Adversarially Robust Bayesian Optimization for Efficient Auto-Tuning of Generic Control Structures under Uncertainty

Joel Paulson¹, Georgios Makrygiorgos², and Ali Mesbah³

September 25, 2021

Abstract

The performance of advanced controllers depends on the selection of several tuning parameters that can affect the closed-loop control performance and constraint satisfaction in highly nonlinear and nonconvex ways. There has been a significant interest in auto-tuning of complex control structures using Bayesian optimization (BO). However, an open challenge is how to deal with uncertainties in the closed-loop system that cannot be attributed to a lumped, small-scale noise term. This paper develops an adversarially robust BO (ARBO) method that is suited to auto-tuning problems with significant time-invariant uncertainties in a plant simulator. ARBO uses a Gaussian process model that jointly describes the effect of the tuning parameters and uncertainties on the closed-loop performance. ARBO uses an alternating confidence-bound procedure to simultaneously select the next candidate tuning and uncertainty realizations, implying only one expensive closed-loop simulation is needed at each iteration. The advantages of ARBO are demonstrated on two case studies.

Hosted file

AIChE_Controller_Auto_tuning.pdf available at https://authorea.com/users/436656/articles/538825-adversarially-robust-bayesian-optimization-for-efficient-auto-tuning-of-generic-control-structures-under-uncertainty

¹The Ohio State University

²University of California Berkeley

³University of California Berkeley Research