Attachment on mortar surfaces by cyanobacterium Gloeocapsa PCC 73106 and sequestration of CO2 by microbially induced calcium carbonate

Tingting Zhu¹, Mohamed Merroun², George Arhonditsis¹, and Maria Dittrich¹

¹University of Toronto at Scarborough ²University of Granada Faculty of Sciences

July 12, 2021

Abstract

Cyanobacterial carbonate precipitation induced by cells and extracellular polymeric substances (EPS) enhances mortar durability. The percentage of cell/EPS attachment regulates the effectiveness of the mortar restoration. This study investigates the cell coverage on mortar and microbially induced carbonate precipitation. Statistical analysis of results from scanning electron and fluorescence microscopy shows that the cell coverage was higher in the presence of UV-killed cells than living cells. Cells preferably attached to cement paste than sand grains, with a difference of one order of magnitude. The energy-dispersive X-ray spectroscopy analyses and Raman mapping suggest cyanobacteria used atmospheric CO2 to precipitate carbonates.

Hosted file

Zhu et al Manuscript Resubmission.docx available at https://authorea.com/users/359637/ articles/530095-attachment-on-mortar-surfaces-by-cyanobacterium-gloeocapsa-pcc-73106and-sequestration-of-co2-by-microbially-induced-calcium-carbonate

Hosted file

Zhu et al ReSubmission_Figures-June 2021.docx available at https://authorea.com/users/359637/ articles/530095-attachment-on-mortar-surfaces-by-cyanobacterium-gloeocapsa-pcc-73106and-sequestration-of-co2-by-microbially-induced-calcium-carbonate