as an interface
between movement ecology and spatial epidemiology. We propose a movement-pathogen pace-of-life heuristic for prioritizing
the landscape’s central processes by positing that spatial dynamics for fast pace-of-life pathogens are best-approximated by the
spatial ecology of host contacts; spatial dynamics for slower pace-of-life pathogens are best approximated by host densities; and
spatial dynamics for pathogens with environmental reservoirs reflect a convolution of those densities with the spatial configu-
ration of environmental reservoir sites. We then identify mechanisms that underpin the epidemiological landscape and match
each mechanism to emerging tools from movement ecology. Finally, we outline workflows for describing the epidemiological
landscape and using it to predict subsequent patterns of pathogen transmission. Our framework links transmission to envi-
ronmental context, providing a scaffold for mechanistically understanding how environmental context can generate and shift
existing patterns in spatial epidemiology.
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Abstract

Environment drives the host movements that shape pathogen transmission through three mediating pro-
cesses: host density, host mobility, and contact. These processes combine with pathogen life-history to give
rise to an “epidemiological landscape” that determines spatial patterns of pathogen transmission. Yet de-
spite its central role in transmission, strategies for predicting the epidemiological landscape from real-world
data remain limited. Here, we develop the epidemiological landscape as an interface between movement
ecology and spatial epidemiology. We propose a movement-pathogen pace-of-life heuristic for prioritizing
the landscape’s central processes by positing that spatial dynamics for fast pace-of-life pathogens are best-
approximated by the spatial ecology of host contacts; spatial dynamics for slower pace-of-life pathogens are
best approximated by host densities; and spatial dynamics for pathogens with environmental reservoirs re-
flect a convolution of those densities with the spatial configuration of environmental reservoir sites. We then
identify mechanisms that underpin the epidemiological landscape and match each mechanism to emerging
tools from movement ecology. Finally, we outline workflows for describing the epidemiological landscape
and using it to predict subsequent patterns of pathogen transmission. Our framework links transmission
to environmental context, providing a scaffold for mechanistically understanding how the environment can
generate and shift existing patterns in spatial epidemiology.

Introduction

Environment shapes the spatial, temporal, and behavioral structure of host movements and pathogen persis-
tence, leading transmission to occur in some locations but not in others. The particular role the environment
plays depends on the movement ecology of the host and pathogen: wildlife hosts can shed pathogens as they
track resources across the landscape; livestock pathogens can jump abruptly between habitat patches as hosts
are transported from farm to feedlot; and transmission of human pathogens often shows spatial signatures
associated with work, caregiving, and social engagement. Environment also structures disease management
efforts targeting specific locations that could give rise to super-spreading events or transmission hotspots,
curtail the spread of invading epidemic “waves”, or capitalize on predictable fluctuations in local transmission
patterns.

However, despite these strong implicit connections, our understanding of the environment-movement-
transmission interface remains in its infancy. Although movement ecology offers an array of tools that could
help integrate environment, host movement, and pathogen deposition, the tools’ outputs are somewhat de-
tached from critical aspects of spatial transmission and some important components of spatial transmission
are largely overlooked. Moreover, it is unclear how to best integrate the various processes each tool infers for
optimal epidemiological predictions. Quantifying the environment’s role in spatial dynamics of transmission,
appropriately combining constituent processes, and identifying relevant mechanisms will require a stronger
integration of movement ecology into conventional epidemiological frameworks.

There is a reason why movement and disease ecology developed separately to this point: they are interested
in fundamentally different relationships. Movement ecology usually explores how individuals interact with
their environments (Nathan et al. 2008), whereas disease ecology focuses on how individuals interact with
one another to allow for pathogen transmission. Scaling individual-environment interactions up to predict
individual-individual interactions is a long-standing challenge, and one that potentially distracts from other
transmission-related insights that movement ecology has to offer. That lacuna is symptomatic of a broader
interdisciplinary divide: the spatial modeling community lacks a systematic way to incorporate mechanistic
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and empirical insights from movement ecology into spatial models of transmission while retaining tractability
and transportability beyond the specific system or landscape at hand. This gap impedes our ability to identify
general principles about how the environment – both the local habitat and its broader scale landscape
structure — shapes spatial patterns of pathogen transmission in real-world environments.

Spatial transmission dynamics depend on three central processes: host density processes that describe where
hosts are located across the landscape, mobility processes that describe when and how hosts move among
sites, and contact processes that describe the frequency, duration and form of host-host interactions and
how those interactions relate to rates of pathogen transmission. Together, the host density, mobility, and
contact processes combine with pathogen life-history to form an epidemiological landscape that interacts
with the local volume of infected hosts to determine epidemiological dynamics through space and time
(Fig. 1). Because it does not incorporate the volume of infected individuals directly, the epidemiological
landscape exists apart from any specific disease event. Instead, it summarizes the potential for particular
spatial transmission patterns to arise in a given environment on the basis of local host density, mobility,
and contact. Identifying how density, mobility, and contact relate to the environment, however, is an open
challenge that movement ecology can help to address.

Here, we propose a strategy to strengthen the interface between environment and transmission by focus-
ing explicitly on the mechanisms and traits surrounding the epidemiological landscape. First, we use the
epidemiological landscape to formalize the mechanistic relations that underpin transportable models. We
then propose an heuristic that we refer to as the movement-pathogen pace-of-life hypothesis that suggests
how to prioritize the density, mobility, and contact processes according to important pathogen life history
attributes. Next, we identify a set of critical mechanisms determining the epidemiological landscape’s struc-
ture, and match both the epidemiological landscape’s central processes and our proposed mechanisms to
metrics and inferential tools from movement ecology in sections organized around two research priorities
(Fig. 2). The first priority is to infer specific aspects of pathogen transmission using existing movement
ecology tools; the second is to determine how social context contributes to patterns of density, mobility, and
contact. Finally, we outline three workflows that blend mechanisms with movement and transmission data
to generate epidemiological forecasts that are transportable across landscapes and populations (Fig. 3), and
end by identifying existing challenges and open questions.

Using the epidemiological landscape to formalize the mechanistic relationships that underpin
transportable models

Transportable models — those that accurately predict spatial transmission patterns in landscapes and con-
texts apart from where they were developed — are both critically necessary and alarmingly absent at the
spatiotemporal resolution necessary for disease management, especially in animal systems. Transportable
models are especially important for systems where 1) spillover could occur across a huge geographic range,
making boundary controls infeasible; 2) management actions shift depending on the specifics of the environ-
mental context at hand; or 3) research is concentrated around particular pseudo-model systems but results
are expected to extend to a wider suite of host-pathogen combinations.

Generating transportable predictions of spatial transmission is complicated because spatial disease dynamics
rely on traits at two levels: traits that emerge from fundamental host-environment and pathogen pace-of-
life mechanisms to shape the epidemiological landscape, and traits that emerge from the epidemiological
landscape to influence spatial dynamics of transmission (Fig. 1). Which movement and transmission traits
matter most depends on the relationship between host movements and pathogen life history. Spatial trans-
mission traits like the occurrence of super-spreading events (Lloyd-Smith et al. 2005) or the pathogen’s rate
of spatial spread (Hallatschek et al. 2014) vary across environments, but explicit connections to underly-
ing environmental attributes are rarely identified in practice. Risk assessments built from species-averaged
life history or social ecology traits that make predictions at the scale of species ranges (e.g., Han et al.
2020) provide valuable insights for pathogens with slower paces of life whose transmission patterns mirror
host presence or densities. Spatially explicit management of pathogens with faster life histories, however,
requires higher-resolution predictions about exactly where transmission occurs and how far animals move

4
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while infected (Manlove et al. 2019).

When important spatial transmission traits are known, the epidemiological landscape can be constructed
from those attributes directly through individual-based models that also account for the pathogen’s life
history. Unfortunately, appropriate information for building these models rarely exists in practice. Even
when data are available, their ability to predict patterns in novel environments is often constrained through
limited spatial replication and uncertainty about what constitutes an appropriate contrast set of transmission
events that could have occurred but did not. In the absence of direct data describing spatial transmission,
the epidemiological landscape must be predicted from knowledge about fundamental host-environment and
pathogen-environment interactions, how those interactions vary across environments, and how the resulting
variation governs key features of spatial transmission (Fig. 1).

Most methods that generate spatially explicit forecasts from underlying environments and animal movements
cover only one facet of the epidemiological landscape, or extend to only a subset of individuals or times. While
individual-based models can account for multiple processes and all individuals present, their predictions are
laden with the builder’s decisions about which processes to include. Even after predicting the epidemiological
landscape, modelers must decide how to appropriately capture pathogen life-histories that allow transmission
to occur across temporal lags or over longer distances in space.

Regardless of what approach one takes to model the epidemiological landscape, accurate out-of-sample
prediction always depends on a clear-eyed consideration of appropriate detail, acknowledgement of functional
responses that could hinder predictions outside the measured context, and a strong understanding of the
system’s fundamental mechanistic drivers. Identifying which processes matter most, and clarifying what
factors help determine transportability across environmental and social contexts are critical first steps.

Prioritizing processes with the movement-pathogen pace-of-life hypothesis

Specific processes within the epidemiological landscape can dominate spatial patterns of transmission in
particular situations. Which process dominates should be predictable on the basis of pathogen life history,
providing a way to prioritize environment-movement-transmission inquiries and management within par-
ticular systems. Pathogens sample space according to their hosts’ movements during infection or through
extra-host movements across environmental media. As a consequence, the locations that a pathogen en-
counters are driven by the spatial ecology of its hosts, and by attributes of its own life-history like infectious
period, mode of transmission, and ability to survive outside the host. Directly transmitted pathogens with
short infectious periods and limited environmental persistence will disproportionately encounter locations
that hosts visit immediately after contact events. That dependence should become less severe for pathogens
with longer infectious periods or indirect modes of transmission. As a consequence, whether spatial trans-
mission patterns are best predicted by host density, mobility, or contact will depend on the pathogen’s life
history.

We summarize this expectation through an heuristic that we call themovement-pathogen pace-of-life hypoth-
esis . Under this heuristic, we expect pathogen intensity and spatial transmission risk to align with host
density patterns when the pathogen’s infectious period is long or modes of transmission are indirect; to align
with host movement or contact patterns when the pathogen’s infectious period is short or modes of trans-
mission are direct; and to align with a convolution of host densities and environmental reservoirs when the
pathogen’s environmental persistence varies across environments. It follows that environmental drivers of
density will be good predictors of transmission in the first case; environmental drivers of contact will be best
in the second case; and densities should be modeled in interaction with environmental reservoirs in the final
case. Mechanistic inquiries within a given system can be built forward on the basis of that prioritization.

Mechanisms connecting hosts, pathogens, and environments

Building transportable models requires understanding how the host, pathogen, and environment interface
with one another, and how these interfaces combine in the context of the pathogen’s pace-of-life. Articulating
particular mechanisms that shape these relationships aids in their direct examination through a conventional

5



P
os

te
d

on
A

ut
ho

re
a

18
O

ct
20

21
|T

he
co

py
ri

gh
t

ho
ld

er
is

th
e

au
th

or
/f

un
de

r.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

us
e

w
it

ho
ut

pe
rm

is
si

on
.

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
au

.1
63

45
81

12
.2

26
51

39
8/

v1
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

movement ecology lens, but also suggests a set of measured features – entities like number of individuals
within some neighborhood of a focal animal, or values describing environmental covariates surrounding a
focal location – that could inform mining-modeling approaches (Han et al. 2020; Wijeyakulasuriya et al.
2020) or be built in as marginal constraints for multipartite networks to predict the epidemiological landscape
(Manlove et al. 2018; Silk et al. 2018).

Some mechanisms are already well-understood. The propensity of hosts to form mass aggregations (Lloyd-
Smith et al. 2005; Cross et al. 2005) and stable social bonds (Sah et al. 2017) affects the contact process,
as does the pathogen’s mode of transmission and environmental persistence (Table 1). Synchrony of host
life-history events can predictably alter host densities to produce seasonal pulses in transmission following
an influx of new susceptible hosts (Peel et al. 2014). Density, mobility, and contact can also vary according
to feedbacks between the pathogen and the host, either through physiological or behavioral shifts generated
by the pathogen via direct or indirect routes (Hughes et al. 2011; Weinstein et al. 2018; Stockmaier et al.
2021; Table 1).

In order to expand beyond these mainstays, we compared treatment of host density, host mobility, and
contact in spatial models of transmission for human and animal systems. Comparing human and animal
approaches let us simultaneously capitalize on the largely top-down human and livestock research paradigms
(which view host movements as arising primarily through the host’s a priori knowledge), and the largely
bottom-up animal movement research paradigm (which view host movements as arising primarily in response
to local environmental context; Meekan et al. 2017; Miller et al. 2019).

In most spatial transmission models for humans and livestock pathogens, locations where individuals interact
(e.g., houses, transit centers, feedlots) are assumed to be discrete and fixed through time (Keeling et al. 2001;
Riley & Ferguson 2006; Haw et al. 2020). Site-to-site mobilities depend on intervening distances and local
and surrounding host densities (Viboud et al. 2006; Simini et al. 2012; Tizzoni et al. 2014). Once site-to-site
movements occur, transmission-appropriate contacts are modeled according to local host density (following
a functional form usually based on a priori knowledge about mode of transmission), and infection rates
ultimately depend on the probability of transmission given appropriate contact.

These assumptions reflect aspects of human movement ecology that may not hold for free-ranging animals.
Most humans are central place foragers (but see, e.g., Bharti et al. 2009), so assigning individuals to fixed
locations and movement patterns has limited ramifications on model predictions. This permanent-point-
residence assumption is reasonable for some animal systems (e.g., nesting birds, denning wolves), but for
others, residences are better represented as intensity surfaces, and even those representations may not be
stationary through time. Host densities and site-to-site mobility rates are typically tied to the abundance,
quality, timing, and spatial distribution of resources, along with the structure of the intervening landscape
(Table 1). What constitutes a “resource”, however, varies among hosts (for example, in humans, a critical
resource is other humans; Miller et al. 2019), and knowledge of host ecology is critical for generating accurate
predictions in animal systems. Humans also spend very little time in random walks (Table 1; Meekan et al.
2017). Instead, their movements are dominated by directed moves from a starting point to a pre-ordained
destination. Environmental barriers like mountains and rivers rarely impede these movements (flight offers
a similar ability to some animals; Table 1).

These human attributes occupy one extreme in host movement decision-making, while movement patterns
derived from resource-driven random walks occupy the other. Most animal movement systems likely fall
somewhere in-between. Perceiving these attributes as continuua and comparing the relative positions and
movement dynamics of various species along them might inform a priori movement expectations that could
streamline spatial transmission expectations and inform research, especially for understudied hosts.

Linking the environment to spatial ecology of individual hosts and pathogens

Host-environment and pathogen-environment interactions may produce reasonable predictions of spatial
transmission for pathogens with slower paces of life and indirect modes of transmission. Applied analyses
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at the environment-movement-transmission interface have already proven useful in several of these systems
(for example, in models of anthrax or brucellosis; e.g., Turner et al. 2014; Merkle et al. 2018 respectively),
and a few extensions could expand their insights even further.

Biological underpinnings

The first step toward tailoring the epidemiological landscape to a particular environment is to identify what
“resources” are most relevant to the host’s movements and link those resources to patterns of host density
and mobility (Hess 1996; White, Forester, & Craft 2018). Resource distributions and accompanying habi-
tat selection functions can provide the density predictions that we expect to dominate spatial transmission
for pathogens with slower paces of life. However, these predictions may be insufficient for faster-paced
pathogens with short infectious periods or behaviorally-specific transmission routes, whose transmission is
more dependent on spatial patterns of contact and mobility. In these cases, a more targeted perspective
may be necessary. There are at least four straight-forward pathways to incorporate additional complex-
ity through mechanistic attributes of movement: account for variation in host internal state; account for
environmentally-linked pathogen shedding; account for environmentally-linked persistence; and account for
interactions between host movements and pathogen prevalence.

Movements arise from the interaction of the environment with the individual’s internal state (Nathan et al.
2008). Individual internal states vary, however, and overlooking that variation (along dimensions including
sex, age, reproductive status, and infection status) can lead models to miss systematic patterns of inter-
individual variation. Allowing movement estimates to vary according to basic individual attributes can help
clarify signals and tailor movement predictions to the particular age, sex, reproductive status, or disease
composition of the population at hand.

Transmission is sometimes tied to particular environmental conditions, through either host choice (e.g., if
hosts preferentially engage in transmitting behaviors like scent marking, or mating in certain environments;
Clontz et al. 2021), or direct environmental stimulation (e.g., if environmental irritants directly trigger coughs
or other forms of excretion; Tarlo et al. 2016). When transmission is not distributed uniformly along the
host’s movement trajectory, spatial transmission patterns can be decoupled from aggregate patterns of host
density or mobility. Residency times and return rates also inform expectations about system epidemiology
(for example, the ratio of infectious period to return-to-residence times determines whether epidemics peak
simultaneously across space; Keeling & Rohani 2002).

Pathogen attributes also shape environmental persistence of some agents, leading contamination levels and
acquisition rates to vary among environments even if local pathogen deposition rates are the same (Dorak et
al. 2017). Forces like wind, water, or gravity can also allow for pathogen mobility outside the host in some
cases (for example, cholera can diffuse along currents, Bertuzzo et al. 2010; and anthrax can diffuse down
hills, Van Ness 1971). If environment-specific pathogen densities or physical connectivities are known, then
they can inform local pathogen acquisition rates in forward simulation exercises predicting spatial patterns
of transmission.

Host movement ecology sometimes interacts with pathogen prevalence to abruptly shift spatial patterns of
transmission. Indirectly transmitted pathogens can accumulate in areas where hosts concentrate, leading to
contamination levels that reduce long-term local densities (Boal & Mannan 1999), or shift fitness landscapes
enough to generate evolutionary consequences on host spatial phenotypes (Shaw et al. 2018).

Existing integrations with movement ecology

Individual-based models regularly incorporate density and mobility predictions from habitat- or step selec-
tion functions, respectively (e.g., Fortin et al. 2005; Avgar et al. 2016; Dougherty et al. 2018). Recent
advances accounting for habitat in surrounding locations (Potts et al. 2014, Table 2) and variation in re-
source availability (Mysterud & Ims 1998; Matthiopoulos et al. 2011; Moreau et al. 2011; Muff et al. 2020)
are improving how well these models predict density and mobility in unsampled landscapes. Path segmen-
tation methods that digest GPS movement trajectories into blocks of fixes with similar step lengths and

7
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turning angles (Table 2; Edelhoff et al. 2016) can differentiate among some forms of behavior, compare rates
of engagement in those behaviors across host categories, and connect behavior changes to environmental and
social contexts. Behavioral classifiers are improving with new data from cameras, animal-borne sensors, and
other emerging technologies (Northrup et al. 2019; Table 2), offering new opportunities to link transmit-
ting behaviors to specific environments. At the same time, methods describing residency times and return
intervals (Pedersen et al. 2011) are able to connect time spent in random vs. directed search to particular
environmental contexts.

Next steps

Integrating higher-resolution environmental drivers into spatial transmission predictions requires methods
that explicitly account for spatial or temporal lags between pathogen deposition and acquisition (Fig. 1).
While methods exist to model individual-individual associations through movement data, the resulting con-
tact patterns are often specific to a user-specified definition of “contact”. Methods that capture asynchronous
contacts offer a framework to examine when and to what extent the definition of contact fundamentally alters
expected spatial transmission dynamics.

A second task is to link the timescales of movement and movement data to the timescale of pathogen
transmission. For example, dispersal and transmission kernels can describe the rates of spread of plant
and animal invasions as functions of spatial covariates (e.g., Hefley et al 2017). However, kernels could be
constructed from daily, seasonal, annual, or lifetime movements, and it is not obvious which timescale should
be used for predicting spatial transmission.

Third, existing movement data are sometimes ill-suited to capture critical aspects of the epidemiological
landscape, and constructing new or expanded datasets is sometimes imperative. Spatial transmission of
pathogens with fast life histories will concentrate around locations of contact. If those locations are either
missed because collared animals rarely encounter one another or biased due to the particular categories of
hosts bearing collars, then spatial transmission forecasts may be underinformed or inaccurate. For pathogens
that can move through environmental media outside the host, one could model environmental correlates of
pathogen deposition, persistence and acquisition separately. For pathogens transmitted through specific be-
haviors, data on the spatial ecology of relevant modes of transmission, along with behavior-specific pathogen
deposition rates, distances, and persistence times (Bourouiba 2021), may strengthen spatial predictions.

Fourth, movement predictions need to be able to update dynamically on the basis of host infection status.
Distinct movement patterns among infected animals are easier to identify when we can reliably estimate
timing of infection from individual pathogen loads or antibody titers. Antibody kinetic models (Borremans
et al. 2016; Pepin et al. 2017; Prager et al. 2020), new biomonitoring technology that track temperature,
acceleration, and febrile or respiratory responses (Hetem et al. 2008; Nathan et al. 2012; Adelman et al. 2014;
Ahmed et al. 2016, Harari et al. 2017a; Harari et al. 2017b), and approaches from spatial phylodynamics
(Biek et al. 2007; Kamath et al. 2016) all offer opportunities here.

Finally, spatial epidemiology may require some entirely new theory and methods. For instance, a richer
framework for understanding the ecology of long-distance movements would be helpful, given the outsized
role those movements play in the speed and structure of pathogen invasion (Hallatschek & Fisher 2014;
Wijeyakulasuriya et al. 2019).

Linking host social ecology to patterns of mobility and contact

Host contacts determine the spatial transmission patterns of directly transmitted pathogens, especially those
with fast life-histories; and host contacts are driven by social, as well as spatial, factors. Social forces
introduce a new layer of heterogeneity into the epidemiological landscape, especially if contacts are not
randomly distributed across an animal’s movements. Direct contact patterns for most species are likely
much more overdispersed than one would expect if individuals moved independently and at random due to
conspecific attraction. The influence of social attraction on the epidemiological landscape is not limited to
contact, and social dynamics may also inform patterns of density and mobility.

8
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Epidemiological interest in social drivers of movement aligns well with a growing emphasis on social factors
in movement ecology as a whole (van Beest et al. 2014). However, understanding where contacts occur and
how each occurrence interfaces with the physical environment remains underexplored.

Biological underpinnings

At the population level, the environment can interact with host social ecology to fundamentally alter host
density and mobility processes, often at annual scales. For example, environmentally-linked birth pulses can
lead to seasonally-elevated densities, and compact breeding seasons can have important bearing on mobilities,
especially among males seeking mates. Seasonal shifts in density and mobility can induce heterogeneity in
persistence and spreading dynamics of pathogens with faster life-histories, but their effects will be more
limited when pathogen life histories are slow. Other aspects of socially driven movement like dispersal may
also shift with population-level host densities, though these shifts may also be tied to overall environmental
resource availability.

Within populations, social factors often push local densities away from expectations based on individual-
environment interactions to generate spatial clustering. Spatially clustered hosts can produce temporal
pulses in pathogen incidence, especially for pathogens with faster paces-of-life (Supplementary Text 1), and
attributes like group size, stability, and social configuration are particularly important in shaping early
epidemic progression in those systems (e.g., Cross et al. 2005; Sah et al. 2017; Bansal, Grenfell, & Meyers
2007; respectively). Group size and environmental context are often interdependent. Different habitats may
be optimal for groups of different sizes, leading to different habitat selection by larger groups than by smaller
ones. If habitat selection varies with group size, then transmission events should concentrate at locations
favored by larger groups, especially if transmission rates vary according to host density.

Group cohesion may also respond to environmental context, with important consequences on transmis-
sion in fast-paced pathogens. Hosts that live in stable social groups can exhibit contact processes that do
not track with conventional density-dependent expectations, imposing a form of behaviorally mediated fre-
quency dependence with knock-on effects for pathogen transmission (e.g., Cross et al. 2013; Manlove et al.
2014). Environmental correlates of group stability remain relatively underexplored (with the exceptions of
environmentally driven soundscapes, lines-of-sight, and shared small space use, e.g., McComb et al. 2000;
Strandburg-Peshkin et al. 2013; Pinter-Wolman et al. 2017 respectively). A better general understanding
of how the environment relates to group cohesion and fission-fusion rates would be useful.

At an individual level, the social environment contains its own risks and resources which compete with
environmental factors to shape host movement decisions. How socially driven movement affects transmission
likely varies across systems, and potential mediating mechanisms could range from resource availability
(Castillo-Contreras et al. 2018; Podgórski et al. 2013), to resource dispersion (Brandell et al. 2021), or
seasonal shifts in social aggregation and sexual segregation (Wasserberg et al. 2009; Oraby et al. 2014). Human
disease management activities can also disrupt the social environment, sometimes generating unintended
consequences (Sokolow et al. 2019) through actions like culling (Donnelly et al. 2003) or translocation (Aiello
et al. 2014).

Healthy animals may respond behaviorally to infected hosts (Croft et al. 2011) if they are cognizant of
and responsive to disease presence, and some pathogens actively manipulate host behaviors to aid in their
transmission (Koella, Sørensen, & Anderson 1998; Vyas et al. 2007; Rosatte et al. 2006). Analogs to “social
distancing” exist in a variety of non-human animal systems, accompanied by nuances including responses
that vary in proportion to one’s own susceptibility and social distancing exceptions for sick relatives (Stock-
maier et al. 2021; Townsend et al. 2020). Pathogens with severe mortality burdens can also alter local host
densities, shifting the epidemiological landscape through alterations to any and all density-dependent aspects
of movement and transmission.

Existing integrations with movement ecology

Two arms of ecology – movement and behavior – are tackling questions about how social dynamics interface

9
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with patterns of host density, mobility, and contact. Movement ecologists are extending their individual-
environment framework to account for the presence of other individuals both in vivo (Jesmer et al. 2018)
and in silico (Couzin et al. 2005; Couzin et al. 2011). Methods are emerging that allow spatial and social
covariates to interact in common models of location and mobility (for example, in analyses of density-
dependent habitat selection and its consequences, e.g., Webber & Vander Wal 20181). At the same time,
behavioral ecologists have built out their methods (which focus on individual-individual interactions and are
thus often most applicable for models of contact) to account for spatial confounding. This is one motivation,
for example, of pre-data permutation techniques, especially those that rely on group-incidence matrices (e.g.,
Farine 20135; Farine 2017). The behavioral emphasis, however, is often on causal inference about system
organizing factors, not necessarily prediction to novel settings. Methods adjust for, but often do not explicitly
draw inference to, environmental context.

As of now, scaling up from individuals to populations in both the movement and behavioral domains requires
extrapolation across many upsampled animals. Spatial epidemiologists may benefit from workflows that
focus more directly on group-level data that capture aspects of fission-fusion dynamics, and describe group
compositional changes through time (e.g., Aureli et al. 2008; Palla et al. 2005; Figure 3).

Next steps

One urgent task for identifying social drivers of movement is to develop methods that can scale up from a
subset of collared individuals to infer social and spatial dynamics across an entire population. If instruments
are not deployed in proportion to local host densities, then areas with a higher ratio of collars to animals may
be flagged as potential transmission hubs due to sampling alone. There are statistical methods for drawing
inference from partially-observed contact data (e.g., Cross et al. 2013; Yang et al. 2021), but higher collar
densities may also be necessary in some settings (Gilbertson, White, & Craft 2021). Scaling up from individu-
als to populations often requires information about inter-individual attraction, along with auxiliary data on
population densities or group sizes. Collaring studies are often designed to capture individual-environment, as
opposed to individual-individual, interactions, but different design emphases may be necessary for questions
about transmission (Plowright et al. 2019). Statistical guidance on how to best structure sampling designs
to capture individual-environment vs. individual-individual interactions would be helpful.

A second task is to infer how social factors drive movement of instrumented animals. While it is feasible
to include social covariates (both those describing the state of the focal individual and those describing the
social environment) in standard state-switching or resource selection models, gathering appropriate social
covariate data can be labor-intensive (Webber & Vander Wal 2018; Albery et al. 2021). Co-occurring data on
kinship, dominance, and affiliative histories that inform the stability of social bonds are rare, and concerted
efforts to capture both locational and social covariates would strengthen our basis for understanding the
social-spatial interface.

Bipartite networks can directly connect spatial and social interactions (Fortuna et al. 2009; Manlove et al.
2018), and a third task is to explore whether graph-based approaches could help infer spatial patterns of
transmission. Bipartite structures form the basis of the spatially-embedded social networks that are widely
used human epidemiological modeling (e.g., Balcan et al. 2009; Box 1). These models connect individuals
to one another through shared space use. Individual association networks and spatial networks can both be
built as projections of the bipartite structure to uncover locations with high levels of social connectivity.

Continuous-space mechanistic models (flocking dynamics models and their progeny) that allow spatial and
social factors to interact directly also show potential (e.g., Dong et al. 2019; Buscarino et al. 2014; Levis
et al. 2019). In real-world animal systems, researchers have used ideas from flocking dynamics to capture
spatial and social mechanisms in individual-based models (IBMs; e.g., White, Forester, and Craft 2018; Pepin,
Golnar, & Podgórski 2021). Currently, these models are constrained by limited information on attributes like
interindividual distances that are crucial for appropriate parameterization. Generating the requisite input
parameters poses statistical challenges that are only beginning to be addressed (Richardson & Gorochowski
2015; Hooten et al. 2018; Wilber et al. in review), forming a final important task for integrating social factors

10
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into spatial transmission modeling.

Modern workflows

Predicting the epidemiological landscape and emergent spatial transmission is a methodologically diverse
objective, with approaches ranging from mechanistic tactics based on fundamental attributes of the system
to more descriptive phenomenological approaches. New methods for Eulerian data (which capture aspects
of space and time but are agnostic to individual identity) can infer transmission kernels as functions of the
environment (Hefley et al. 2017), potentially expanding the utility of PDEs, semi-spatial, and metapopulation
transmission models through methods like landscape homogenization (Box 1; Garlick et al. 2011). Eulerian
approaches require data reflecting patterns that change over both space and time. This makes them especially
useful for studying and predicting novel pathogen spread (especially for pathogens with slower paces-of-life
or important environmental reservoirs), but less-useful for managing endemic transmission or designing
mitigation strategies for pathogens whose spatial ecologies hinge on patterns of host contact. Here, we
focus instead on workflows for Lagrangian data (which track location, time, and identity of focal animals,
for example through GPS collars or other animal-borne sensors) that can inform the metapopulation and
individual-based modeling approaches (Box 1) better-equipped to investigate the spatial dynamics of endemic
pathogens and pathogens with faster paces-of-life.

Conventionally, researchers used Lagrangian data to identify drivers of spatial transmission by 1) correlating
aspects of transmission with aspects of the environment; 2) building forward from those relationships to
separately investigate key processes underlying spatial epidemiology; and finally 3) re-integrating process-
specific inferences to generate predictions. Each of these steps has historically been ad hoc, and there is
relatively little systematic guidance about which covariates to explore, which processes to prioritize, or how
to properly integrate predictions across multiple processes. Errors can arise at each of these phases, but
modern workflows offer new opportunities for reducing their impacts (Fig. 3).

All workflows begin with a preliminary correlative inquiry relating pathogen prevalence to environmental
attributes (ideally, using existing datasets that track changes in hypothetically relevant environmental co-
variates). A brainstorming phase usually follows, during which researchers should consider the interplay of
movement and pathogen pace-of-life, along with plausible mechanistic drivers and how they relate to the
epidemiological landscape (Table 1). After this point, the workflows diverge.

In the mechanistic workflow, researchers then separately model density, mobility, and contact as functions
of the physical environment, using distinct datasets and methods for each process (Table 2). Ideally, density
should be characterized first and predicted over the spatial domain so that population fragmentation metrics
derived from the density surface can be included as covariates in models of mobility. Contact, along with
its relationship with both group size and engagement in transmitting behaviors, often requires distinct data
derived from proximity loggers or direct observations. The epidemiological landscape can be constructed
by predicting densities and subsequent mobilities on the basis of environmental covariates, and assigning
site-specific transmission rates as functions of local environments and host densities. Predictions should be
validated through pathogen data whenever possible, though mobility and density models can be validated
using movement data alone where transmission data do not exist. The strength of the mechanistic workflow
lies in its ability to draw causal inference between emergent movements and underlying drivers, which should
improve resulting model transportability (but see Open Challenges: Extending outside the measured context
below). Its fundamental weakness is that it is not sharply attuned to the social ecology of the host, so it
may work best in systems where hosts move independently of one another and do not exhibit tight group
formation or fidelity.

The multipartite network workflow places social and spatial connections on common footing from the start.
This approach requires defining spatiotemporal cut-offs within which individuals are categorized as “associa-
ting” on the basis of a time lag defined by the pathogen’s ability to persist in the environment. Individuals
are then mapped to locations where associations occur, and then clustered to delineate spatial nodes. The
individuals and spatial nodes are configured into a bipartite network (that potentially also tracks timing;

11
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Manlove et al. 2018), which can be projected down to generate unipartite individual and spatial networks.
Uncertainty in network connection strengths can be reduced through application of existing (or cheaply
available) spatial data on group sizes or habitat preferences that inform marginal degree distributions of
both the spatial and the social graphs (Manlove et al. 2018; Cross et al. 2019). Location-specific transmissi-
on potentials could then be linked to environmental covariates and used to predict hotspots in novel settings.
Whether forecasted hotspots actually harbor more host aggregations can be validated using local movement
data, and whether those aggregations lead to transmission can be validated through pathogen data when
those data exist. The strength of the multipartite network workflow is its balancing of spatial and social
forces. Its fundamental weaknesses are its dependence on a collaring intensity high-enough to capture some
contact events. Guidance regarding how to best discretize space and account for spatial autocorrelation is
still emerging.

The final workflow builds from mining-modeling approaches for disease dynamics (Han et al. 2020). Data
mining can be applied to a specific process within the epidemiological landscape, or to animal movement
trajectories as a whole (Table 2; Fig. 3); we focus on the latter here. First, potential mechanistic drivers need
to be translated into quantifiable “features” that can be measured along individual movement trajectories.
These features (perhaps coupled with pathogen-associated features like prevalence) are used to train machine
learning algorithms that are validated against a subset of withheld trajectories, and then used to forecast
movements for all individuals. Density, mobility, and contact do not need to be treated separately here
because each can be derived from the forecasted movement trajectories. Features can reflect both spatial
and social processes (Table 2), and feature importance can help inform future research to isolate and test
specific mechanisms. Movement forecasts can be adjusted for time lags derived from pathogen pace-of-life
(e.g., Wilber et al. in review) to predict transmission. The strengths of the mining-modeling workflow are
its ability to weight social and spatial factors in tandem, and its ability to scale up across individuals or
landscapes. Its weaknesses lie in its dependence on appropriately identified features, its limited insights
regarding causal mechanisms, and its abbreviated track record of application in movement ecology and
spatial epidemiology.

Accurate prediction does not ensure effective intervention if the system’s mechanistic drivers remain unknown.
Mechanistically defining the epidemiological landscape can add insights that purely phenomenological mul-
tipartite network or mining-modeling approaches cannot. Ideally, the phenomenological workflows could be
used in iteration with mechanistic approaches. For example, one could use ctmm and outputs from a method
for capturing temporally lagged transmission to predict contacts, and then use mining approaches to link
those inferred contacts to environmental context.

Open challenges

Connecting the epidemiological landscape’s central processes

Pathogen transmission depends on many processes, and methods to integrate these processes and appropria-
tely propagating error remain in short supply. This issue applies to both the mechanistic and the network-
based workflows, and can encumber some aspects of the mining-modeling approaches as well. Appropriately
integrating processes should be a major focus for spatial epidemiological theory in the immediate future.

Identifying an appropriate level of detail

Which biological details to include depends on the resolution of available data and the effort’s specific ob-
jectives. Mechanisms should be included if they are central to the overarching question or alter relevant
predictions. Decisions about which biological details to include should precede decisions about model con-
struction, since some approaches cannot capture certain mechanisms (Box 1). The relative timescales of host
movements, environmental fluxes, and pathogen pace-of-life are also informative. Processes that change slow-
ly relative to system epidemiology could be treated as constant; but processes that change quickly enough
to affect disease incidence may need to be dynamic (Supplementary Text 1; Funk et al. 2015).

The temporal resolution of movement data is often under the researcher’s control, though it trades off against
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device longevity through battery and memory capacity (Kays et al. 2015). Background knowledge about the
timescales of relevant movements and behaviors can inform the timescale at which locations are recorded
(Benhamou 2014; McClintock et al. 2014). Since rare, longer-distance moves are critical drivers of pathogen
invasion speed, optimal disease invasion collaring might rely on slower fix rates and longer lifetimes as well as
sampling across sex and age categories. On the other hand, extracting direct contacts from continuous time
movement models will require much higher-resolution data, typically with fix rates in excess of one point per
hour.

The spatial resolution of movement data is often determined by the particular technology involved, but rese-
archers often control the spatial extent over which devices are deployed and thus the range of environmental
covariates and density of collars within particular areas. Estimating environmental effects will be most effi-
cient when the predictors vary substantially within the study’s spatial domain, but if direct contacts need
to be observed, then collar densities should remain high in some areas. Ideally, one should know the ratio of
collars deployed to host density across the study. Habitat attributes that are consistent across the study area
can be excluded from local predictions, but should be considered if the model is used to predict dynamics
in novel contexts.

Finally, strengthening modeling infrastructure to allow for reliable inference often takes substantial effort
(for example, through improved models of critical environmental covariates, increased performance of disease
diagnostic tests, or refinements to statistical methodologies). Although this burden may diminish as methods
improve, shortcutting variable development can be costly, and investment in variable development will nearly
always be necessary to some degree.

Extending outside the measured context

While non-linear functional responses between environmental covariates and the epidemiological landscape’s
central processes do not preclude extrapolation, their presence should be considered when predicting in
unsampled environments. Non-linearities are the rule, not the exception, in animal movement, and are
expected from first principles alone (Avgar, Betini, & Fryxell 2020). Meta-analyses of how habitat-selection,
step-selection, or other attributes of movement vary across environments would help to generate baseline
expectations about how availability affects density and movement, especially for hosts of common interest.

Disease feedbacks can also exhibit non-linear functional responses. A low-density population recovering from
disease may exhibit fundamentally different rates of long-distance movement than nearby populations where
densities are high; and age-specific mortality burdens can influence social structure, especially if mortalities
concentrate among older and more knowledgeable individuals. The relationship between time since pathogen
deposition and instantaneous rate of transmission may also be nonlinear (Almberg et al. 2011; Richardson &
Gorochowski 2015). This continuum remains underexplored (Breban 2013), leaving epidemiologists with no
clear guidance about how to weight the force of infection arising from different modes of transmission over
time.

Finally, predictions can fail in environments containing habitat types or social contexts that never arose in
the training environment. Host populations with seasonal birth pulses may exhibit different habitat selection
patterns than populations where birth pulses are diffuse, and habitats that are seasonally abandoned at
some latitudes may be occupied year-round at others. In these cases, researchers may do well to take a more
mechanistic approach to transportable modeling that draws from first principles of host biology.

ConclusionThe interface between movement and disease ecology offers exciting opportunities to improve
spatial models of pathogen transmission and motivate work on understudied mechanisms shaping animal
movement. Rapid advances and emerging workflows in both movement and disease ecology provide this
interface a strong foundation and numerous opportunities for synergistic development to the advantage of
both fields. However, shifts in emphasis are still needed to better define the epidemiological landscape and
ultimately improve epidemiological forecasts and management. The epidemiological landscape, consisting of
host density, mobility, and contact components, provides a conceptual bridge connecting spatial mechanisms
to spatial dynamics of pathogen transmission and subsequent management. Focused inquiry around the
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upstream mechanisms and downstream phenomena surrounding the epidemiological landscape may reveal
novel opportunities for targeted data collection, application of existing tools from movement ecology, and
development of new methods and theory. We hope that this synthesis sparks additional discourse that can
advance perspectives in spatial epidemiology and strengthen the bridge between movement and disease
ecology.
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Figure legends

Figure 1. Conceptual integration of environment, movement, and pathogen transmission.
(1a) and (1b) Mechanistic drivers link environmental context to host movements and pathogen life histories,
producing sets of traits that could be inferred via conventional methods or defined a priori to serve as features
for machine learning. (2) Pathogen and host movement traits define an epidemiological landscape, consisting
of host density, mobility, and contact patterns. These in turn generate patterns in spatial epidemiology,
captured through both spatially explicit dynamic models and spatial transmission traits. When data on
spatial transmission traits exist, they can act as a basis for assessing the importance of the density, mobility,
and contact processes (red arrows from (3) to (2)). If density, mobility, and contact (2) are directly measured,
they can feed forward into models of transmission; otherwise they can be inferred or predicted using the
mechanisms and features identified in stages (1a) and (1b).

Figure 2. A strategy to improve integration of movement and disease. Movement insights for
disease ecology can be grouped into two priority areas — linking environment to spatial ecology of hosts and
pathogens, and linking host social ecology to patterns of mobility and contact (A). Modern inferential tools
in movement ecology offer opportunities to relate high-resolution descriptions of an animal’s movements
to drivers in both priority areas (C). However, in each case, the integration of movement insights with
epidemiological models hinges on newly emergent or as-yet-undeveloped methods that connect movement
inference to critical aspects of the epidemiological landscape (B). Overcoming the gaps will allow for direct
prediction of the epidemiological landscape from base principles of movement, improving the transportability
of predictions in spatial disease dynamics.

Figure 3. Hypothetical workflows using the epidemiological landscape. Each workflow uses animal
movement trajectories to forecast movements from environmental covariates, adjusts movement forecasts
according to time lags imposed by pathogen life-history, and integrates with disease models (Box 1) to
predict spatiotemporal transmission dynamics. Auxiliary data can enter the workflows (examples indicated
by steps flagged with dark green arrows), but may limit model transportability. Many of the methods already
exist (checkmarks), though it is not always clear how they should be connected. Other methods have been
proposed and prototyped, but are as-yet untested on real-word data (blue triangles). A third group remains
strictly hypothetical (red stars). ”RSF” = resource selection function; ”SSF” = step selection function;
”CTMM” = continuous time movement model; ”UD” = utilization distribution; ”CTMC” = continuous time
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Markov chain. “MoveSTIR” accounts for temporal lags between pathogen deposition and acquisition (Wilber
et al. in review). Method details are in Table 2.

Boxes

Box 1: Spatial models of pathogen transmission

Partial Differential Equations (PDEs) describe the size of the infected class over continuous space and time.
Theirhost density models are continuous, and often homogeneous (but see Garlick et al. 2011, Hefley et al.
2017). Themobility model1 is a spatial diffusion rate and a corresponding functional form. Outputs include
existence, structure, and speed of traveling epidemic waves and spatially explicit times to epidemic peak.
Assumptions:animals move according to the kernel, which is often isotropic and independent of environment;
transmission occurs locally.

Semi-spatial and static network models allow pairwise interactions within local neighborhoods. The host
densitymodel is implicit, but relies on discrete units with corresponding disease states. The mobility model
is defined through pairwise coupling coefficients between the “locations”, along with a specified “neighbor-
hood” with which each location interacts.Outputs are usually derived from a master equation or simulation.
Assumptions: known network structure and disease status; a priori definition of “neighborhood” (depending
on analytical approach).

Metapopulation models track disease dynamics at physical locations coupled with one another across space.
The host density and mobility models mirror those of semi-spatial models, though locations are now spatially
explicit, and mobility can include explicit functions of geographic distance. Outputsinclude spatial spreading
rate, spatial synchrony among subunits, and individual- and patch-level reproductive numbers.Assumptions:
a priori knowledge of system connectivity.

IBMs allow movement and transmission to emerge organically from predefined rules applied to a set of
actors. Inputs are individual-level attributes and parameters that govern them. Thehost density model
can be continuous or discrete. Themobility model typically allows an individual’s state and environment
to interact through a set of movement rules.Outputs range from a simple wave front of disease spread to
each individual’s spatiotemporally explicit contribution to reproductive numbers. Assumptions: depend on
model specifics.

Spatially embedded social networks describe disease dynamics across multipartite networks whose nodes cor-
respond explicitly to locations in space. Inputs are bipartite networks linking individuals to locations of
different types (households, peer groups, etc.), The host density model is a set of spatial centroids associated
with each group, and mobility models can be distance-, gravity-, or radiation-based. Outputsinclude esti-
mates of R0, total epidemic size, and spatial and temporal patterns of transmission.Assumptions: constant
connectivities; central-place space use patterns.
1The contact process is often subsumed into a constant transmission rate or absorbed into themobility model
.

Hosted file

EpiLandscape_Table1.docx available at https://authorea.com/users/441732/articles/542163-
defining-an-epidemiological-landscape-by-connecting-host-movement-to-pathogen-
transmission

Hosted file

EpiLandscape_Table2.docx available at https://authorea.com/users/441732/articles/542163-
defining-an-epidemiological-landscape-by-connecting-host-movement-to-pathogen-
transmission
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1b. Pathogen-
environment interfaceInferential methods from 

movement ecology

1a. Host-environment interface

Experimental 
methods from 
microbiology/

virology 

Pathogen traits 
• Local shedding

• Local persistence potential

• Autonomous movement

Mechanisms 
• Mode of transmission

• Resilience across environments

• Ability to alter host behavior and 

movement

Mechanisms 
• Landscape channelization

• Propensity of host to form 

mass gatherings

• Time spent in random search

Inferred from mechanism 
using standard testing

Suggested from pattern

Mechanistic entity

Mechanistic/ 
Phenomenological choice

Legend

Spatial transmission traits 
• Epidemic wave speed and structure

• Overdispersion in number of cases individuals 

produce

• Location and timing of transmission hotspots

λi = ∑
j

Yj ( 1
Ni ) ρij (κc′�)i

Spatially explicit dynamic model

2. Epidemiological landscape

Host 
density Mobility Contact

Phenomenological entity

Pr[transmission | 
contact], 
c’

Instantaneous 
contact rate,  

!
Movement from 

site i to j,  

"ij
Density, 
Ni

3. Spatial epidemiology

Host movement traits 
• Duration & structure of movement bouts

• Step length/turning angle by environment

• Group size


Other host traits 
• Overlooked here

Priority 1a
Link environment to 
spatial ecology of hosts 
and pathogens

Empirical analyses of 
animal movement

B. Current gaps

A. Movement ecology

C. Epidemiological 
landscape

Priority 1b
Combine pathogen shedding and acquisition 
behaviors with host movement trajectories to 
infer spatial ecology of transmission for 
individual hosts.

Priority  2b
Let host mobility and contact respond 
to conspecific densities, interspecies 
interactions, and host social ecology

Priority 1c
Predict host density, mobility, and 
contact from attributes of the local 
environment

Priority  2c
Predict host mobility and 
contact on the basis of host 
social structure

Priority 2a
Link host social ecology 
to patterns of mobility 
and contact

Spatial transmission traits and 
Transportable models
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Example strategy 1: 
Single focal process

Build algorithm relating 
movements to features

Example strategy 2: 
Full trajectory

Build algorithm relating 
movements to features

St
at

e-
tra

ns
iti

on
s

Increasingly phenomenological

Mechanistic
Identify hypothesized mechanisms

De
ns

ity
 fr

om
 

en
vir

on
m

en
t

Predict movement 
trajectories

Model density and mobility

RSF

Resistance- 
based methods

Incorporate RSF into 
model of mobility

CTMM

Example strategy 2: 
Inferred approaches

M
ob

ilit
y 

& 
de

ns
ity

 
fro

m
 e

nv
iro

nm
en

t

Example strategy 1: 
Inferred approaches

Refine mechanistic 
expectations

Network-based

ID high-density 
locations

ID well-connected 
individuals

Extract node degrees 
or strengths

Mining-modeling
Identify hypothesized mechanisms

ID and produce 
desired features

Cross-validate for in-sample 
predictive performance

Predict movement 
trajectories

MoveSTIR

Refine mechanistic 
expectations and feature sets

Example strategy 3: 
Descriptive approaches

De
ns

ity
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Example strategy 3: 
Movement and disease 
in tandem

Many full implementations Hypothetical onlyPrototypical examples exist, but no 
extension to landscape data

Full implementations exist, but 
are rare

*

*

Gather covariates and 
append to points

Assemble bipartite 
network

Project to 
space only

Project to 
social only

Movement and 
pathogen life-history 

traits

*

- Full implementations exist, but 
some components are ad hoc

- - *

Group sizes or 
occupancy 

patterns

UD

Spatial 
transmission 

traits

Evaluate transportability 
in novel setting

M
ob

ilit
y 

fro
m

 
en

vir
on

m
en

t

Evaluate transportability in 
novel setting

Identify hypothesized 
mechanisms

Evaluate links to environmental 
and social attributes

Refine mechanistic 
expectations

Evaluate transportability in 
novel setting

Movescape

St
ep

 le
ng

th
 /

tu
rn

in
g 

an
gl

e

Behavioral 
classification 

model

Continuous 
response 

model

Random forests for 
habitat selection

Long short-term 
memory algorithms 

for behavioral 
state-switching

Model transmission

Account for 
lags

Model contact

MoveSTIR

*
HMMs

Segment 
paths

Model density and mobility

Account for 
lags

Model contact

MoveSTIR

*

HMM 
BPMM 
BMS

Segment 
paths

Model density and mobility

Model contact

Model transmission

IBMs 
Metapop models 

 PDEs

Model transmission
IBMs 

Metapop models 
 PDEs

Build algorithm relating 
movements and 

transmission dynamics 
to environment
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