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Abstract

Temperature and precipitation regimes are rapidly changing, resulting in forest dieback and local extinction events, particularly

in Mediterranean-type climates. Strategic forest management approaches that enhance forests’ resilience to future climates

are urgently required, however adaptation to climates in heterogeneous landscapes with multiple selection pressures may be

complex. For widespread trees in Mediterranean-type climates we hypothesized that patterns of local adaptation are associ-

ated with climate; precipitation is a stronger factor of adaptation than temperature; functionally related genes show similar

signatures of adaptation; and adaptive variants are independently sorting across the landscape. To test our hypotheses, we

sampled 28 populations across the geographic and climatic distribution of Eucalyptus marginata (jarrah), in south-west Western

Australia, and obtained 13,534 independent single nucleotide polymorphic (SNP) markers across the genome. While overall

levels of population differentiation were low (FST=0.04), environmental association analyses found a total of 2,336 unique SNPs

potentially associated with five climate variables of temperature and precipitation. Allelic turnover was identified for SNPs

associated with temperate seasonality and mean precipitation of the warmest quarter (39.2% and 36.9% deviance explained,

respectively), suggesting that both temperature and precipitation are important factors in adaptation. SNPs within similarly

function genes, according to gene ontology enrichment analysis, had analogous allelic turnover along climate gradients, while

SNPs among temperature and precipitation variables had orthogonal patterns of adaptation. These contrasting patterns of

adaptation provide evidence that there may be standing genomic variation adapted to changing climates, providing the substrate

needed to promote adaptive management strategies to bolster forest resilience in the future.

INTRODUCTION

Climate change is a key pressure on ecosystem persistence and function (Urban, 2015; Brondizio et al., 2019).
The shift in climate trends will have an impact on ecosystem structure, potentially making organisms more
susceptible to the effects of extreme climate events (Pacifici et al., 2015; Harris et al., 2018). Precipitation
patterns are changing in heterogenous ways, with some areas becoming wetter and others drier; and while
global surface temperature is predicted to rise by 1–4 °C on average by the end of the current century, the
level of temperature rise is also heterogeneous depending on various factors (e.g., latitude, elevation); in
addition, the frequency of extreme events such as heatwaves, wildfires, floods and droughts have increased
over recent decades in several regions of the world (IPCC, 2021). Because these changes are spatially assorted,
predicting climate change impacts across affected landscapes and response patterns from organisms is often
challenging.

Mediterranean-type climates (MTC) are defined by reliable precipitation and temperature regimes, with
predictable summer periods of low rainfall and hot temperatures, and winter periods of high rainfall and
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. moderate temperatures. Changes in regions with MTC have already been observed with large ecosystem
impacts. Ecological studies in the Mediterranean basin consistently identify more frequent drought periods,
together with warmer temperatures, as main drivers for declines in oaks (Quercus spp. ) (Corcobado et al.,
2014; Gentilesca et al., 2017) and pines (Pinus spp.) (Camarero et al., 2018). In the south-west Western
Australia biodiversity hotspot, the 2010-11 extreme drought and heatwave conditions resulted in large scale
forest collapses in eucalypts (Matusick et al., 2013). While some variation in climatic factors exists in natural
systems (Staudinger et al., 2013), the rapid and extreme shifts associated with anthropogenic climate change
are challenging for most organisms to persist (Levin & Poe 2017; Carlo et al., 2018).

If new climatic scenarios are no longer suitable for species to maintain their normal ecology and physiology,
they either develop new adaptations, shift their geographical range or in worst case scenarios, go extinct
(Bellard et al., 2012; Soto-Correa et al., 2012). Species may persist through enhanced physiological tolerance,
phenotypic plasticity and/or genetic adaptation (Anderson et al., 2011; Christmas et al., 2016). Maintenance
of standing genetic variation (allelic variation at a locus held within existing population) is a key factor for
adaptation to changing conditions in native habitats (Guzella et al., 2018, Chhatre et al., 2019) and for
persistence through environmental stressors over generations (Sexton et al., 2011; Kremer et al., 2012).
Genetic variation is critical for ecological adaptive capacity - the potential and ability to adjust to, and
persist through, external factors - and consequently, the evolutionary potential of the species (Reed et al.,
2011). Evolution to a specific environment through natural selection results in patterns of local adaptation,
when a local population experiences higher fitness compared to non-local counterparts (Kawecki & Ebert,
2004).

Measuring local adaptation has benefited through recent improvements in DNA sequencing and statistical
methodology, making it possible to investigate genetic divergence and the effects of environmental factors
on the process of local genetic adaptation (Honjo & Kudoh, 2019; Gougherty et al., 2020). Environmental
association analyses (EAA) have been gaining traction in the last decade (Ahrens et al., 2018), allowi-
ng identification of possible candidate genes for adaptation to the environment from tens of thousands of
single-nucleotide polymorphisms (SNPs) sampled throughout the whole genome from samples collected from
populations across environmental gradients. For example, EAAs have been used to explore adaptive genetic
variation on diverse and widespread woody plant genera, like Quercus (Martins et al., 2018; Gugger et al.,
2021), Populus (Ingvarsson & Bernhardsson, 2020; Gougherty et al., 2021) and Corymbia (Ahrens et al.,
2019a). These studies have identified functional genes involved in adaptation to climatic factors that can be
interpreted as divergent selection linked to population-specific environmental variables (i.e., local adaptation
to climate). However, different climate factors identify different sets of adaptive candidates, and few studies
have focused on how these sets of adaptive candidates sort across the landscape. If candidate SNPs inde-
pendently sort across the landscape, then managing these species to maintain adaptive capacity to climate
change may prove to be difficult.

Identifying the genetic basis of local adaptation and selective factors is still challenging, particularly for
species with limited genomic resources and polygenic control of climate adaptations (Mayol et al., 2019;
Capblancq et al., 2020). Non-synonymous mutations in gene regions result in amino acid changes, which
often yields changes in gene functions (Kryazhimskiy & Plotkin, 2008). These changes in genes can be under
selection among populations spread across that environment. Groups of genes found to be significantly
associated with environment can be categorised into broader functional groups using gene ontology (GO)
enrichment analysis (The Gene Ontology Consortium, 2019). GO terms have been used to predict polygenic
adaptive biological processes and molecular functions associated with candidate SNPs in tree species (Jordan
et al., 2017; Collevatti et al., 2019). However, few studies investigate how genes of similar function develop
patterns of adaptation across complex landscapes. If genes with related functions are found to be adaptive,
this might be indicative of additive genetic variation controlling adaptation to the environment.

This study investigated the putative patterns of local adaptation associated with climate gradients across
complex landscapes. To test hypotheses associated with signals of adaptation, we focused onEucalyptus mar-
ginata Donn ex. Sm. (jarrah) because of its high genetic diversity and low population differentiation (Wheeler
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. et al., 2003) and its ecological importance in the biodiverse hotspot of south-west Western Australia (SW-
WA). This region has prolonged periods of extensive drying, with an estimated reduction of 20% in rainfall,
from the 1970s to the present (Water Corporation, 2020), documented impacts of drought and heatwave
events (Matusick et al., 2013), and the future (2030) climate is projected to show increased frequency and
intensity of extremes (BOM & CSIRO, 2020).

Furthermore, jarrah provenance trials have demonstrated genetic variation in functional traits associated
to precipitation factors (O’Brien et al. 2007; Koch & Samsa 2007), indicating potential local adaptation to
drought stress. Ecological studies have also confirmed that water availability is critical for jarrah seedling
survival and persistence (Stoneman et al., 1994; McChesney et al., 1995; Standish et al., 2015). Considering
these studies on jarrah, we hypothesize that (1) populations show strong genetic patterns of local adaptation
to climate; (2) precipitation is a stronger determinant of genetic adaptation compared to temperature; (3)
functionally related genes show similar signatures of adaptation; and (4) adaptive variants are independently
sorting across the landscape. Lastly, we use this information to create predictive maps of adaptive variation
across the landscape to facilitate informed strategies for forest management that incorporate response to
future climate. We go on to assess how active management strategies, such as assisted gene migration
(Hoffman et al., 2015; Prober et al., 2015; Aitken & Bemmels, 2016) may be employed to build adaptive
capacity to climate change.

METHODS

Sample collection and DNA extraction

Leaf samples from a total of 280 individual mature trees from 28 natural jarrah populations across the geo-
graphic range of the species (Figure 1), including one outlier population (JIL), were collected during 2019
(Table 1). The sampling, which covered a total area of approximately 80,000 km2, included independent
(>50 km separation) and replicate (across similar climate of origin) populations over both temperature and
precipitation gradients to ensure adequate partitioning of the adaptive and neutral genetic variation. For
each population, mature leaves were collected from ten trees at least 100m apart from each other. Leaves were
immediately stored in silica gel until freeze-dried using FreeZone 6 Liter Benchtop Freeze Dryer(Labconco
Corporation, USA). Samples were stored in silica gel at room temperature until DNA extraction could be
performed. For each sample, genomic DNA was extracted from 40mg of freeze-dried leaf material. Each
leaf sample was independently ground into fine powder and a modified CTAB-DNA extraction protocol was
employed (Doyle & Doyle, 1990), with 0.1M sodium sulphite (Byrne et al., 2001) and 2% w/v polyvinyl-
pyrrolidone (MW 40,000) added to the extraction buffer. Quality of extracted DNA was estimated using
gel electrophoresis and quantified using the Qubit dsDNA BR assay kit on a Qubit fluorometer (Invitrogen,
Carlsbad, CA).

Genotyping by DArTseq Platform

Sequencing of the 280 jarrah individuals was undertaken using DArT-SeqTM technology at Diversity Arrays
Technology Pty Ltd (Canberra, Australia). This technology uses a double digestion complexity reduction
method for next generation sequencing (Kilian et al., 2012). The reduction of the genome is accomplished
by using a combination of PstI and HpaII enzymes in digestion/ligation reactions with different adapters
corresponding to two different restriction-enzyme overhangs. The PstI-compatible adapter is designed to in-
clude flowcell attachment sequence, sequencing primer sequence and varying length barcode region. Diversity
Arrays Technology’sproprietary bioinformatics pipeline was used to demultiplex and align the raw fastq files.
Identical sequences were then collapsed into “fastqcall files”. These files were used in the secondary pipeline
for DArT P/L’s proprietary SNP calling algorithm (DArTsoft14). Minimum read depth for each individual
was set to 6 and average read depth was 30.93 across all SNPs, guaranteeing call quality for all SNPs and
individuals. For the SNP calling algorithm, only nucleotide substitutions were considered a SNP. Only one
random SNP was retained on each 75 bp sequence to avoid linkage disequilibrium bias. The full data set
was then filtered in R (R Core Development Team, 2020) using custom scripts. We applied a minor allele
frequency (MAF) of 2%, which equates to a minor allele count of 11 calls, minimising inclusion of sequencing
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. errors. Missing data was set to 6% across individuals (minimum of 263 individuals scored for each SNP).
These thresholds were chosen because this translates to, on average, an estimation of a population-level allele
frequency from nine individuals, which is adequate for EAA type of method and identifying SNPs under
selection (Ahrens et al., 2021a). Linkage disequilibrium (LD) was calculated within each of the chromosomes
using the function LD.Measures inLDcorSV (Mangin et al., 2012). To guarantee adequate independence
between SNPs and prevent potential linkage bias, the dataset was filtered by the within chromosome LD
r2 coefficient: if the r2 value between two SNPs is >0.5, only one of the SNPs was randomly retained for
analysis.

Environmental variables

Temperature and precipitation variables have been widely assessed as robust predictors for environmental
adaptation in eucalypts for traits and genetic variants (Correia et al., 2018; Aspinwall et al., 2019; Pritzkow
et al., 2020). We tested a total of five climate variables. Two of these represent extreme temperature and
precipitation variables and we predicted they would drive patterns of adaptation: maximum temperature
of the warmest month (TMAX) and precipitation of the warmest quarter (PWQ). Three other temperature
and precipitation variables were selected as independent climatic factors (based on principal component
analysis (PCA) and Pearson’s correlation coefficients) and are known to be important for local adaptation
in eucalypts (Queirós et al., 2020; Rocha et al., 2020): minimum temperature of the coldest month (TMIN),
mean annual precipitation (PMA), and temperature seasonality (TSEAS). Climatic data for all populations
was downloaded from the 19 variables in the WorldClim v2 database (Fick & Hijmans, 2017) at a spatial
resolution of 30 arcsec. Climate data for each population was extracted using the R package raster from the
geo-located GPS coordinates of the sampled populations. PCA of environmental variables was performed
with R package ade4 and a Pearson’s correlation coefficient matrix was calculated between all 19 climate
variables using thecor function.

Data analysis

To understand how genetic structure of jarrah populations might affect EAA, genetic structure was estimated
by measure of genetic differentiation (F ST) (Weir & Cockerham, 1984) using the HierFSTAT package
(Goudet, 2005) in R. We also estimated individual ancestry coefficients for input for the EAA in LFMM.
For this, we used the sparse nonnegative matrix factorization (SNMF) method in the R package LEA
(Frichot & François, 2015). SNMF was run for each k -value between 1 and 10, with eachk -value ran 10
times (200 iterations each). The idealk -value was selected by visualising the cross entropies as defined in
the SNMF manual (Frichot & François, 2015) and choosing thek -value(s) with the lowest cross entropy
score. For visualisation, a consensus for the optimum k -value across all 10 runs was estimated using the
software CLUMPP (Jakobsson & Rosenberg, 2007), and the graphical parameters were drawn in the program
DISTRUCT (Rosenberg, 2004).

Environmental Association Analysis

To elucidate the association between climate and genetic variation, three approaches were applied: a redun-
dancy analysis (RDA), latent factor mixed models (LFMM) and BAYPASS. RDA is a multivariate method
that assumes linear relationships from explanatory variables on response variables, thus allowing the estima-
tion of genetic variance related to each distinct environmental factor simultaneously (Forester et al., 2018).
RDA and LFMM require full data sets, therefore we imputed missing data as the most common allele in
the locus from the optimal ancestral cluster (k ) as defined in the SNMF output. The explanatory variables
(i.e., climate) were then constrained by the dependent variables (i.e., individuals), using the rda function in
theVEGAN package 2.5-1 in R (Oksanen et al., 2018). Theanova.cca function was used to test for RDA
significance using 999 permutations (randomised environmental variables). We did not explicitly control
for population structure because RDA without explicit population structure inputs improves the output
(Forester et al., 2018). We also used LFMM to test for climate associations (Frichot et al., 2013), which
applies a univariate regression model to assess genotype-environment associations while using the optimal k
-value estimated in SNMF to control for ancestral population structure. The analyses were independently
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. performed for each of the climate variables, consisting of 30,000 iterations each (15,000 discarded as initial
burn-in). Median z -scores were combined from a total of 5 runs for each variable and recalibrated by
computing the genomic inflation factor, λ, and then dividing the scores by λ. p -values were then adjusted
manually to flatten the histogram (false discoveries were controlled with the Benjamin-Hochberg algorithm
using q = 0.01), which ideally should display a peak close to zero. We used λ = 0.45 in the adjustment
function to flatten the histogram and followed the steps and R script available from the LFMM manual.
To account for multiple comparisons, we applied a false discovery rate (FDR) threshold of 0.05 to all runs.
Lastly, we used a hierarchical clustering model implemented in BAYPASS (Gautier, 2015), based on the
model from BayEnv (Coop et al., 2010). A population covariance matrix (Ω) was generated by running the
core model. Each run had 100,000 iterations (50,000 discarded as initial burn-in), repeated five times and
averaged. The covariance matrix was then used in the AUX covariate mode (100,000 iterations; 50,000 as
burn-in), repeated five times and averaged for final results. Significant SNPs were identified if they had a
Bayes Factor (BF) > 3 (Kass & Raftery, 1995). Like LFMM, BAYPASS is based on a mixed linear model
to account for potentially confounding allele frequency variances due to population structure. However,
the difference between the two approaches may provide a means of identifying any influence of population
structure (Forester et al., 2018; Ahrens et al., 2021a).

Annotation and gene ontology analysis

To identify the potential role of significant SNPs in coding regions of genes, genomic annotation was run
using the blastn function (Altschul et al., 1997) from BLAST (https://blast.ncbi.nlm.nih.gov/). The 75 bp
sequences associated with each SNP were annotated against theEucalyptus grandis genome (Myburg et al.,
2014) and considered if their significance valuesmet two related thresholds: an E -value < 1 × 10-8 and a
blast-score of at least 60.0. Chromosome number and location of significant SNPs were recorded, as well
as specific gene functions. The annotated SNPs were used to predict broader biological functions using GO
enrichment analysis through the web interface PlantRegMap (Tian et al., 2020). GO terms are organized
within three categories: molecular function, cellular component and biological process. We explored the
biological process aspect from the GO analysis, which refers to broad category of tasks that the genes or
gene products are programmed to achieve. Each of the output GO terms delivered a set of genes that is
associated with a specific biological process. We use this output to explore how functionally related SNPs,
associated with the GO genes, might be additively correlated with environmental factors (e.g., abiotic stress
response). For each climate variable, Fisher’s exact test was used to test for significantly over-represented GO
terms, with a threshold ofp-value <0.01. GO terms with the highest number of SNPs and/or with pertinent
biological processes associated with environmental response (e.g., response to heat, cold and drought) were
recorded and considered for further landscape genomic analysis.

Landscape genomics

We used generalized dissimilarity modelling (GDM) to visualise the relationship between allele frequency and
climate (Ferrier et al., 2007). GDM is a statistical method that predicts spatial patterns of allelic turnover
across geographic regions due to climate by generating an I-spline turnover plot for each tested predictor
and uses percent deviance explained as a measure of model fit. GDM analyses was run using the gdm
package v 1.3.7 in R (Manion et al., 2018), considering a genotypic matrix (pairwise F ST) and a pairwise
climate matrix that includes geographic coordinates. GDM was applied on all the putatively adaptive SNPs
identified by the EAA as significant. For each variable, the SNP with highest value of deviance explained
was selected for plotting and mapping of predicted allelic turnover to test our landscape sorting of adaptive
alleles hypothesis.

Following the GDM transformation of the climate variables for each SNP, we performed PCA on the extracted
values using R to generate three principal components. The three PCs are then converted into a RGB raster
grid (R = PC1, G = PC2 and B = PC3) using custom R rode. The RGB layers were displayed using QGIS
V3.16 (QGI.S.org, 2021) overlaying the distribution of jarrah. The RGB colour palette assigned to each of
the raster layers will display the allelic turnover in the geographic space, where similar colours correspond to
similar predicted patterns of adaptive genetic variability. To test the hypothesis of additive variation, we ran
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. GDM analyses on groups of SNPs related to specific GO terms for each of the five climates and visualised
how the allelic turnover within the GO term was related to that climate. To compare importance of GO
terms, we added deviance of SNP groups together to create an ‘additive score’. The HierFSTAT package
(Goudet, 2005) in R was used to create population pairwise F STmatrices with the SNPs from top GO terms
for each climate variable. Overall, this model addresses genetic variation that is related to climate variables,
discriminating this variation from geographic distances (Fitzpatrick & Keller, 2015). The GDM spline plots
show the association between predicted ecological distances and genetic dissimilarities; the y -axis on the
spline plots is therefore labelled as partial genetic distance, as it describes a portion of genetic distance, and
the height of each spline indicates the magnitude of genomic turnover of a SNP along the climate gradient.

RESULTS

Sequencing and population structure

A total of 78,198 possible SNPs were generated and filtered down to 13,534 independent SNPs, with 8,824
SNPs mapped to the 11Eucalyptus chromosomes. The number of SNPs per chromosome varied from 599 to
1,083, with a mean of 802 SNPs per chromosome. Of the remaining SNPs, 477 fell on unspecified scaffolds
and 4,233 on regions that could not be aligned to the E. grandis genome (unknown location). Population
differentiation was low (globalFST = 0.04) and similar to that identified in a previous RFLP analysis of
variation (FST = 0.034; Wheeler et al., 2003) with population pairwiseFST values ranging from 0.011 to
0.18. The cross-entropy analysis estimated that the optimal number of clusters (k -value) was 6 (Figure S1).
SNMF analysis with six clusters revealed substantial admixture in populations. Five of the clusters could be
geographically described (Figure 2, S2), one cluster was primarily located in the southern area, one in the
central area and two in the northern area, where one cluster was dominant in populations along the coast.
A fifth cluster occurred in the outlier population (JIL; blue colour), and the sixth cluster was present in
four individuals (two individuals from BRA and BOO). The LES population displays mixed affinity, being
similar to both southern (green) and northern (yellow and red) populations.

Environmental association analysis

All three EAA approaches found putatively adaptive SNPs for each of the five climate variables (Table S2,
tabs 1-5). The RDA approach identified fewer candidate SNPs than BAYPASS and LFMM that identified
similar numbers (Figure 3; Table S1). The proportion of overlapped SNPs is different for each variable
(Figure 3). Overall, 2,336 unique SNPs were flagged to be associated with at least one of the tested climate
variables across the three EAA approaches. RDA analysis (Figure S3) identified between 16 (TSEAS) and
57 (TMAX) SNPs significantly associated with each of the climate variables, for a total of 168 SNPs. All
five climate variables were shown to be significantly associated with variation in the RDA (TSEAS: F =
3.98, p = 0.001; TMAX: F = 2.26, p = 0.001; TMIN: F = 2.11, p = 0.001; PMA: F = 1.80 p = 0.001;
PWQ: F = 1.49, p = 0.001). LFMM identified between 263 (PMA) and 411 (TMAX) SNPs with significant
correlations, with a total of 1,753 candidate SNPs. BAYPASS identified between 284 (TMIN) and 888
(TMAX) SNPs with significant correlations, with a total of 2,327 candidate SNPs. Candidates found for all
environmental variables from each EAA method were used in further analyses to predict the distribution
of adaptive SNPs, specifically the ones occurring in genic regions (annotation) and have robust associations
with climate (GDM).

Annotation and gene ontology

Full annotation results for SNPs associated with each variable are given in Supporting Information (Table
S2, tabs 6–10). Of the 2,336 unique candidate SNPs associated with the climate variables, 1,440 SNPs were
linked to functionally annotated genes (Blast -score > 60), which represents 10.6% of the total candidates
set (13,534). TMAX delivered the highest amount of linked functionally annotated genes (474), followed
by PWQ(312), TSEAS (237), PMA (214) and TMIN (203). Most of these candidate SNPs were linked to
functionally annotated genes (Table 2) . For example, JAR00198, associated with both TSEAS and TMIN,

was located in a trans-cinnamate 4-monooxygenase (TCMO) gene; JAR00662, associated with TSEAS, was
found in a UPF0496 protein gene; two SNPS associated with TMAX, JAR00038 and JAR00207 were found
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. on transcription repressor MYB6 and transcription factor MYB44 genes respectively. For PMA, JAR02395
was located in a peroxidase 72 gene; and for PWQ, JAR00273 was located in a 10 kDa chaperonin gene.

Gene ontology enrichment analysis explored how groups of annotated SNPs relate to similar functions (Table
S2, tabs 11-15). Several enriched GO terms in the biological process category are highlighted (Table 3): a GO
term associated with response to light stimulus (GO:0009416) was found with the SNPs related to TSEAS.
Genes associated with this GO term are linked to cellular response processes (in terms of components
movement, enzyme production, and secretion and protein expression) from abiotic stimulus, specifically
electromagnetic radiation and light. A GO term related to karrikin stimulus was found associated with
TMIN (GO:0080167). As for PMA and PWQ, GO terms with high counts of SNPs were found for each
variable (GO:0044763 and GO:1901566, respectively) as well as a term related to UV response (GO:0009411)
associated with PMA.

Landscape Modelling

The SNPs associated with enriched GO terms (Table 3) were used in a GDM analysis to measure allelic
turnover across climatic gradients (Figure 4). The patterns of allelic turnover varied by climatic variable:
overall, GDM showed small to moderate response, in terms of deviance explained. The GO term associated
with PWQ explained more deviance on the SNPs group (n = 21 ; 21.22%, Figure 4e) than any other climate
variable association using GO-groups of SNPs, followed by GO terms associated with TMIN (n =15 ; 14.27%,
Figure 4c). TSEAS, TMAX and PMAshowed a similar deviance for allelic turnover composition (<5% for each
group of SNPs). A specific SNP associated with PWQ , JAR00476, explained the highest deviance (35.5%)
of all the GO terms groups of SNPs used for the GDM modelling. We also applied a GDM analysis to all
individual SNPs associated with the 5 climatic variables (Figure S4), and the SNP that explained the highest
deviance for each variable was selected to display spatial patterns of allelic turnover (Figure 5): TSEAS –
JAR00269 (39.2%); TMAX – JAR11943 (25.5%); TMIN – JAR01172 (16.8%); PMA – JAR10596 (21.9%) and
PWQ – JAR06621 (36.9%). The SNP associated with TSEAS (JAR00269) explained more deviance than
any other in the whole dataset across the 5 climate variables, followed by a SNP associated with PWQ

(JAR06621). There is rapid turnover noticeable for the three temperature variables from the coastal to
eastern populations in the north of the range, and more gradual turnover from the northern populations
to the southern populations (Figure 5a, b, c). But even among the three temperature variables, there
are major differences in adaptive patterns. For instance, while TSEAS and TMAX display a similar rapid
turnover from the coastal to eastern populations in the north of the range, and fairly gradual turnover from
the northern populations to the southern populations, TMIN follows the same trend in the northern region,
but a rapid turnover is present between the coastal and inland populations in the south region. In contrast,
the precipitation variables showed rapid turnover in the southern or central parts of the distribution, and
more gradual turnover in the northern distribution (Figure 5d, e). In southern areas, PWQ shows a rapid
turnover between coastal and inland southern populations, while PMA shows a more gradual pattern in this
region.

DISCUSSION

Our study identified putative patterns of climate adaptation in jarrah, with several strong associations be-
tween candidate SNPs and climatic gradients. The results provide support for our hypothesis of strong
patterns of local adaptation to climate across the distribution of jarrah, although, contrary to our second
hypothesis, we found adaptation to both temperature and precipitation variables rather than primarily with
precipitation. As expected, annotation highlighted functional genes associated with biological processes,
some of which relate to abiotic stress factors and provide good candidates for adaptations. Furthermore,
the landscape genomics modelling assessed the magnitude of allelic turnover for candidate SNPs and high-
lighted temperature seasonality, mean maximum temperature of the warmest month and precipitation of
the warmest quarter as explaining significantly more variation than other climate drivers. These patterns
indicate that adaptive variants are independently sorting across the landscape, which is consistent with our
fourth hypothesis. We discuss the mechanisms for adaptation to climate across complex landscape for forest
trees, including a direct comparison with a co-dominant co-occurring foundation species, before providing
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. the scientific basis for implementation of management and conservation strategies to promote the resilience
of foundation tree species.

Signatures of adaptation

These associations, indicating local adaptation, were found despite high levels of gene flow among populations
across the distribution as it is common in eucalypt species (Supple et al., 2018; Murray et al., 2019; Ahrens
et al., 2019a; Jones et al., 2002). Low differentiation among populations indicates that application of EAA
in jarrah is appropriate to identify alleles putatively under selection. Overall, the distinct EAA approaches
identified different sets of SNPs as potential candidates under selection for each climate variable, which is
expected given the different statistical frameworks of the methods (Forester et al., 2018; Caye et al., 2019).
One limitation of EEAs is the identification of SNPs that are found to be under selection but are in fact
not (false positives). While false positives are an inherent limitation in EAA studies, it is considered that
they are useful in consistently identifying adaptive SNPs, even if the adaptive coefficient is small (Ahrens
et al., 2021a). We focus our interpretation on SNPs that are within gene space to lessen the impact of false
positives, despite that candidate SNPs identified outside of gene space could also be true positives. For
instance, SNPs could be in promoter regions, regions that are known to have high proportion of adaptive
variants (Wittkopp & Kalay, 2012), SNPs could share a large haplotype with genes that are under selection
(Todesco et al., 2020), or SNPs could be in linkage disequilibrium with adaptive SNPs. Future work should
focus on improving the genomic resources of the species to elucidate these complex issues that are beyond
the scope of this work.

Adaptation to temperature and precipitation

GDM analysis on all candidate SNPs found the highest deviance explained for a SNP associated with TSEAS

(39.2%), closely followed by PWQ (36.9%), with overall results for all candidates showing low to moderate
deviance across the 5 variables. Furthermore, PWQ was linked to GO:1901566, with the highest number
of associated SNPs (21) and also showed the highest deviance explained by the GDM analysis (Figure 4e).
Overall, both temperature and precipitation variables are linked to adaptive genetic variants through the
multi-EAA and annotation approach; although, GO and GDM analysis highlighted the specific precipitation
variable (PWQ) as a stronger adaptation driver.

The annotations of identified genes were made based on the reference genome of Eucalyptus grandis , a distant
relative, so we provide a pertinent but cautious preliminary interpretation of functional results until a full
jarrah (E. marginata ) reference genome becomes available. Gene functions associated with the temperature
and precipitation variables show biological functions associated with response and adaptation to these abiotic
factors. For example, the KCS gene family (JAR02659), that was associated with TSEAS, has been linked
to cold and light responses (Joubes et al., 2008) inArabidopsis , being involved in the biosynthesis of waxes
that cover the leaves surface. Two SNPs (JAR13256 and JAR08936) are linked to the ABC transporter gene
families, which have been shown to be associated with heat response and abiotic stress tolerance during seed
germination (Zhang et al., 2012; Hwang et al., 2016). Similarly, for TMAX, several SNPs were found to be
linked to this same gene family (JAR07223, JAR03208, JAR09260, JAR00867, JAR09847, JAR03598 and
JAR08936) as well as one for TMIN (JAR01172). The HSF gene family was linked to a SNP (JAR02134)
associated with both TSEAS and TMAX, and this gene family is identified as a strong thermotolerance
regulator (Scharf et al., 1990) and has been widely reported in various plant species (Duan et al., 2019;
Zhang et al., 2020a). The SNP JAR07972 associated with TMIN was found in CBL genes that have been
related to adaptation and tolerance to low temperatures, among other abiotic stresses (Ren et al., 2014; Su et
al., 2020). The MYB transcription factors gene family has been extensively associated with abiotic tolerance,
specifically cold and heat stress, but also dehydration (Mmadi et al., 2017; Liao et al., 2017). SNPs linked to
this family were found across four climatic variables: TSEAS (JAR07671 and JAR04859), TMAX (JAR00038,
JAR00207, JAR07671, JAR04859 and JAR07108), TMIN (JAR08943) and PWQ (JAR07671). In addition,
the SNP associated with PWQ (JAR13490) was found in the chromatin-remodelling factor PKL gene that
has been consistently linked to multiple plant development processes, particularly to the abscisic acid (ABA)
pathway regulation (Perruc et al., 2007). ABA is a phytohormone that is well known for controlling stomatal
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. closure (Rajab et al., 2019, Maheshwari et al., 2020), thus being crucial for efficient drought response (Yu et
al., 2019, Zhang et al., 2020b). From PMA, one SNP (JAR01263) was found associated with the methionine
gamma-lyase (MGL) gene. MGL is an enzyme which activity is upregulated by osmotic stress caused by
drought (Joshi & Jander, 2009) and it is considered to act as an osmolyte, protecting the plant tissues from
dehydration (Gagne-Bourque et al., 2016). These are just a sample of the many compelling gene functions
associated to both temperature and precipitation found across the five tested climatic variables, identifying
these as potential drivers of local adaptation.

Functionally related genes have similar adaptive patterns

In our analysis of gene ontology enrichment, we focused on biological processes related with response to
abiotic stress factors such as drought, cold and heat. Generally, we found that there was overrepresentation
of important biological GO terms associated with adaptation in similar ways, consistent with expectations
under our third hypothesis. For instance, a GO term associated with TSEAS, GO:0009416, is related to
light stimulus. Some of the SNPs associated with this GO term have been previously highlighted for the
annotated functional results (e.g., JAR02659). A GO term related to karrikin stimulus was found associated
with TMIN(GO:0080167). Karrikins are a group of phytohormones that control several aspects of plant
germination and growth and can be found in the smoke from wildfires (Nelson et al., 2012). This is especially
important in SWWA where there is an ongoing shift to warmer and drier climatic conditions, and consequent
increases in fire frequency in this fire prone environment (Dey et al., 2019, Kala et al., 2020). The term
GO:1901566 was found for a high number of SNPs (21) that were associated with PWQ. This term is
related to organonitrogen compound biosynthetic process, a broad biological process that involves chemical
reactions and pathways related to nitrogen metabolism. Organic nitrogen metabolism is a vital process for
plant physiology and its regulation has been shown to be dependent on abiotic factors, such as temperature
and water availability (Zielke et al., 2002; Gundale et al., 2012). GO term SNPs associated with TMIN and
PWQ showed the highest deviance explained by the GDM analysis. High allelic turnover is observed for two
SNPs in TMIN, JAR03088 and JAR05151, and an even greater magnitude for two SNPs in PWQ, JAR00476
and JAR11797. The SNP JAR00476 in particular explained more deviance than any other SNP linked to GO
terms; and its functional annotation is associated with a MADS-box protein SOC1-like, involved in flowering
regulation (Lee et al., 2000) and shown to be responsive to abiotic factors such as cold temperatures (Sheldon
et al., 2006). Many plant functional traits are polygenic, involving complex interactions controlled by multiple
genes, so it is also expected that patterns of climate adaptation are also the result of combined effects from
several alleles of small-effect (Wadgymar et al., 2017). Indeed, climatic variables are expected to not be the
main driver for variation in some candidate SNPs, as the genes associated can be pleiotropic and may be
under selection from other biotic or abiotic factors. For example, although precipitation and temperature
are consistently highlighted as key factors influencing plant’ distribution and ecology, soil properties greatly
affect these settings, as water availability depends on the interaction between climatic variables and soil
characteristics (Piedallu et al., 2013). The identification and understanding of adaptive genetic variations
might then be improved by including other relevant biotic factors such as soil characteristics. Nevertheless,
by hierarchically categorising gene functions, we were able to find consistent adaptive patterns across the
distribution, highlighting polygenic adaptations to climate variables in this species.

Adaptive variants are independently sorted

Across the species geographic distribution, climatic heterogeneity explains significant genomic variation. In
particular, TSEAS and PWQ showed strong associations between environments and gene pools. The patterns
of genomic turnover associated with the studied climatic variables are aligned with the climatic gradients
of the region (Figure 5). These associations are indicative of the multidimensional patterns of adaptation
resulting in orthogonal intraspecific selection among SNPs (White & Butlin, 2021). Here, we define dimen-
sionality as the interaction between orthogonal climate variables to independently describe each habitat.
Our dimensionality is driven by climate, and the independent sorting of putatively adaptive variants is in-
dicative of this complex pattern. It has been modelled that local adaptation increases with dimensionality
(MacPherson et al. 2015), and it likely leads to dimensionality of phenotypic traits (Kirkpatrick and Meyer
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. 2004; McGuigan et al. 2005). Indeed, there is evidence of intraspecific variation among growth and mor-
phological traits (e.g., height and diameter at breast height) locally adapted in jarrah, associated to climatic
factors (O’Brien et al., 2007, 2010; Koch & Samsa, 2007).

In some ways, increased dimensionality is ubiquitous with increased habitat heterogeneity, and habitat
heterogeneity has been shown to drive signatures of adaptation to temperature and precipitation in tree
species (Shryock et al. 2020; von Takach et al., 2021; Walters et al., 2021). While these studies did not
explore dimensionality explicitly, their results nevertheless show that tree species are able to independently
adapt to multiple types of environments. While such patterns of differential adaptation makes management
of the species more complex and nuanced in the future, our results provide a level of understanding that will
allow for targeted responses to changing climatic conditions in different areas.

Landscape adaptations of forests

Comparative analysis can provide broader patterns for forest management, where concurrent genetic and
spatial patterns of local adaptation within co-occurring tree species provides strong evidence for environ-
mental fitness and evolution (Bragg et al., 2015). Our analysis here identified SNPs associated with both
temperature and precipitation in jarrah; while a similar study on a co-occurring species, marri (Corymbia
calophylla ), found SNPs associated with temperature to explain more deviance than precipitation (Ahrens
et al., 2019a), thereby suggesting that temperature is a stronger driver of local adaptation for marri. It is
interesting that there were similarities in functional genes associated with several adaptive variants between
jarrah and marri (e.g., ABC transporters and CBL gene families). Comparison of SNPs across both species
identified a set of 26 SNPs that were also found to be associated with at least one of the five variables anal-
ysed (Table S3). Most of these shared SNPs are associated with either TMAX (16) or PWQ (12) in jarrah;
while for marri, the majority of the shared SNPs are associated with TMAX (24), which is consistent with
adaptation to both temperature and precipitation in jarrah and with temperature in marri. This comparison
adds weight to our finding that the hypothesis of precipitation as a more important driver than temperature
in jarrah is not supported

as our evidence indicates that both temperature and precipitation are important climate factors for adapta-
tion in jarrah.

Management perspectives

Our analysis of standing genetic variation across the distribution of jarrah found putative links between
potentially adaptive loci and crucial abiotic factors in stress response, which provide a source of adaptation
to climate change. The evidence that genetic variants are involved with climate adaptation occurred as either
association with specific gene functions or abiotic responses. Our analysis here, and that of the co-dominant
species marri, are also consistent with results from recent genomic studies on other eucalypt species in other
regions of Australia (Steane et al., 2017; Jordan et al., 2017, 2020), providing evidence of adaptation to
climate in natural populations and stressing the role of temperature (particularly TSEAS and TMAX) and
precipitation (PWQ) variables. The presence of climate adaptation provides a basis for implementation of
assisted gene migration for forest management strategies (Aitken & Bemmels, 2016) and climate adjusted
provenance in restoration practices (Prober et al., 2015). As a foundation tree, jarrah is a vital component in
the ecosystem and has a significant role in regulating local hydrological systems and carbon storage (CCWA,
2013; Bradshaw, 2015). Additionally, it offers abundant habitats for a wide variety of groups, from vascular
flora and lichens to terrestrial vertebrates and birds (Whitford & Williams, 2002; Whitford et al., 2015), as
well as unique food sources for fauna, especially birds (Wrigley, 2012; Lee et al., 2013). Since the middle of
the 19th century, it has been a major component of timber production from SWWA forests (CCWA, 2013;
Davison, 2015). The Forest Management Plan 2014–2023 (CCWA, 2013) for SWWA forests has provision
for implementation of assisted gene migration in management strategies for response to climate change.
Our findings of standing variation harbouring putative adaptations to climate associated with temperature
and precipitation factors provides an evidence base for design and implementation of such strategies. In
addition, phenotypic approaches on other eucalypt species have also highlighted the role of local climate in
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. the development of adaptive traits (Costa e Silva et al., 2019; Ahrens et al., 2019b, Ahrens et al., 2021b).
Expanding this work to a phenotypic approach in jarrah for identifying patterns of plasticity and adaptation
associated with climate would contribute to further understanding the association of genomic and phenotypic
diversity across environmental gradients. While it appears that genetic variants associated with similarly
functioning genes are adapting to the environment in similar ways, we found that putative adaptations
among climate variables are sorted through the landscape in contrasting ways. This makes implementation
of assisted gene migration strategies more complex and targeted in particular areas of the distribution. In
fact, our findings illustrate that perhaps we could consider germplasm from multiple sources to bolster the
adaptability in adaptively depauperate populations and, by design, we would implicitly choose variation
from functionally related genes, potentially increasing the diversity, adaptability, and new combinations of
genetic variations.
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. all candidate SNPs (tabs 6-10); and top GO terms (tabs 11-15) for each climate variable.

FIGURES AND TABLES

Figure 1 – Sampling locations of Eucalyptus marginatain south-west Western Australia (black squares).
Two climate gradients are shown for the species distribution area: a) maximum temperature of the warmest
month, (°C; TMAX) and b) mean annual precipitation (mm; PMA). Bio-climatic layers from worldclim.org
(Fick & Hijmans, 2017). Insert shows distribution ofEucalyptus marginata in Australia.
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.

Figure 2 – Distribution of sampled Eucalyptus marginatadisplaying population structure probabilities for
K = 6 genetic clusters, depicted as pie charts. Refer to Table 1 for more details on each population.
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.

Figure 3 – Summary of environmental association analysis inEucalyptus marginata . Venn diagrams show
the intersections between the three approaches of environmental association analyses (RDA, red; LFMM,
blue; BAYPASS, yellow) considering candidate SNPs associated with each of the climate variables: TSEAS

= temperature seasonality; TMAX = mean maximum temperature of the warmest month; TMIN = mean
minimum temperature of the coldest month; PMA = mean annual precipitation; PWQ = mean precipitation
of the warmest quarter.

Figure 5 – Predicted spatial variation of allelic turnover based on the outputs from GDM of the top SNP
for each climate variable for Eucalyptus marginata. a) TSEAS – JAR00269; b) TMAX – JAR11943; c) TMIN –
JAR01172; d) PMA – JAR10596 and e) PWQ– JAR06621. Principal component analysis (PCA plots in the
top right corner of each map) was applied to reduce transformed climatic variables and assign RGB colours.
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. Similarity of colours within each map frame indicates similarity in predicted patterns of genetic composition.
Insets are spline plots of partial genetic distance (y-axis) by climatic distance (x-axis) for the individual SNP
(dimensions of the plot are the same as in Figure 4).

Figure 4 – Geographic generalized dissimilarity modelling (GDM) in Eucalyptus marginata showing SNPs
allelic turnover for gene functions (GO terms) across each environmental variable. TSEAS = temperature
seasonality; TMAX = mean maximum temperature of the warmest month; TMIN = mean minimum tempera-
ture of the coldest month; PMA = mean annual precipitation; and PWQ = mean precipitation of the warmest
quarter. GO terms with different SNP sets in the same plot are represented with different colours (black or
orange).

Table 1 – Locations and climatic variables for the 28 sampled populations of Eucalyptus marginata in
SWWA. Lat = latitude; Long = longitude; TSEAS = temperature seasonality; TMAX = mean maximum
temperature of the warmest month; TMIN = mean minimum temperature of the coldest month; PMA =
mean annual precipitation; and PWQ= mean precipitation of the warmest quarter. Temperature (T) and
precipitation (P) variables are expressed in degrees Celsius (°C) and millimetres (mm) respectively.

Population Code Lat Long TSEAS TMAX TMIN PMA PWQ

Mt Lesueur LES -30.1644 115.1991 41.1 32.2 8.2 578 35
Julimar JUL -31.3491 116.2470 49.0 33.1 6.1 635 44
Jilakin Rock* JIL -31.6647 118.3261 52.8 33.2 5.0 326 46
Chidlow CHI -31.8622 116.2266 47.4 32.3 6.1 876 54
Perry Lakes PER -31.9436 115.7838 37.6 30.4 9.4 765 38
Dale DAL -32.1017 116.1900 45.9 31.5 6.2 1053 58
Serpentine SER -32.3451 116.072 43.9 30.6 6.4 1151 57
Lupton LUP -32.5292 116.5003 48.3 31.4 4.3 705 45
Whittaker WHI -32.5499 116.0100 43.1 29.9 5.8 1190 62
Peel PEE -32.6920 115.7103 37.5 30.4 8.3 888 42
Saddleback SAD -32.9967 116.535 46.1 30.8 4.3 681 44
Godfrey GOD -33.2142 116.5712 45.0 30.2 4.1 661 45
Yourdaming YOU -33.3035 116.2407 43.9 30.4 4.1 851 46
Eaton EAT -33.3177 115.7482 39.2 30.5 6.7 853 47
Meelup MEE -33.5939 115.088 30.1 27.4 9.1 839 43
Grimwade GRI -33.7612 115.9988 40.2 29.6 5.3 881 53
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. Population Code Lat Long TSEAS TMAX TMIN PMA PWQ

Katanning KAT -33.8294 117.5731 41.9 29.2 5.2 457 50
Bramley BRA -33.9035 115.0871 28.8 26.1 8.8 1072 54
Mowen MOW -33.9133 115.5434 34.7 27.8 6.9 965 54
Nannup NAN -33.9852 115.7778 36.1 28.3 6.6 928 56
Kingston KIN -34.0825 116.3374 38.8 28 5.1 785 61
Milylannup MIL -34.1928 115.6654 32.3 26.6 7.4 1027 64
Stirling Range STI -34.3850 117.9927 35.4 26.9 5.8 493 67
Carey CAR -34.4257 115.8223 30.6 26 7.6 1112 72
Boorara BOO -34.6126 116.2060 31.4 25.9 6.9 1126 79
Plantagenet PLA -34.6402 117.4987 33.7 26.7 6.5 738 79
Beadmore rd BEA -34.8171 116.4834 31.3 25.8 7.0 1088 83
Denmark DEN -34.9535 117.3805 30.3 25.8 7.6 976 88

*Outlier population

Climate SNP RDA (p-value) LFMM ( p-value ) BAYPASS (BF) chr Blast e-val Gene annotation from the Eucalyptus grandis genome

TSEAS JAR00166 - 0.00034 4.708 un 1.0E-28 Mitochondrion
JAR00198 - 0.00064 6.788 10 1.0E-28 Trans-cinnamate 4-monooxygenase
JAR00273 - 3.11E-05 21.663 11 1.0E-28 Mitochondrion
JAR00499 - 0.00071 - 8 1.0E-28 Probable LRR receptor-like serine/threonine-protein kinase
JAR00662 - 4.78E-06 - 6 1.0E-28 UPF0496 protein

TMAX JAR00038 - - 3.270 6 8.0E-29 Transcription repressor MYB6
JAR00207 - - 3.054 6 8.0E-29 Transcription factor MYB44
JAR00209 - - 9.466 11 8.0E-29 AT-hook motif nuclear-localized protein 16
JAR00214 - - 11.262 6 8.0E-29 Protein indeterminate-domain 1
JAR00262 - - 6.154 4 8.0E-29 Uncharacterized

TMIN JAR00013 - - 9.801 10 8.0E-29 Mitochondrion
JAR00166 - - 18.303 un 1E-28 Mitochondrion
JAR00198 - 0.00026 6.788 10 1E-28 Trans-cinnamate 4-monooxygenase
JAR00273 - 1.32E-06 - 11 1E-28 Mitochondrion
JAR00620 0.242 - - 11 8.0E-29 Uncharacterized

PMA JAR00027 - 0.00014 10.316 7 1.0E-28 Mitochondrion
JAR00500 - - 6.788 4 1.0E-28 Putative yippee-like protein Os10g0369500
JAR01426 - 0.0004 - 11 1.0E-28 Tyrosine decarboxylase 1
JAR01512 - 0.0001 - 5 1.0E-28 Uncharacterized
JAR02395 - 0.00092 - 9 1.0E-28 Peroxidase 72

PWQ JAR00214 0.454 0.00053 - 6 8E-29 Protein indeterminate-domain 1
JAR00273 - - 11.889 11 8E-29 10 kDa chaperonin
JAR00499 - 0.00021 - 8 1E-28 Probable LRR receptor-like serine/ threonine-protein kinase A
JAR00690 - 0.00031 6.266 1 8E-29 Zinc finger protein ZAT5
JAR01091 - 5.34E-07 4.388 7 1E-28 LOB domain-containing protein 1-like

Table 2 – Gene annotation showing the top five SNPs (Blast score = 125) for Eucalyptus marginata ,
with NCBI blast e-value score, relative ranks based on levels of significance for each EAA and chromosome
number (chr) from Eucalyptus grandisgenomic mapping for each environmental variable. TSEAS = temper-
ature seasonality; TMAX = mean maximum temperature of the warmest month; TMIN = mean minimum
temperature of the coldest month; PMA = mean annual precipitation; and PWQ = mean precipitation of the
warmest quarter). SNPs that were simultaneously found associated with GO terms (table 3) are in bold.
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.

Climate GO id GO term

GDM %
deviance
explained p-value SNPs Count

TSEAS GO:0009314 Response to
light
stimulus

3.66 0.00261 JAR02551,
JAR04603,
JAR00284,
JAR02659,
JAR06621,
JAR04257,
JAR07363,
JAR00198,
JAR01133,
JAR07395

10

TMAX GO:0000271 Polysaccharide
biosynthetic
process

3.81 0.0067 JAR05227,
JAR06489,
JAR06314,
JAR08046,
JAR12549,
JAR11847,
JAR08134,
JAR12439

8

GO:0010104 Regulation
of ethylene-
activated
signalling
pathway

0.0097 JAR09402,
JAR12137

2

TMIN GO:0071840 Cellular
component
organization
or biogenesis

14.27 0.00859 JAR05151,
JAR02381,
JAR00166,
JAR02528,
JAR04603,
JAR03088,
JAR05858,
JAR01284,
JAR06869,
JAR05668,
JAR04700,
JAR07286

12

GO:0080167 Response to
karrikin

0.00391 JAR06869,
JAR00198,
JAR03623

3
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Climate GO id GO term

GDM %
deviance
explained p-value SNPs Count

PMA GO:0044763 Single-
organism
cellular
process

4.62 0.0061 JAR07368,
JAR04995,
JAR05607,
JAR07695,
JAR05954,
JAR12984,
JAR11156,
JAR00284,
JAR11454,
JAR08984,
JAR13223,
JAR06091,
JAR07363,
JAR08184,
JAR12280

15

GO:0009411 Response to
UV

0.0059 JAR00284,
JAR07363

2

PWQ GO:1901566 Organonitrogen
compound
biosynthetic
process

21.22 0.0064 JAR12369,
JAR00189,
JAR00543,
JAR11122,
JAR05879,
JAR12666,
JAR02347,
JAR11253,
JAR11737,
JAR06747,
JAR07829,
JAR06097,
JAR10308,
JAR12789,
JAR12316,
JAR00476,
JAR13196,
JAR11797,
JAR11414,
JAR11170,
JAR10452

21

Table 3 – Overrepresented gene ontology (GO) terms for SNPs identified in Eucalyptus marginata for
each environmental variable. TSEAS = temperature seasonality; TMAX = mean maximum temperature
of the warmest month; TMIN = mean minimum temperature of the coldest month; PMA = mean annual
precipitation; and PWQ= mean precipitation of the warmest quarter by count of SNPs and/or relevant
biological functio
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