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Abstract

Background: Clear cell sarcoma of the kidney (CCSK) is a rare but the second common renal malignant tumor mimicking Wilms’

tumor. Radiomics is helpful for differentiating CCSK from Wilms’ tumor preoperatively through analyzing the pixel distribution

of lesions on medical images quantitatively. Procedure: In this study, the regions of interest (ROIs) of lesions were delineated on

corticomedullary phase (CMP) and nephrographic phase (NP) images to extract radiomics features. Dimensionality reduction

and Logistic Regression (LR) algorithm were used to construct the classification models. The area under the receiver operator

characteristic curve (AUC), sensitivity and specificity were calculated for evaluation, and Delong test was used to compare

the performance of the most meaningful features and LR models. Results: Lower skewness was observed in Wilms’ tumor,

and higher skewness in CCSK. Skewness transformed by exponential and squareroot filters from NP images achieved moderate

to good diagnostic performance for CCSK with AUCs of 0.707 (95%CI: 0.573, 0.840) and 0.705 (95%CI: 0.572, 0.839) in the

training set, and 0.818 (95%CI: 0.608, 1.000) and 0.803 (95%CI: 0.585, 1.000) in the validation set, respectively. Delong test

showed no significant difference between LR model, exponential-skewness and squareroot-skewness based on NP images in both

training and validation sets. Conclusion: Skewness from nephrographic phase at exponential and squareroot filters is helpful

to discriminate between CCSK and Wilms’ tumor in children, and higher skewness on NP images may be a potential imaging

biomarker for diagnosing CCSK from Wilms’ tumor.

1 INTRODUCTION

Clear cell sarcoma of the kidney (CCSK) is a rare but the second common renal malignant tumor in childhood
between 2 and 4 years of age, accounting for about 2-5% of primary pediatric renal tumors, while Wilms’
tumor has a high incidence of approximately 95%.1,2 Despite of its low incidence, CCSK has an inferior
prognosis than Wilms’ tumor, although in recent years the treatment outcomes of CCSK have been improved
due to the use of more intensive chemotherapy and radiotherapy.2 CCSK is notorious for its frequent bone
metastasis, while the brain has now been replaced to be the most common site of late relapse.3,4 Therefore,
it is necessary to differentiate CCSK from Wilms’ tumor for the purpose of improving diagnostic workup,
planning treatment regimen and predicting the prognosis.

However, misdiagnosis of CCSK as Wilms’ tumor is not uncommon, resulting in mismatched chemother-
apy in CCSK.3 It is difficult to distinguish CCSK from Wilms’ tumor in terms of clinical and radiographic
features.5-7 The differential diagnosis of CCSK and Wilms’ tumor is generally finally confirmed by histopatho-
logical analysis and immunophenotyping; however, this poses challenges to pathologists due to the diverse
histology, unavailable immunohistological markers and invalid molecular genetics of CCSK.4 The accurate
diagnosis of CCSK with biopsy is hindered by tumor heterogeneity and sampling error, and the biological
characteristics of CCSK cannot be revealed comprehensively and accurately by pathological examination.4,8
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Hence, the identification and development of new imaging biomarkers and assessing methods is meaningful
for differentiating CCSK from Wilms’ tumor in pediatric patients.

Radiomics is helpful to diagnosis and differential diagnosis of tumor phenotypes through analyzing the pixel
distribution of lesions on medical images quantitatively.9 In previous literatures, radiomics analysis has been
widely used in adult renal tumors.10,11 There is only one study on assessing the feasibility of texture analysis
to differentiate pediatric renal malignancies using gray-scale ultrasonography images.5Computed tomography
plays a pivotal role in assessing and staging pediatric renal tumors in clinical practice. A recent study showed
some qualitative and semi-quantitative imaging features on contrast-enhanced computed tomography can
distinguish CCSK from Wilms’ tumor.7 To our best knowledge, the feasibility of using CT-based radiomics
for differentiating CCSK from Wilms’ tumor has not been addressed.

Therefore, we aimed to identify and assess the potential valuable quantitative radiomics features for differen-
tiating CCSK from Wilms’ tumor in pediatric patients based on contrast-enhanced computed tomography.

2 METHODS

2.1 Patients

The Ethics Committee of Children’s Hospital Affiliated with Chongqing Medical University approved this
retrospective study and waived the need for informed patient consent. 29 patients with CCSK diagnosed
from January 2013 through February 2021 were enrolled. Considering the imbalance ratio between CCSK
and Wilms’ tumor, 66 patients with Wilms’ tumor diagnosed consecutively were selected as control group,
and then 51 patients were finally enrolled according to the including and excluding criterions. Workflow of
patient enrollment for this retrospective case-control study was demonstrated inSupplementary Fig. 1 .
The patients’ cohort (n=80) was randomly separated into the training set (n=63) and validation set (n=17)
at the ratio of 8:2, and the random seeds is 138.

2.2 CT Technique

The pediatric patients in this study were examined in a quiet state, and for those who could not cooperate
with the CT examinations, oral administration of 10% chloral hydrate (0.5 mL/kg) or intramuscular injection
of phenobarbital sodium (5 mg/kg) was used. GE Lightspeed VCT 64 or Philips Brilliance ICT 256 was used
to obtain the CT images. The scanning parameters were: tube voltage, 90-120 kV; tube current, automatic;
slice thickness, 5.0 mm; slice interval, 5.0 mm; pitch, 0.984:1. The patients were injected with 2 mL/kg of
nonionic contrast material (Omnipaque or Visipaque, GE Healthcare) at a rate of 2 mL/s via the peripheral
vein of the forearm by a power injector. Corticomedullary phase (CMP) and nephrographic phase (NP) of
post-contrast scanning were performed at 15-30s and 50-60s after contrast material injection, respectively.

2.3 Image Preprocessing and Regions of Interest (ROIs) Segmentation

CT images were acquired according to standardized scanning protocols. Preprocessing of the images before
ROIs segmentation was performed by a radiologist, and the mean standard deviation of the images was
normalized. Lesions of all slices were delineated on the CT images manually by a radiologist who was
blinded to the clinical information of the patients, then all contours were reviewed by the other senior
radiologist. If the discrepancy was [?]5%, the senior radiologist decided on the tumor borders. Examples of
ROIs of CCSK and Wilms’ tumor were shown in Supplementary Fig. 2 .

2.4 Extraction and Selection of Quantitative Features

After image preprocessing, a number of 1409 quantitative imaging features were extracted from CT images
based on CMP or NP using the Pyradiomics v.2.1.2 package, and so a total of 2818 features from CMP+NP
were obtained. These features can be grouped into three groups. Group 1 (first order statistics) quantitatively
delineates the distribution of voxel intensities within the CT image through commonly used and basic metrics.
Group 2 (shape- and size-based features) reflects the shape and size of the region. Calculated from grey
level run-length and grey level co-occurrence texture matrices, textural features that can quantify region
heterogeneity differences were classified into group 3 (texture features).
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As described above, a large number of image features may be computed. However, all these extracted features
may not be useful for a particular task. Therefore, dimensionality reduction and selection of task-specific
features for best performance are necessary steps. To reduce the redundant features, the feature selection
methods included the variance threshold (variance threshold = 0.8), SelectKBest and the least absolute
shrinkage and selection operator (LASSO) were used for this purpose. For the variance threshold method,
the threshold is 0.8, so that the eigenvalues of the variance smaller than 0.8 were removed. The SelectKBest
method, which belongs to a single variable feature selection method, uses p value to analysis the relationship
between the features and the classification results, so all the features with p < 0.05 will be used. For LASSO
model, L1 regularizer was used as the cost function, and the error value of cross validation is 5, and the
maximum number of iterations is 1000.

2.5 Classification Models Setup

Based on the final selected features, there are several supervised learning classifiers available for classification
analysis, which creates models that attempt to separate or predict the data with respect to an outcome or
phenotype. In this study, the classification models based on CMP, NP and CMP+NP were constructed with
Logistic Regression (LR) algorithm in testing set, and then the effectiveness of the models was confirmed in
validation set.

2.6 Statistical Analysis

Python software (PyRadiomics, v2.1.2) and IBM SPSS Statistics software (version 23.0, IBM Corp.) were
used for statistical analysis. A value of p<0.05 was meant statistically significant. To assess the performance
of the radiomics features and LR models, the receiver operating characteristic (ROC) curve was used both in
training and validation set, and the area under the receiver operator characteristic curve (AUC), sensitivity
and specificity were calculated in the two sets respectively. Delong test was used to compare the diagnos-
tic performance of LR model, exponential-skewness and squareroot-skewness based on NP images in both
training and validation sets. The Mann–Whitney U-test was used to determine how the most statistically
significant features distributed in training and validation sets.

3 RESULTS

3.1 Features Extraction and Selection

Based on single-phase and two-phase CT images, 1409 features were extracted from CMP and NP respec-
tively, and 2818 features from CMP+NP. Firstly, a number of 347, 349 and 699 features were screened from
CMP, NP and CMP+NP using variance threshold method, respectively. Then with the SelectKBest method,
we selected 28, 20 and 30 features from CMP, NP and CMP+NP, respectively. Finally, 6, 5 and 6 optimal
features were identified with LASSO algorithm from CMP, NP and CMP+NP, respectively (Fig. 1 ).

3.2 Comparison of Radiomics Features Between CCSK and Wilms’ tumor

Based on the final features from CMP, NP and CMP+NP, ROC curves of each feature were demonstrated
in Fig. 2 , and the values of AUC, sensitivity and specificity were listed in Table 1 . The results showed
first-order features from NP images have a better diagnostic performance than those from CMP images.
Generally, a value of AUC between 0.8 and 0.9 indicates good diagnostic efficacy, and between 0.7 and 0.8
moderate diagnostic efficacy. Skewness from NP images filtered by exponential and squareroot filters were
the most meaningful features to differentiate CCSK from Wilms’ tumor.

3.3 Classification Performance of the LR models

ROC curves of LR models based on CMP, NP and CMP+NP were shown inFig. 3 and the corresponding
results were illustrated inTable 2 for training set and validation set. When training with LR classifier, the
AUCs of the CMP, NP and CMP+NP models were 0.676 (95%CI:0.546, 0.789), 0.780 (95%CI:0.658, 0.875),
and 0.779 (95%CI:0.657, 0.874) in the training set, respectively, which were confirmed in the validation
set by AUCs of 0.788 (95%CI:0.526, 0.944), 0.803 (95%CI:0.543, 0.952), and 0.803 (95%CI:0.543, 0.952),
respectively. Because NP-based skewness filtered by exponential and squareroot filters showed meaningful in
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differentiating CCSK from Wilms’ tumor, the performance of these features and LR model based on NP was
compared by Delong test, and the results showed there was no significant difference among them (p>0.05).
The Mann–Whitney U-test showed the distribution of skewness differs between CCSK and Wilms’ tumor.
Lower skewness was observed in Wilms’ tumor, and higher skewness in CCSK.

4 DISCUSSION

CCSK, with unclear histological and immunohistological features, is an unusual pediatric renal malignancy
secondary to Wilms’ tumor.4 The main clinical manifestations of CCSK include abdominal mass, abdominal
pain, hematuria and other atypical symptoms similar to Wilms’ tumor, and the lack of specificity of these
symptoms can result in misdiagnosis of CCSK as Wilms’ tumor preoperatively.3 Thus, the accurate preop-
erative differentiation between CCSK and Wilms’ tumor is helpful for clinical decision making in children.
Kang et al found perinephric vessel engorgement and higher tumor enhancement on CT images are useful in
differentiating CCSK from Wilms’ tumor.7 However, these qualitative and semi-quantitative features cannot
reflect intra-tumoral heterogeneity comprehensively. Recently, radiomics provides a promising method to
evaluate tumor phenotypes quantitatively.12,13 In this study, we used CT-based radiomics analysis to differ-
entiate CCSK from Wilms’ tumor for the first time. Some differences were confirmed in radiomics features
between CCSK and Wilms’ tumor.

According to our results, among the final optimal features screened through the variance threshold, Se-
lectKBest and LASSO methods, all of them were first-order features depicting the distribution of voxel
intensities, of which skewness from NP images achieved moderate to good diagnostic performance for CCSK.
A skewness is about the asymmetry of the distribution of voxel intensities,14 indicating that there are dif-
ferences in the asymmetry of the voxel intensity histogram between CCSK and Wilms’ tumor. Additionally,
the performance of skewness transformed by exponential and squareroot filters is obviously superior to that
of original skewness, suggesting advanced features filtered by filters could reveal more invisible meaningful
information about tumoral heterogeneity.15 In previous literatures, first-order histogram characteristics of
renal tumors differed in various pathological types.10,16,17 Deng et al investigated the role of CT texture
analysis in differentiating major renal cell carcinoma subtypes, and the first-order entropy was found to
be the most meaningful biomarker in differentiating clear cell from papillary renal neoplasms.17 Likewise,
skewness and kurtosis were demonstrated to be helpful for differentiating clear cell renal carcinoma from
oncocytoma.16 However, in other studies on texture analysis of non-renal tumors, second-order features,
such as gray level size zone matrix or gray level difference matrix, seem to play a more important role in
characterizing heterogeneity of non-renal tumors.18-20

When training with LR model, all the selected features from each phase were used to construct classification
model for diagnosing CCSK. The results showed LR models combining all chosen features perform better
than the majority of single feature. Because it is hard to delineate the boundary of tumor lesion from
kidney on non-contrast-enhanced CT images, we only chose CMP and NP images to perform radiomics
analysis. Compared to CMP images, NP images provided more useful data to the CCSK-associated radiomics
characteristics. When combining CMP and NP images, an interesting finding was that all the optimal features
are extracted from the NP images. Meanwhile, the performance of the composite model was similar to that
of NP model, suggesting two-phase CT images have no additional value in differentiating between CCSK
and Wilms’ tumor. Meng et al demonstrated NP features are the most sensitive features for characterizing
sarcomatoid from clear cell renal carcinoma, the reason for which may be that sarcomatoid differentiation
causes changes in intra-tumoral enhancement patterns.11 Boo et al found there are some unique vascular
patterns in CCSK, in which regularly-spaced fibrovascular septa separates the nests of tumor cells, and this
may cause late enhancement in CCSK compared with Wilms’ tumor.21

Despite LR model based on NP images had moderate to good performance in diagnosing CCSK, the results
of Delong test showed no significant difference between LR model, exponential-skewness and squareroot-
skewness based on NP in training and validation set, which further confirms the important role of skewness in
differentiating CCSK from Wilms’ tumor. The distribution of exponential-skewness and squareroot-skewness
in CCSK was different from Wilms’ tumor. And higher skewness was statistically associated with CCSK, and
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lower skewness with Wilms’ tumor. Although NP-based skewness performed moderate to good in our study,
this feature may be a supplementary biomarker contributing to the differential diagnosis between CCSK and
Wilms’ tumor. However, the exact utility of skewness in the CCSK and Wilms’ tumor differentiation still
needs further investigation.

Admittedly, there were some limitations in the present study. First, due to the rarity of CCSK, as a tertiary
referral children’s medical center, only 29 pediatric patients with CCSK were enrolled in this study. Second,
considering the predominant prevalence of Wilms’ tumor, 51 patients with Wilms’ tumor were selected
consecutively as control group, which may cause selection bias to our results. Third, the slice thickness of
CT images in our study was 5 mm in order to include more patients as possible, and thin slice thickness may
help to reflect more meaningful radiomics features between CCSK and Wilms’ tumor. Finally, the CT scans
performed in our study were obtained on two different scanners. Although preprocessing of the images was
performed, the radiomics features derived from different scanners may have some influence on the diagnostic
performance for CCSK.

In conclusion, radiomics is a promising method to differentiate CCSK from Wilms’ tumor in children. Skew-
ness from NP images at exponential and squareroot filters was able to discriminate between CCSK and
Wilms’ tumor, obtaining moderate to good diagnostic performance for CCSK. And higher skewness on NP
images may be a potential biomarker for diagnosing CCSK from Wilms’ tumor.
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TABLE 1 The index of AUC, sensitivity and specificity of each selected feature in training and validation
set.

Feature Training Set Training Set Training Set Training Set Validation Set Validation Set Validation Set Validation Set
AUC (95%CI) p value Sensitivity Specificity AUC (95%CI) p value Sensitivity Specificity

CMP wavelet-HHL Energy 0.628 (0.475, 0.781) 0.092 26.1% 100.0% 0.500 (0.183, 0.817) 1.000 50.0% 72.7%
wavelet-HHL Total Energy 0.628 (0.475, 0.781) 0.092 26.1% 100.0% 0.500 (0.183, 0.817) 1.000 50.0% 72.7%
wavelet-LLL 90Percentile 0.676 (0.537, 0.815) 0.021 78.3% 62.5% 0.455 (0.136, 0.773) 0.763 50.0% 63.6%
wavelet-LLL Range 0.646 (0.502, 0.789) 0.056 65.2% 65.0% 0.515 (0.179, 0.851) 0.920 50.0% 81.8%
gradient Energy 0.605 (0.452, 0.758) 0.166 60.9% 65.0% 0.621 (0.300, 0.942) 0.421 66.7% 81.8%
gradient Total Energy 0.605 (0.452, 0.758) 0.166 60.9% 65.0% 0.621 (0.300, 0.942) 0.421 66.7% 81.8%

NP exponential Skewness 0.707 (0.573, 0.840) 0.007 78.3% 65.0% 0.818 (0.608, 1.000) 0.035 66.7% 90.9%
squareroot Skewness 0.705 (0.572, 0.839) 0.007 82.6% 55.0% 0.803 (0.585, 1.000) 0.044 66.7% 90.9%
wavelet-HHL Energy 0.577 (0.418, 0.736) 0.311 30.4% 97.5% 0.667 (0.379, 0.954) 0.269 83.3% 63.6%
wavelet-HHL Total Energy 0.577 (0.418, 0.736) 0.311 30.4% 97.5% 0.667 (0.379, 0.954) 0.269 83.3% 63.6%
gradient Energy 0.605 (0.452, 0.759) 0.166 30.4% 100.0% 0.712 (0.461, 0.963) 0.159 83.3% 63.6%

CMP+NP NP exponential Skewness 0.707 (0.573, 0.840) 0.007 78.3% 65.0% 0.818 (0.608, 1.000) 0.035 66.7% 90.9%
NP squareroot Skewness 0.705 (0.572, 0.839) 0.007 82.6% 55.0% 0.803 (0.585, 1.000) 0.044 66.7% 90.9%
NP wavelet-HHL Energy 0.577 (0.418, 0.736) 0.311 30.4% 97.5% 0.667 (0.379, 0.954) 0.269 83.3% 63.6%
NP wavelet-HHL Total Energy 0.577 (0.418, 0.736) 0.311 30.4% 97.5% 0.667 (0.379, 0.954) 0.269 83.3% 63.6%
NP gradient Energy 0.605 (0.452, 0.759) 0.166 30.4% 100.0% 0.712 (0.461, 0.963) 0.159 83.3% 63.6%
NP gradient Total Energy 0.605 (0.452, 0.759) 0.166 30.4% 100.0% 0.712 (0.461, 0.963) 0.159 83.3% 63.6%

TABLE 2 The index of AUC, sensitivity and specificity of LR models based on CMP, NP and CMP+NP
in training set and validation set.

LR
Model

AUC
(95%
CI)

AUC
(95%
CI)

Sensitivity Sensitivity Specificity Specificity

Training
set

Validation
set

Training
set

Validation
set

Training
set

Validation
set
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CMP 0.676
(0.546,
0.789)

0.788
(0.526,
0.944)

34.8% 100.0% 95.0% 63.3%

NP 0.780
(0.658,
0.875)

0.803
(0.543,
0.952)

52.2% 83.3% 90.0% 90.9%

CMP+NP 0.779
(0.657,
0.874)

0.803
(0.543,
0.952)

52.2% 83.3% 90.0% 90.9%
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image1.emf available at https://authorea.com/users/440005/articles/540773-radiomics-features-
for-differentiating-clear-cell-sarcoma-of-the-kidney-from-wilms-tumor-in-children-based-

on-contrast-enhanced-computed-tomography-a-case-control-study

FIGURE 1 LASSO algorithm on feature selection. Fig. 1A, 1C and 1E show Lasso path of CMP, NP
and CMP+NP, respectively; Fig. 1B, 1D and 1F demonstrate coefficients in Lasso model of CMP, NP and
CMP+NP, respectively. Using Lasso model, 6, 5 and 6 optimal features, corresponding to the optimal alpha
value of CMP, NP and CMP+NP respectively, were identified.
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image2.emf available at https://authorea.com/users/440005/articles/540773-radiomics-features-
for-differentiating-clear-cell-sarcoma-of-the-kidney-from-wilms-tumor-in-children-based-

on-contrast-enhanced-computed-tomography-a-case-control-study

FIGURE 2 ROC curves of each feature from CMP, NP and CMP+NP in training and validation set. Fig.
2A and 2B represent ROC curves from CMP in training and validation set, respectively. Fig. 2C and 2D
represent ROC curves from NP in training and validation set, respectively. Fig. 2E and 2F represent ROC
curves from CMP+NP in training and validation set, respectively.
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image3.emf available at https://authorea.com/users/440005/articles/540773-radiomics-features-
for-differentiating-clear-cell-sarcoma-of-the-kidney-from-wilms-tumor-in-children-based-
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FIGURE 3 ROC curves of LR models based on CMP, NP and CMP+NP in training set ( Fig. 3A) and
validation set (Fig. 3B).
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