
P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Python routines for low temperature resistive thermometry in

magnetic fields

Nathanael A. Fortune1, Scott Hannahs2, and Julia Frothingham3

1Smith College
2Florida State University
3Affiliation not available

July 16, 2021

1 Introduction

1.0.1

1.1 Thermometer calibration

Following the method outlined in Ref. (Fortune et al., 2000), we approximate the magnetic field and tem-
perature dependence R (T, B) of a resistive thermometer using a linear combination of Chebyshev polyno-
mials tn (x)

lnR(T,B) '
N∑
i=0

ci(B)ti(x) (1)

where x is a function of ln (T) and the polynomial coefficients cn (B) are a function of magnetic field B.
Since Chebyshev polynomials are defined over the window −1 ≤ x ≤ 1 , we define x as

x =
(lnT − lnTmin)− (lnTmax − lnT)

(lnTmax − lnTmin)
(2)

where Tmin and Tmax correspond to the minimum and maximum temperatures over which the fit will be
defined.

To account for the magnetic field dependence, we allow for the fitting coefficients ci in the Chebyshev
expansion to vary in value with magnetic field; we calculate the magnetic field dependence of each Chebyshev
coefficient ci (B) by fitting R (T) data at a series of fixed magnetic fields and expressing the resulting ci (B)
coefficients as rational polynomials (Padé approximants) . Specifically, we represent the fractional variation
of ci (B) with respect to its zero field value ci (0) as

1

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

yi =
ci(B)− ci(0)

ci(0)
=

∑P
p=0 κi,pB

p∑Q
q=0 γi,qB

q
(3)

with κi,0 ≡ 0 and γi,0 ≡ 1 for all values of i .

Solving for ci (B),

Rewriting Eq. 1 in terms of Eq. 3,

ci(B) = ci(0) [1 + yi(B)] = ci(0)

[
1 +

∑P
p=0 κi,pB

p∑Q
q=0 γi,qB

q

]
(4)

and rewriting Eq. 1 in terms of Eq. 4,

lnR(T,B) '
N∑
i=0

[1 + yi(B)] ci(0)ti(x) (5)

The success of the fit ultimately depends on proper choice of P, Q, and initial values for κi,p and γi,q. Guidance
on how to choose these values is provided in section 4 : R(B,T) calibration.

1.2 Thermometer Sensitivity

Since the first derivative of a Chebyshev polynomial is also a Chebyshev polynomial (Karageorghis, 1988;
Fortune et al., 2000; Barrio, 2004), both R and the dimensionless sensitivity η can be directly calculated
from T once the values of ci have been determined. Specifically,

η =
d lnR

d lnT
=

(
2

lnTmax − lnTmin

)N−1∑
j=0

dn(B)tn(x) (6)

where the coefficients dn can be conveniently re-expressed in terms of the original coefficients cn as

2

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

dn = an

N−1∑
j=1

(n+ 2j − 1) cn+2j−1 (7)

with a0 = 2 and an = 4 for n ≥ 1 (Karageorghis, 1988). Conveniently, computation of R and η can
be done for us automatically from the Chebyshev coefficients cn for any given T in the domain [Tmin, Tmax]
using the Python routines presented below.

2 Zero-field R(T) calibration

In this example, we calculate Chebyshev coefficients from zero field calibration data for a commercially
calibrated resistive thermometer. In later examples, we determine the corresponding coefficient values in
non-zero magnetic fields. To see and run the underlying Python code, click on the </> Code button to the
left of Fig. 1 below.

2.1 Load Python packages for data fitting

For these fits, we use the Chebyshev convenience class routines included in the Numerical Python (Num-
py) Polynomial package. Please see the Numerical Python reference manual and the example code attached
to Fig.1 below for further details.

import numerical Python package

import numpy as np

import Chebyshev polynomial routines

from numpy.polynomial import Chebyshev

import nonlinear curve fitting routine from SciPy package

from scipy.optimize import curve_fit

2.2 Import the data

The commands below indicate that the data is in a tab delimited two-column spreadsheet format consisting
of consecutive pairs of (T, R) data pairs (preceded by 10 rows of header text). For additional details —
including how to import other forms of spreadsheet data such as comma separated variable (CSV) files —
please read A Short Guide to Using Python for Data Analysis in Experimental Physics.

T_CT_cal_data, R_CT_cal_data = np.loadtxt(’Smith Cernox 1010 X65735LF.txt’, skiprows =10, unpack = True)

To see the original calibration data file (including header information), click on the Data icon to the left of
Fig.1 below.

3

https://docs.scipy.org/doc/numpy/reference/routines.polynomials.chebyshev.html
https://docs.scipy.org/doc/numpy/reference/routines.polynomials.package.html
https://dx.doi.org/10.22541/au.152961025.52816543

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Since orthogonal polynomials such as the Chebyshev polynomials are defined over a certain domain, we first
need to establish domain and range of the data.

T_CT_limits = np.array([np.min(T_CT_cal_data), np.max(T_CT_cal_data)])

R_CT_limits = np.array([np.min(R_CT_cal_data), np.max(R_CT_cal_data)])

print(’temperature range of calibration data [K]’, T_CT_limits)

print(’resistance range of calibration data [ohms]’, R_CT_limits)

With results

temperature range of calibration data [K] [8.45954187e-02 3.30011773e+02]

resistance range of calibration data [ohms] [3.33321191e+01 2.01328000e+05]

2.3 Chebyshev polynomial fit

All of the data needs to fit within the domain of temperatures we choose for the Chebyshev fit. For conve-
nience, we extrapolate slightly on both the low and high temperature end to the range of temperatures we
expect to regularly encounter. Too large an extrapolation will lead to poor fits to the data and/or implausible
extrapolations, so the setting of the domain can involve some trial and error.

def set_domain(T_min, T_max):

"""set range of temperatures for which fit is to be done"""

domain = np.array([T_min,T_max])

return domain

CT_domain = set_domain(0.050, 335) # defines lower and upper bounds of fit, in Kelvin

In the example below, we use the numpy Chebyshev polynomial class method Chebyshev.fit to fit an N
= 8 degree (9 term) Chebyshev polynomial to the calibration data (in the manner of Eq. 1). For further
details on Chebyshev.fit method, see the Numpy reference manual entry.

def fit_Chebyshev_to_data(T_data, R_data, N, T_domain):

"""find coefficients for an Nth order logR = f(x(logT)) Chebyshev fit """

fit = Chebyshev.fit(np.log(T_data),np.log(R_data), N, domain = np.log(T_domain))

return fit

CT_fit = fit_Chebyshev_to_data(T_CT_cal_data, R_CT_cal_data, 8, CT_domain) # compare to manual fit

Notice that the scaling of the temperature domain [log Tmin, log Tmax] to the window [-1, 1] for x — as
described in Eq. 2 — is handled automatically by Chebyshev.fit. We do not need to write a function to
explicitly calculate x from T .

The result of the fit is shown in Fig. 1 below. A Jupyter notebook containing the Python code used to
generate this and following figures is attached to Fig.1. To open it, click on the </> Code button to the
left of the figure to open a Jupyter notebook session, then click on R(T) fit part 1.ipynb to launch the

4

https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.chebyshev.Chebyshev.fit.html#numpy.polynomial.chebyshev.Chebyshev.fit

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

notebook. The notebook can be run as is (for example, by selecting Restart and Run All from the Kernel
menu) or modified for use with your own data.

Figure 1: Original calibration data and 8th degree Chebyshev polynomial fit. In this particular case the
operable temperature domain for the fit was set to [50 mK, 335 K], resulting in a slight extrapolation of the
data at the low temperature end.

The corresponding calculated dimensionless sensitivity is shown in Fig. 2.

2.4 Evaluation and Assessment of fit

2.4.1 numerical evaluation of R(T)

We can evaluate this fit for any temperature value T value, using CT fit(np.log(T value)).

T_value = 1.0 # Kelvin

R_value = np.exp(CT_fit(np.log(T_value)))

print(R_value) # in ohms

804.8943283874187

5

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 2: Variation of the dimensionless sensitivity η (T) = d lnR
d lnT with temperature T , as described in

Eq. 6. The values are calculated from the Chebyshev fit to Eq.1 for the original R (T) calibration data using
the differentiation function built into the Chebyshev.fit method.

This one line command first calculates lnT from T , then evaluates the Chebyshev fit to find lnR, and finally
calculates R. To calculate the resistances corresponding to an array of temperature values all at once, we
simply replace the variable ‘T value’ with a numpy array of temperature values.

For convenience, we define a function TtoR that will convert an array of temperature values to an array of
resistance values for any given set of Chebyshev coefficients using the steps outlined above:

def TtoR(T_values, Chebyshev_fit):

"""use fit to calculate R from T"""

lnR = Chebyshev_fit(np.log(T_values))

R_values = np.exp(lnR)

return R_values

2.4.2 fractional error in resistance

We can use this function to find the fractional error in R for the original calibration data resistance values:

R_calc = TtoR(T_CT_cal_data, CT_fit)

fractional_error_in_R = (R_calc - R_CT_cal_data)/ R_CT_cal_data

6

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

The result, shown in Fig. 3, indicates that the fractional error in the fit is less than ± 0.2% over most
of the temperature range, but starts to break down at the low temperature end. To formally evaluate the
goodness of fit, we would need to know the precision of the resistance measurements for each data point. The
precision of the data points can be taken into account during the Chebyshev fitting process by specifying
the appropriate weights in Chebyshev.fit.

Figure 3: Comparison of the resistance values calculated using the Chebyshev fit with the measured resistance
values from the calibration data, expressed as the fractional resistance ∆R

R = Rcalc−Rdata

Rdata
. The fractional

error is less than ±0.2% over most of the temperature range.

2.4.3 numerical evaluation of T(R)

The ultimate purpose of the R (T) calibration is to be able to determine the temperature from a measurement
of the thermometer resistance. Rather than carry out a second Chebyshev fit for T (R) — which can lead
to inconsistencies in the handling of the data — we instead find the value of T for which our calibration
calculates a value of R corresponding to the measured R value by use of the Chebyshev.roots() root finding
routine built into Chebyshev fit.

Suppose then that for x∗ = x (T ∗), we find that Rcalc (T ∗) = Rmeasured (Tmeasured). Then

7

https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.chebyshev.Chebyshev.fit.html#numpy.polynomial.chebyshev.Chebyshev.fit
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.chebyshev.Chebyshev.fit.html#numpy.polynomial.chebyshev.Chebyshev.fit
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.chebyshev.Chebyshev.roots.html#numpy.polynomial.chebyshev.Chebyshev.roots
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.chebyshev.Chebyshev.roots.html#numpy.polynomial.chebyshev.Chebyshev.roots

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

lnR(T,B) =

N∑
i=0

ci(B)ti(x
?) (8)

and since t0 (x) = 1 for all x within the window [-1, 1],

(lnRmeasured − c0)−
N∑
i=1

ci(B)ti(x
?) =

N∑
i=0

c?i (B)ti(x
?) = 0 (9)

where c∗0 = c0 − lnR and c∗i = ci for i ≥ 1. The roots x∗ are the values for which Eq. 9 is satisfied.

The key steps in the Numpy Chebyshev fit root finding routine for the evaluation of T (R) are these:

1. make a copy of the Chebyshev results so as not to modify the original
2. replace c0 with c∗0 so that 0 is returned when series is evaluated for correct value of T
3. find all roots, then isolate the (ideally) one real root within the temperature domain of the fit

The key parts of the code corresponding to each of these step are listed here:

#make a copy so as not to modify the original

root_fit = Chebyshev_fit.copy()

adjust coefficients so that zero is returned when series is evaluated

if T is correct value

root_fit.coef[0] = Chebyshev_fit.coef[0] - np.log(value)

find all roots, real and complex

roots = root_fit.roots() # compute roots for a particular R value

isolate the one real root within T domain (assuming root finding is successful)

T_solve = [np.real(np.exp(root)) for root in roots

if ((root < Chebyshev_fit.domain.max()

and root > Chebyshev_fit.domain.min())

and np.isreal(root))]

These commands are included in the complete code for the root finding function RtoT listed here:

def RtoT(R_values, Chebyshev_fit):

"""use fit to calculate T from R for set of R_values

by finding roots of Chebyshev series for modified coefficient

root_fit.coef[0]= Chebyshev_fit.coef[0] - np.log(R_value)

then return as a set of T_values"""

fix if user inputs a scalar value instead of an array for R_values

if np.isscalar(R_values):

values = np.array([R_values])

else:

8

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

values = R_values

prepare to find roots

root_fit = Chebyshev_fit.copy() #make a copy so as not to modify the original

T_values = np.empty(values.size) #create an empty array to fill with T_values

for index, value in enumerate(values):

root_fit.coef[0] = Chebyshev_fit.coef[0] - np.log(value)

roots = root_fit.roots() # compute roots for R value

#sort roots, find root that is real and within T domain

T_solve = [np.real(np.exp(root)) for root in roots if ((root < Chebyshev_fit.domain.max() and root > Chebyshev_fit.domain.min()) and np.isreal(root))]

#check that there is one and only one real root

if len(T_solve) == 1:

T_value = T_solve[0]

elif len(T_solve) == 0:

print(’error! no real roots for R = ’, value)

T_value = np.nan

else:

print(’warning! multiple real roots in domain for R =’, value)

print(T_solve)

T_value = np.nan

assign T_value to array

T_values[index] = T_value # assign T value

return T_values

2.4.4 fractional error in temperature

We can now calculate the fractional and percentage errors in temperature for each of the original calibration
(R,T) data pairs.

T_calc = RtoT(R_CT_cal_data, CT_fit)

fractional_error_in_T = (T_calc - T_CT_cal_data)/ T_CT_cal_data

percent_error_in_T = fractional_error_in_T * 100

A graph of the percentage error for each of the calibration data points for this particular Chebyshev fit
is shown in Fig. 4 below. Notice that although the fractional error in resistance is largest at the lowest
temperatures, the fractional error in temperature is actually largest at high temperature (because of the
lower sensitivity). The Jupyter notebook containing the Python code used to calculate T from R and to
generate this figure is attached to Fig. 1 above.

9

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 4: Fractional error in temperature ∆T
T = Tcalc−Tdata

Tdata
for our fit to the data in Fig.1, expressed as a

percentage.

3 T(P) calibration

3.1 Introduction

One method of calibrating a resistive thermometer in magnetic field over the range [Tmin, Tmax] is to thermally
sink the thermometer to a temperature controlled platform which is in turn weakly linked to a constant
temperature cryogenic bath at T0. If the temperature of the platform and the base temperature of the
bath are independent of magnetic field strength, then we expect the temperature of the platform to be a
magnetic-field-independent function of platform heater power Pheater.

Experimentally, this assumption can be expected to break down

1. if fluctuations in T0 cause significant changes in Tplatform at constant Pheater

2. if the thermal conductance of the ‘weak’ thermal link is too large or rises too quickly with temperature

3. if ramping of the field changes the temperature of the platform during measurements

Problem 1 is most likely to occur at low T, as Tmin → T0, so we require Tmin � T0.

10

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Problem 2 is most likely to occur at high T, so we require that Pheater not exceed the cooling power of
the cryogenic bath at the maximum desired value of T0.

Problem 3 arises from a changing magnetic field, so we require that the magnetic field remain constant as
Pplatform heater (and hence T) are varied and that the platform and cryogenic system be allowed to return
to equilibrium after a change in field prior to ramping the heater power.

These considerations lead to use of the “bootstrap” method of calibrating resistive thermometers in field,
in which R(P,B) is measured as a function of platform heater power P while the magnetic field B is held
constant, then repeated for a series of different magnetic field values. The method acquires its name because
we first create a functional fit for T (P) in zero field (using a previously calibrated thermometer), then use
that T (P) calibration to generate R(T,B) from R(P,B)R(P,B), in a method analogous to booting up a
computer by loading the operating system software into the memory, then using that software to take care
of loading other software as needed.

We proceed by using Python to prepare a calibration of P (T) from measurements of R (P) and our zero
field R(T) Chebyshev fit.

3.2 Python code

3.2.1 calculate T from R

Import zero field R (P) data for the calibrated thermometer

P_PH, R_CT = np.loadtxt(’CT_0_kg.txt’, skiprows =1, delimiter=’,’, unpack = True)

Import the zero field R (T) calibration for the thermometer

calibration_file_folder = ’’ # if file in same folder as program, else

calibration_file_folder = ’calibrations/’

calibration_file_name = ’CT_CX1010_SN_X65735LF_50mK_335K’

pickled_file = calibration_file_folder + calibration_file_name + ’.p’

with open(pickled_file, "rb") as f:

CT_fit = pickle.load(f)

use zero calibration to find temperature

T_CT = RtoT(R_CT, CT_fit)

3.2.2 establish limits for T (P) fit

We first set the domain over which our T (P) fit will apply. Querying the data,

“‘ P CT limits = np.array([np.min(P PH), np.max(P PH)])

11

https://en.wikipedia.org/wiki/Bootstrapping
https://en.wikipedia.org/wiki/Bootstrapping

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

print(‘range of platform heater powers: [’ , P CT limits[0],’,’, P CT limits[1], ’] Watts’)

we find for this data set that

range of platform heater powers: [1.4e-08 , 0.005] Watts

and as usually choose to set the domain for fits over a slightly larger region:

PH_domain = np.array([5E-9, 1E-2])

3.2.3 carry out Chebyshev fit

By trial and error, we find that an N = 7 degree (8th order) fit is the highest order fit for which the coefficients
converge to ever smaller values (after the first term).

PH_fit = Chebyshev.fit(np.log(P_PH),np.log(T_CT), 7, np.log(PH_domain))

print(PH_fit.coef)

with results

[-2.27672039e-01 2.52795517e+00 1.96265839e-01 9.25867825e-02

4.77725069e-02 9.81698921e-03 8.25879812e-03 -1.25018420e-03]

We now generate an array of values using the fit and compare then to the original data:

PH_lnP, PH_lnT = PH_fit.linspace(n=100)

P_PH_fit = np.exp(PH_lnP)

T_PH_fit = np.exp(PH_lnT)

The results are shown in Fig. 5 .

3.2.4 assess results of $T(P)$ fit

To assess the results, we calculate the fractional error in temperature.

T_PH = np.exp(PH_fit(np.log(P_PH)))

T_PH_fractional_error = (T_PH - T_CT)/T_CT

In this case, the two temperature calculations agree within 0.2 % over the temperature range 0.1 to 10 K.

3.2.5 save result

CT calibration using LS zero field data for 0.080 to 335 K’

import pickle

output_file_folder = ’calibrations/’

output_file_folder = ’’

output_file_name = ’PH_fit_PDFv2_SCM1_2017’

pickled_file = output_file_folder + output_file_name + ’.p’

12

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 5: Variation of calorimeter platform temperature versus platform heater power. Fit to T (P) shown
as solid line. Original data shown as points.

with open(pickled_file, "wb") as f:

pickle.dump(PH_fit, f)

13

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 6: Comparison of T (RCT) and T (PPH) calibrations, expressed as the fractional deviation of T (P)
from original T (RCT) calibration.

4 R(B,T) calibration

4.1 magnetic field dependence of R(T)

Before fitting the field dependence, we need to calculate Chebyshev coefficients for zero field and non-zero
field in a self-consistent way. To do this, we use the (assumed) field-independent calculation of T from
platform heater power PPH for all field values, including zero field.

The first step is to set the temperature domain over which the fit will apply. In this example, our data for
platform heater power sweeps covers the range 97.5 mK to 8.89 K and we choose 50 mK to 10 K as the T
domain for our Chebyshev fits of R (PPH) to T (PPH).

The second step is to apply the fit for each magnetic field for which we have R (P) data in the same manner
as done previously for our zero field data. The results are shown below in Fig. 7 for a Cernox® 1010 for a
series of representative magnetic fields between 0 and 18 tesla (180 kG).

4.2 magnetic field dependence of ci

14

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 7: R(T) dependence of a Cernox® 1010 resistive thermometer in a series of applied magnetic fields
from 0 to 150 kGauss (15 tesla). A subset of the original data points — converted from (R,P) to (R,T) —
are shown as dots. The corresponding R(T) Chebyshev fits are shown as solid lines.

Next, we generate generated arrays of ci (B) for each Chebyshev coefficient. In this case, we restrict ourselves
to 6 coefficients — c0 through c5 — since higher order fits either did not converge for all field values and/or
introduced artificial discontinuities in the higher order coefficients as a function of magnetic field. The results
are shown below in Fig. 8.

It is instructive to re-plot these results as the fractional deviation yi (B) = (ci(B) −ci(0))
ci(0) of each coeffi-

cient ci (B) from its zero field value ci (0) , as shown in Fig. 9 and described in Eq. 3. We see that the
field dependences of yi (B) have approximately the same functional form for all six coefficients and appear
to converge to a common curve with increasing index value i.

15

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 8: Magnetic field dependence of the Chebyshev coefficients ci (B) used to fit the temperature depen-
dence of a resistive thermometer (CX1010) shown in Fig. 7 , as described in Eq. 1. The zero-field values of
the coefficients alternate in sign and converge in absolute value. Each coefficient initially exhibits a strong
magnetic field dependence; each appears to be approaching an asymptotic limit at high field.

5

The data and code used to process the files and generate this and the preceeding graphs in this section is
attached to the figure. Click on the </> Code button to view and then run the Jupyter notebook containing
the Python code.

5.1 Padé fit to ci (B)

To narrow down our choice of P and Q in Eq.3 and , in addition, to determine initial values for γi,p
and κi,qcoefficients in Eq.3 , let’s generate Pade approximants (also known as rational polynomials) for
functions resembling the variation of yi (B) with respect to magnetic field B, then use those functional
forms as our first attempts at modeling yi (B).

Padé approximants to a function can be generated from a power series expansion of that function; the 2D
array of rational Padé approximants generated for various choices of P and Q is known as a Padé table. For
an example, see the sample Padé table for the exponential function ez posted on Wikipedia.

16

https://en.wikipedia.org/wiki/Pad%C3%A9_table
https://en.wikipedia.org/wiki/Pad%C3%A9_table#An_example_%E2%80%93_the_exponential_function
https://en.wikipedia.org/wiki/Pad%C3%A9_table#An_example_%E2%80%93_the_exponential_function

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 9: fractional deviations of Chebyshev coefficients ci (B) from zero field values ci (0) for a Cernox®
CX1010 resistive thermometer. This sensor has a large magnetoresistance at low temperature but the
magnetic field dependence of the Chebyshev fit coefficients has approximately the same functional form for
each coefficient.

Although Pade approximants can be calculated analytically, we will instead use the mpmath Python module
to generate both the power series expansion and the corresponding Padé series.

5.1.1 mpmath package

Here is an example of how to use the mpmath package to generate a series expansion for ez for z < 1:

import mpmath package and set some common parameters

import mpmath as mp

mp.dps = 15; mp.pretty = True

one = mp.mpf(1)

define function

def f(x):

return mp.exp(x)

generate Taylor series

f_Taylor = mp.taylor(f, 0, 4)

mp.nprint(f_Taylor)

with resulting coefficient values

[1.0, 1.0, 0.5, 0.166667, 0.0416667]

17

https://en.wikipedia.org/wiki/Pad%C3%A9_table#Notation
http://mpmath.org/doc/current/calculus/approximation.html

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

where 0.16667 = 1/6 and 0.0416667 = 1/24.

The corresponding Taylor series expansion is thus

exp(z) ≈ 1− z +

(
1

2!

)
z2 −

(
1

3!

)
z3 +

(
1

4!

)
z4 + ... (10)

as expected.

We now use this Taylor series expansion to generate a P = 2, Q= 2 Padé approximant:

p_series,q_series = mp.pade(f_Taylor, 2, 2)

mp.nprint(p_series)

mp.nprint(q_series)

with output

[1.0, 0.5, 0.0833333]

[1.0, -0.5, 0.0833333]

where 0.0833333 = 1/12.

The corresponding Padé series expansion is

ez =

(
1 + 1

2z + 1
12z

2 + ...
)(

1− 1
2z + 1

12z
2 + ...

) (11)

as expected.

5.1.2 functional approximation

For the CX1010 thermometer shown above, the yi (B) resemble exponential functions beginning at 0 for B
= 0 and approaching an asymptotic value ai, where ai < 0:

yi(B) = ai

(
e−B/B0 − 1

)
+ ... (12)

plus a possible linear term not included in the above expression. Here B0 is scaling factor chosen so that B
B0

is dimensionless.

As before, we first expand this function in terms of a Taylor series (temporarily setting the multiplicative
term ai = 1)

18

https://en.wikipedia.org/wiki/Pad%C3%A9_table#An_example_%E2%80%93_the_exponential_function

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

def g(x):

return mp.exp(-x) - 1

g_Taylor = mp.taylor(g, 0, 6)

mp.nprint(g_Taylor)

with result

[0.0, -1.0, 0.5, -0.166667, 0.0416667, -0.00833333, 0.00138889]

where, as before, we assign 0.0833333 = 1/12 and 0.0013889 = 1/720.

Re-expressing this Taylor series expansion as a P=2, Q=2 Padé approximant

p_series_2,q_series_2 = mp.pade(g_Taylor, 2, 2)

mp.nprint(p_series_2)

mp.nprint(q_series_2)

yields

[0.0, -1.0, 1.11022e-16]

[1.0, 0.5, 0.0833333]

and, after rounding off to nearest fractions,

(e−z − 1)

∣∣∣∣∣
2,2

≈
(
0− z + 0z2

)(
1 + 1

2z + 1
12z

2
) (13)

For z < 1. Alternatively, if we need additional terms in our expansion, we might choose to re-express the
same Taylor series expansion as a higher order P=3, Q=3 Padé approximant

p_series_3, q_series_3 = mp.pade(g_Taylor, 3, 3)

which, after rounding off to nearest fractions, yields

(e−z − 1)

∣∣∣∣∣
3,3

≈
(
0− z + 0z2 − 1

60z
3
)(

1 + 1
2z + 1

10z
2 + 1

120z
3
) (14)

19

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Comparing Eqs.13 and 14 to Eq. 3 , we notice that in both expansions, κi,0 and κi,2 equal zero and, in
addition, γi,q > 0 for all q. This suggests that the Padé approximants for yi (B) should likewise set the
coefficients for the numerator in Eq. 3 equal to zero for all even powers of B and require the coefficients
for the denominator to be positive values. It further suggests that in addition to requiring that κi,0 =
0, κi,2 = 0 , and γi,0 = 1, we should set the initial values of the remaining coefficients in the numerator as
follows: κi,1 = − |ai | , κi,3 = − 1

60 |ai| — where ai represents the approximate asymptotic value of yi at
high field — and the initial values of the coefficients in the denominator as γi,1 = 1

2 , γi,2 = 1
10 , etc.

Before proceeding, however, we still need to account for the approximately linear term in B in the high field
limit. One way to do this while still using the results of Eq. 14 is to drop the highest order term in the
numerator. Our proposed function then becomes

yi(B) =

∑P
p=0 κi,pB

p∑Q
q=0 γi,qB

q

∣∣∣∣∣
CX1010

=
κi,1(B/B0) + κi,3(B/B0)3

1 + γi,1(B/B0) + γi,2(B/B0)2
(15)

where B0 is a scaling factor chosen to make B
B0

dimensionless.

5.1.3 Python code: Padé fit to c0 (B)

define Python function for Eq. 15:

def scaled_Pade_dependence_32(field, kappa1, kappa3, gamma1, gamma2):

numerator = (kappa1*(field) + kappa3*(field)**3)

denominator = (1 + gamma1 * (field) + gamma2 * (field)**2)

return numerator/denominator

Non-linear curve fit of y0 (B) data to Python function:

specify initial values for fit

a_0 = 0.1 # this is the asymptotic value (absolute value)

initial_guess = np.array([-1* a_0, -1/60.0 * a_0, 1/2, 1/10])

boundary_values = ([-np.inf, -np.inf,0, 0], [0, 0, np.inf, np.inf])

scale the field values

B_scale = 0.1 # if data is originally in tesla. Converts to kG.

B_scale = 1 # if data is originally in kilogauss

scaled_field = B_field / B_scale

execute curve fit for y_0(B) data array (scaled_coef_0)

ScaledPadeFit_0, ScaledPadeCovariance_0 = curve_fit(

scaled_Pade_dependence_32, scaled_field, scaled_coef_0,

p0 = initial_guess, bounds = boundary_values)

Evaluate fit at series of magnetic field values:

generate a series of field values

B_test = np.linspace(0, 360, 2000) / B_scale

20

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

calculate y(B) using the function above (scaled_Pade_dependence_32)

scaled_Pade_0 = scaled_Pade_dependence_32(B_test, ScaledPadeFit_0[0],ScaledPadeFit_0[1] , ScaledPadeFit_0[2], ScaledPadeFit_0[3])

Generate plot of c0 (B) data and fit:

plot the results

plt.figure(figsize = (8,8))

plt.plot(B_test * B_scale , scaled_Pade_0, ’r’, label = ’Padé fit’)

plt.plot(B_field, scaled_coef_0, ’b.’, label = ’data’)

plt.xlabel(’Field [kG]’, fontsize = 18)

plt.ylabel(’$y_0(B)$’, fontsize = 18)

plt.xlim(-20, 300)

plt.ylim(100, 1E7)

plt.legend(loc = ’best’, fontsize = 18)

plt.grid(True)

The results are shown below for y0(B) = (c0(B) − c0(0))/c0(0) , the fractional deviation of Chebyshev
coefficient c0 (B) from its zero field value (as specified in Eq. 1).

Figure 10: Padé fit to magnetic field dependence of $y 0(B)$ for a CX1010 resistive thermometer. Here
$y 0(B) = (c 0(B) - c 0(0))/c 0(0)$, where $c 0(B)$ is the (magnetic-field-dependent) value of the first
coefficient in the Chebyshev polynomial fit of $R(T)$ in Eq. 1.

Evaluating the coefficients for significance,

21

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

ScaledPadeError_0 = np.sqrt(np.diag(ScaledPadeCovariance_0))

print(’kappa_1 =’ , ’{:.2g}’.format(ScaledPadeFit_0[0]), ’±’, ’{:.2g}’.format(ScaledPadeError_0[0]))

print(’kappa_3 =’ , ’{:.2g}’.format(ScaledPadeFit_0[1]), ’±’, ’{:.2g}’.format(ScaledPadeError_0[1]))

print(’gamma_1 =’ , ’{:.2g}’.format(ScaledPadeFit_0[2]), ’±’, ’{:.2g}’.format(ScaledPadeError_0[2]))

print(’gamma_2 =’ , ’{:.2g}’.format(ScaledPadeFit_0[3]), ’±’, ’{:.2g}’.format(ScaledPadeError_0[3]))

with results

kappa_1 = -0.0139 ± 0.00036

kappa_3 = -3.93e-08 ± 1.7e-08

gamma_1 = 0.101 ± 0.0043

gamma_2 = 5.87e-16 ± 3e-05

Since the γ0,2B
2 term in the denominator of Eq. 15 does not significantly differ from zero, we should try

dropping that term.

Running the fit again for the modified Padé expansion specified by Eq.16 below (omitting the γ0,2B
2 term

from Eq. 15)

yi(B) =

∑P
p=0 κi,pB

p∑Q
q=0 γi,qB

q

∣∣∣∣∣
CX1010

=
κi,1(B/B0) + κi,3(B/B0)3

1 + γi,1(B/B0)
(16)

we modify the Python code as follows:

def scaled_Pade_dependence_31(field, kappa1, kappa3, gamma1):

numerator = (kappa1*(field) + kappa3*(field)**3)

denominator = (1 + gamma1 * (field))

return numerator/denominator

a_0 = 0.1 # this is the asymptotic value (absolute value)

initial_guess = np.array([-1* a_0, -1/60.0 * a_0, 1/2])

boundary_values = ([-np.inf, -np.inf,0], [0, 0, np.inf])

B_scale = 1

scaled_field = B_field / B_scale

ScaledPadeFit_0, ScaledPadeCovariance_0 = curve_fit(

scaled_Pade_dependence_31, scaled_field, scaled_coef_0,

p0 = initial_guess, bounds = boundary_values)

Evaluating the remaining fit coefficients in the same way as before , we find the same final numerical values,
thus confirming that the γi2 term is unnecessary over this field range (at least for c0). The plot of this new
fit is the same as that already shown in Fig. 10.

kappa_1 = -0.0139 ± 0.00022

kappa_3 = -3.93e-08 ± 3.4e-09

gamma_1 = 0.101 ± 0.002

The Padé fit appears valid over the full range of the data (0 to 18 tesla). The change in curvature above 18
T in the extrapolated fit seems unlikely but data at higher fields would be needed to be sure. Higher field

22

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

data might also allow the use of additional terms in the denominator and better constrain the high field
extrapolation.

5.1.4

5.1.5 Complete Padé fit

We fit the remaining coefficients to Eq. 16 in the same way as before, with one difference: we use the final
numerical values for the Padé coefficients for the previous fit as the initial values for the Padé coefficients
for the new fit. Thus the coefficient values given above for y0 become the initial values for the fit to y1, the
final values for y1 become the initial values for y2, etc. This approach is justified here because each yi (B)
curve is similar to the previous curve for yi−1 (B), as shown in Fig. 9.

In the following figures, we show the results for y1 (B) through y5 (B). With the exception of κ5,3, all of the
coefficients are significantly different from zero (which we therefore set equal to zero).

In general, the fits agree with the data over the entire field range but in the case of y5 (B), the fit begins to
diverge from the data above 125 kG (12.5 tesla). Since this is the smallest of the coefficients in the orthogonal
Chebyshev expansion, the deviation of the fit from the data will be relatively unimportant in the calculation
of R (T,B). Additional data at higher fields should allow the inclusion of higher order terms in this fit (and
those for the other yi coefficients), improving the fit to the high field behavior.

Here is the fit to y1 (B) :

with coefficients

kappa_1 = -0.0469 ± 0.00073

kappa_3 = -1.12e-07 ± 1e-08

gamma_1 = 0.111 ± 0.0021

Here is the fit to y2 (B) :

with coefficients

kappa_1 = -0.0902 ± 0.0012

kappa_3 = -1.17e-07 ± 1.5e-08

gamma_1 = 0.144 ± 0.0023

Here is the fit to y3 (B) :

with coefficients

kappa_1 = -0.125 ± 0.0018

kappa_3 = -8.34e-08 ± 1.8e-08

gamma_1 = 0.187 ± 0.003

23

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 11: Padé fit to y1 (B) for the CX1010 resistive thermometer data shown in Fig. 7. See Eqs. 1, 3, and
16 for details.

Here is the fit to y4 (B) :

with coefficients

kappa_1 = -0.0894 ± 0.0022

kappa_3 = -2.1e-07 ± 2.9e-08

gamma_1 = 0.134 ± 0.004

and finally, here is the fit to y5 (B) :

with coefficients

kappa_1 = -0.047 ± 0.0057

kappa_3 = -6.52e-27 ± 8.5e-08

gamma_1 = 0.0671 ± 0.011

24

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 12: Padé fit to y2 (B) for the CX1010 resistive thermometer data shown in Fig. 7. See Eqs. 1, 3, and
16 for details.

As noted above, the κ5,3 value is not significantly different from zero and is therefore replaced by zero in
all calculations of c5.

25

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 13: Padé fit to y3 (B) for the CX1010 resistive thermometer data shown in Fig. 7. See Eqs. 1, 3, and
16 for details.

26

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 14: Padé fit to y4 (B) for the CX1010 resistive thermometer data shown in Fig. 7. See Eqs. 1, 3, and
16 for details.

27

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 15: Padé fit to y5 (B) for the CX1010 resistive thermometer data shown in Fig. 7. See Eqs. 1, 3, and
16 for details.

28

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

6 Calculation of T from R, B

We now have what we need to calculate temperature from measurements of resistance in a magnetic field
but we need to put the calibration coefficients into a more useful form that won’t require us to first rerun
the calibration each time we want to calculate the temperature.

6.1 mathematical representation

For this purpose, it is convenient to store the calibration coefficients κi,p and γi,q in the form of 2D matrices κ
and γ and ci (0) as the 1D matrix (array) c0.

That is, for i = 0, 1, ...N , p = 0, 1, ...P , and q = 0, 1, ...Q, define the following matrices:

κi,p =


κ0,0 κ0,1 · · · κ0,P

κ1,0 κ1,1 · · · κ1,P

· · · · · ·
· · · · · ·
· · · · · ·

κN,0 κN,1 · · · κN,P

 (17)

γi,q =


γ0,0 γ0,1

γ1,0 γ1,1

· ·
· ·
· ·

γN,0 γN,Q

 (18)

and

cT
0 =

(
c0(0) c1(0) . . . cN (0)

)
(19)

with κi,0 = 0 and γi,0 = 1 for all i .

If, in addition, we create the P x 1 matrices bκ and n and Q x 1 matrices bγ and d, where

29

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

bκ =



B0

B1

B2

·
·
·
BP


(20)

bγ =


B0

B1

·
·
·
BQ

 (21)

n = κbκ =


κ0,0 κ0,1 · · · κ0,P

κ1,0 κ1,1 · · · κ1,P

· · · · · ·
· · · · · ·
· · · · · ·

κN,0 κN,1 · · · κN,P




1
B
·
·
·
BP

 =


n0

n1

·
·
·
nN

 (22)

and

d = γbγ =


γ0,0 γ0,1 · · · γ0,Q

γ1,0 γ1,1 · · · γ1,Q

· · · · · ·
· · · · · ·
· · · · · ·

γN,0 γN,1 · · · γN,Q




1
B
·
·
·
BQ

 =


d0

d1

·
·
·
dN

 (23)

then the magnetic field dependent Chebyshev coefficients ci (B) in Eq. 1 become, in array form,

c = c0
Tz (24)

where

30

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

z =


1 + y0(B)
1 + y1(B)
·
·
·

1 + yN (B)

 =



1 + n0

d0
1 + n1

d1
·
·
·

1 + nN

dN

 (25)

6.2 Python implementation

Here is an example of how to construct the coefficient matrices for N = 5, P = 3, and Q = 1

example of brute force assignment of values to matrices

N_limit = 5

P_limit = 3

Q_limit = 1

construct kappa matrix

kappa_shape = (N_limit + 1, P_limit + 1)

set all values of matrix to zero to start

kappa_matrix = np.zeros(kappa_shape)

construct gamma matrix

gamma_shape = (N_limit + 1, Q_limit + 1)

set all values of matrix to zero to start

gamma_matrix = np.zeros(gamma_shape)

assign remaining values if non-zero

kappa_matrix[0,1] = -1.39268738e-02

kappa_matrix[0,3] = -3.93219802e-08

kappa_matrix[1,1] = ...

kappa_matrix[1,3] = ...

...

kappa_matrix[N_limit, P_limit] = ...

set all rows in first column of gamma (q = 0) equal to 1

gamma_matrix[:,0] = 1

assign remaining values if non-zero

gamma_matrix[0,1] = -1.39268738e-02

gamma_matrix[1,1] = ..

...

gamma_matrix[N_limit, Q_limit] = ...

Once the coefficient matrices have been constructed, we can construct the corresponding field arrays bκ
and bγ using the function field array(field value, coefficient matrix).

31

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

def field_array(field_value,coefficient_matrix):

’’’

create an array ([B^0,B^1,B^2,..., B^N]) from field value B

where N is the number of columns in the coefficient matrix

’’’

field_power = np.arange(0,np.shape(coefficient_matrix)[1], 1)

return field_value ** field_power

example

B = 100 # kG

b_kappa = field_array(B, kappa_matrix)

b_gamma = field_array(B, gamma_matrix)

Next, we use Eqs. 24 and 25 to construct a function field coefficients which will create an array of ci (B)
values corresponding to a particular value of magnetic field B:

def field_coefficients(field_value, c_0_coefficients,kappa_matrix, gamma_matrix):

’’’generate array of $c_n(B)$ coefficients for R(T) and T(R) ’’’

make a copy of the coefficients so as not to change the original

c_array = c_0_coefficients.copy()

create the field arrays (1, B, B**2,)

B_kappa = field_array(field_value, kappa_matrix)

B_gamma = field_array(field_value, gamma_matrix)

numerator_array = np.matmul(kappa_matrix, B_kappa)

matrix multiplication of P X 1 matrix (1, B, ...,B**P)

by N x P matrix (kappa)

yields a N x 1 matrix (1D array)

denominator_array = np.matmul(gamma_matrix, B_gamma)

matrix multiplication of Q X 1 matrix (1, B, ...,B**Q)

by N x Q matrix (gamma)

yields a N x 1 matrix (1D array)

y_array = numerator_array / denominator_array

reminder: array division is element by element

z_array = 1 + y_array

reminder: here 1 is treated as an array of ones of length y_array

c_array = c_0_coefficients * z_array

reminder: 1D array multiplication is element by element.

This is not the dot product np.dot

return c_array

Finally, we define functions that will use these newly calculated coefficients to find

32

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

1. the resistance R from the temperature T and magnetic field B
2. the temperature T from the resistance R and the magnetic field B

The function RandBtoTcalculates the temperature corresponding to a particular resistance value R when
measured in a magnetic field of strength B.

def RandBtoT(R_values, CT_zero_field_fit, B_value = 0, kappa = kappa_matrix, gamma = gamma_matrix):

’’’calculate T from R and B using Chebyshev_fit’’’

extract the zero field coefficients from the Chebyshev fit parameters

c_0_array = CT_zero_field_fit.coef

make a copy of the fit parameters to modify

CT_field_fit = CT_zero_field_fit.copy()

replace the zero field coefficients c(0) with the in-field coefficients c(B)

CT_field_fit.coef = field_coefficients(B_value, c_0_array, kappa, gamma)

return RtoT(R_values, CT_field_fit)

The function TandBtoR calculates the expected R value corresponding to a particular T and B. This
function is useful when updating the setpoint of a temperature controller that is in ohms. Regular updates
as a function of magnetic field provide a way to maintain a constant real temperature during field sweeps.

def TandBtoR(T_values, CT_zero_field_fit, B_value = 0, kappa = kappa_matrix, gamma = gamma_matrix):

’’’calculate R from T and B using Chebyshev_fit’’’

extract the zero field coefficients from the Chebyshev fit parameters

c_0_array = CT_zero_field_fit.coef

make a copy of the fit parameters to modify

CT_field_fit = CT_zero_field_fit.copy()

replace the zero field coefficients c(0) with the in-field coefficients c(B)

CT_field_fit.coef = field_coefficients(B_value, c_0_array, kappa, gamma)

calculate T(R) using c(B) instead of c(0)

return TtoR(T_values, CT_field_fit)

To instead adjust the setpoint of a temperature controller that is in kelvin, first use TandBtoRto find R
as before, then use RandBtoT (with B set equal to zero) to find the temperature at zero-field that would
correspond to that same R value.

Finally, for post-processing of large data sets consisting of arrays of R and B values as a function of time,
the function calculate T from data will return a corresponding array of T values.

def calculate_T_from_data(R_values, B_values, zero_field_fit, kappa_matrix, gamma_matrix):

’’’calculate T from (R,B) data arrays using Chebyshev fit to resistive thermometer’’’

initialize T array

T_values = np.zeros(R_values.size)

33

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

calculate T from R, B

for index, temperature in enumerate(T_values):

temperature = RandBtoT(R_values[index],

zero_field_fit, B_values[index],

kappa_matrix, gamma_matrix)

T_values[index] = temperature

return T_values

6.3 Save calibration information to file

Here we show an example of how to save and reload the calibration data for the CX1010 thermometer named
‘CT’ (for ’Calibrated Thermometer’).

6.3.1 Create calibration array:

CT_gamma_matrix = gamma_matrix

CT_kappa_matrix = kappa_matrix

CT_field_calibration = (CT_zero_fit, CT_gamma_matrix, CT_kappa_matrix)

6.3.2 Save calibration array as binary file:

provide filename and folder name

file_folder = ’calibrations/’

file_folder = ’’

file_name = ’CX1010_SN_X65735LF_RTB_calibration’

pickled_file = file_folder + file_name + ’.p’

write binary file (opens file, writes file, then closes file)

with open(pickled_file, "wb") as f:

pickle.dump(CT_field_calibration, f)

6.3.3 Reload calibration array:

provide filename and folder name

file_folder = ’calibrations/’

file_folder = ’’

file_name = ’CX1010_SN_X65735LF_RTB_calibration’

pickled_file = file_folder + file_name + ’.p’

34

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

read binary file (opens file, reads file, then closes file)

with open(pickled_file, "rb") as f:

sensor_cal = pickle.load(f)

create matrices and arrays from uploaded calibration

sensor_fit, sensor_gamma, sensor_kappa = sensor_cal[0], sensor_cal[1], sensor_cal[2]

7 Appendix: linear regression method

One alternative approach to the selection of initial values is to transform the problem into a multiple linear
regression problem.

For example, if P = Q = 2, then

y = κ1B + κ2B
2 − yγ1B − yγ2B

2 (26)

and if we have N data points (Bj , yj) with j = 1, 2, ...N , then

y = Ax (27)

where A is the NxM matrix

A =


B1 B2

1 −y1B1 −y1B
2
1

B2 B2
2 −y2B2 −y2B

2
2

· · · ·
· · · ·
· · · ·
BN B2

N −yNBN −yNB2
N

 (28)

and x is the coefficient array

x =


κ1

κ2

γ1

γ2

 (29)

To solve this with Python, we can use the SciPy Scientific Python package to compute the Moore-Penrose
pseudo-inverse A+of the matrix A, where A+ is defined the matrix that ‘solves’ (by least squares minimiza-
tion) the matrix equation Ax=y, with solution x = A+y. Sample code is provided below:

create elements of matrix A for P = Q = 2

A_matrix = np.column_stack((B_field, B_field **2, -1 * y_B_values * B_field, -1 * y_B_values * B_field**2))

solve for Pade coefficients

35

https://www.itl.nist.gov/div898/handbook/pmd/section6/pmd642.htm
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.pinv.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.pinv.html

P
os

te
d

on
A

u
th

or
ea

16
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

64
52

00
.0

56
02

98
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

x_array = np.linalg.pinv((A_matrix.T).dot(A_matrix)).dot(A_matrix.T.dot(y_B_values))

This approach sometimes provides useful initial values for a non-linear fit to Eq. 3 but it has several draw-
backs:

1. No guidance is provided as to the appropriate choice of P and Q by this method
2. A different matrix must be constructed and solved for each value of P and Q under consideration
3. There is no way to restrict the range of values and/or signs of the calculated coefficients

The third drawback is the most severe, as divergences in Eq. 3 will occur whenever the denominator
term

∑Q
q=0 γi,qB

q = 0 (causing ci (B) → ∞). If some of the γi coefficients provided by the matrix
method are negative, the resulting fit may lead to divergences at (real) values of B within the experimental
range of the experiment, spoiling the calculation of R (T,B).

When we tried this matrix method for P = Q = 2 for the CX1010 thermometer data shown above, it
returned values that resulted in divergences in all but the first two coefficients. We did not investigate the
method further (for example, for P = 3 and Q = 1). In comparison, note that divergences cannot occur
at real values of B for the Padé fits to yi (B) constructed using our original method — in which we
modeled our choice of P and Q and the initial values on the Padé expansion of Eq. 12 — because the
Padé expansions of e−zand e−z−1 only have positive terms in the denominator. Given positive initial values
for γi,q, we were then able to constrain the fit to only consider positive values through the specification of
appropriate boundary values. For further details, see the discussion regarding the setting of parameter
boundaries in the Scipy manual entry for curve fit .

8

References

R. Barrio. Algorithms for the integration and derivation of Chebyshev series. Applied Mathematics and
Computation, 150(3):707–717, mar 2004. doi: 10.1016/s0096-3003(03)00301-1. URL https://doi.org/

10.1016%2Fs0096-3003%2803%2900301-1.

Nathanael Fortune, Gayle Gossett, Lydia Peabody, Katherine Lehe, S. Uji, and H. Aoki. High magnetic field
corrections to resistance thermometers for low temperature calorimetry. Review of Scientific Instruments,
71(10):3825, 2000. doi: 10.1063/1.1310341. URL https://doi.org/10.1063%2F1.1310341.

Andreas Karageorghis. A note on the Chebyshev coefficients of the general order derivative of an infinitely
differentiable function. Journal of Computational and Applied Mathematics, 21(1):129–132, jan 1988. doi:
10.1016/0377-0427(88)90396-2. URL https://doi.org/10.1016%2F0377-0427%2888%2990396-2.

36

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://doi.org/10.1016%2Fs0096-3003%2803%2900301-1
https://doi.org/10.1016%2Fs0096-3003%2803%2900301-1
https://doi.org/10.1063%2F1.1310341
https://doi.org/10.1016%2F0377-0427%2888%2990396-2

	Introduction
	
	Thermometer calibration
	Thermometer Sensitivity

	Zero-field R(T) calibration
	Load Python packages for data fitting
	Import the data
	Chebyshev polynomial fit
	Evaluation and Assessment of fit
	numerical evaluation of R(T)
	fractional error in resistance
	numerical evaluation of T(R)
	fractional error in temperature

	T(P) calibration
	Introduction
	Python code
	calculate T from R
	establish limits for T(P) fit
	carry out Chebyshev fit
	assess results of $T(P)$ fit
	save result

	R(B,T) calibration
	magnetic field dependence of R(T)
	magnetic field dependence of ci

	
	Padé fit to ci(B)
	mpmath package
	functional approximation
	Python code: Padé fit to c0(B)
	
	Complete Padé fit

	Calculation of T from R, B
	mathematical representation
	Python implementation
	Save calibration information to file
	Create calibration array:
	Save calibration array as binary file:
	Reload calibration array:

	Appendix: linear regression method
	

