
P
os

te
d

on
A

u
th

or
ea

12
A

p
r

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
61

82
50

77
.7

76
99

11
7/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

The expected values of Sombor indices in random hexagonal chains,

phenylene chains and Sombor indices of some chemical graphs

Xiaona Fang1, Lihua You1, and Hechao Liu1

1South China Normal University

April 12, 2021

Abstract

Hexagonal chains are a special class of catacondensed benzenoid system and phenylene chains are a class of polycyclic aromatic

compounds. Recently, A family of Sombor indices was introduced by Gutman in the chemical graph theory. It had been

examined that these indices may be successfully applied on modeling thermodynamic properties of compounds. In this paper,

we study the expected values of the Sombor indices in random hexagonal chains, phenylene chains, and consider the Sombor

indices of some chemical graphs such as graphene, coronoid systems and carbon nanocones.

Introduction

Chemical graph theory is an interdisciplinary field of science which relates chemistry with a branch
of mathematical modeling of graphs. Topological indices are graph invariants that play an important role
in chemical and pharmaceutical sciences, since they can be used to predict physicochemical properties of
organic compounds ((N. Trinajstic, 2018)). There are lots of topological indices in the literature of chemical
graph theory. Recently, Gutman introduces a family of Sombor indices in the chemical graph theory ((I.
Gutman, 2021)). It was examined in (I. Redžepović, 2021) that the Sombor index, reduced Sombor index
and average Sombor index showed satisfactory predictive and discriminative potential in modeling entropy
and enthalpy of vaporization of alkanes. The results of testing predictive potential of Sombor indices indicate
that these descriptors may be successfully applied on modeling thermodynamic properties of compounds.

Let G = (V,E) be a finite, connected, simple graph with vertex set V (G) and edge set E = E(G), where
|V (G)| is the number of vertices and |E(G)| is the number of edges. We denote the degree of a vertex i in
G by di. The (ordinary) Sombor index is defined as

SO(G) =
∑
i∼j

√
d2i + d2j ,

the reduced Sombor index is defined as

SOred(G) =
∑
i∼j

√
(di − 1)2 + (dj − 1)2,

and the average Sombor index, as

SOavr(G) =
∑
i∼j

√
(di − d̄)2 + (dj − d̄)2,

1
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. where d̄ = 2·|E(G)|
|V (G)| is the average degree of graph G ((I. Gutman, 2021)). In this paper, Sombor indices refer

to Sombor index, reduced Sombor index and average Sombor index. Let a be any real number or parameter
of graph G. We generalize the Sombor indices with a. The generalized index is defined as

SOa(G) =
∑
i∼j

√
(di − a)2 + (dj − a)2.

It’s clear when a = 0, SOa(G) = SO(G), when a = 1, SOa(G) = SOred(G) and when a = d̄, SOa(G) =
SOavr(G).

Sombor indices have attracted much attention due to good chemical applicability. Cruz, Gutman and Rada
characterized the extremal graphs of the chemical graphs, chemical trees and hexagon systems with respect
to Sombor index ((2021)). In (2021), the Sombor index of polymer graphs which can be decomposed into
monomer units was consider. In (R. Cruz & bicyclic graphs, 2021), the extremal values of the Sombor index
in unicyclic and bicyclic graphs were studied. Das, Cevik, Cangul and Shang presented lower and upper
bounds on the Sombor index of graphs by using some graph parameters and obtain several relations on
Sombor index with the first and second Zagreb indices of graphs ((2021)). More results of Sombor indices
can be found in (missing citation; Doi:10.1002/qua.2, 2021; I. Gutman, 2021; I. Gutman, 2021; 2021; 2021;
2021; I. Redžepović, 2021; 2021; Doi:10.1007/s12190-021-01516-X, 2021). In Section , we study the expected
values of the Sombor indices in the random hexagonal chains and random phenylene chains, and make a
comparison between the expected values. In Section 7, we study the Sombor indices of some graphs that are
of importance in chemistry such as graphene, coronoid systems and carbon nanocones, and give numerical
comparison of the Sombor indices and graphical profiles of the comparison.

The expected values of Sombor indices in random hexagonal chains
and phenylene chains

Random molecular graphs are of great importance for theoretical chemistry. There are many results
about the extreme values of topological indices of random molecular graphs in recent years ((A. Jahanbani
& randić indices in random polyphenyl chains, 2020; 2020; Z. Raza et al., 2020; Z. Raza, 2020; 2012)). In
this section, we study the expected values of the Sombor indices in random hexagonal chains and phenylene
chains.

We say an edge is (i, j)-type if it joins a vertex with degree i and a vertex with degree j in G. Let mij(G)
be the number of edges of (i, j)-type. Then we have the following Proposition.

Let G be a graph. If there exists only (2, 2), (2, 3) and (3, 3)-type of edges in G, then we have

SOa(G) =
√

2 · |2− a| ·m22(G) +
√

2a2 − 10a + 13m23(G) +
√

2 · |3− a| ·m33(G) (1)

Random hexagonal chains

A benzenoid system is a finite connected subgraph of the infinite hexagonal lattice without cut vertices or
non-hexagonal interior faces. A benzenoid system without any hexagon which has more than two neighboring
hexagons is called a hexagonal chain, denoted by HXGn. For n ≥ 3, the terminal hexagon can be attached in
three ways, which results in the local arrangements, we describe as HXG1

n, HXG2
n, and HXG3

n, respectively,
see Figure 1.

A random hexagonal chain HXG(n; p1, p2) with n hexagons is a hexagonal chain obtained by stepwise
addition of terminal hexagons. At each step t(= 3, 4, · · · , n), a random selection is made from one of the
three possible constructions:
(1) HXGn−1 → HXG1

n with probability p1;

2
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. (2) HXGn−1 → HXG2
n with probability p2;

(3) HXGn−1 → HXG3
n with probability 1 − p1 − p2, where p1, p2 are constants, irrelative to the step

parameter t.

figures/g21/g21-eps-converted-to.pdf

Figure 1: The three types of local arrangements in the hexagonal chains.

Since HXG(n; p1, p2) is a random hexagonal chain, SO(HXG(n; p1, p2)), SOred(HXG(n; p1, p2)) and
SOavr(HXG(n; p1, p2)) are random variables. We denote the expected values of these indices by Ea

n =
E[SOa(HXG(n; p1, p2))], En = E[SO(HXG(n; p1, p2))], Ered

n = E[SOred(HXG(n; p1, p2))] and Eavr
n =

E[SOavr(HXG(n; p1, p2))]. In this section, a is a constant.

Let HXG(n; p1, p2) be the hexagonal chain of length n(≥ 2). Then

(2)

En = [(2
√

13− 5
√

2)p2 + 8
√

2 + 2
√

13]n + (10
√

2− 4
√

13)p2 −
√

2,

(3)

3
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.

Ered
n = [(2

√
5− 3

√
2)p2 + 5

√
2 + 2

√
5]n + (6

√
2− 4

√
5)p2 − 2

√
2,

(4)

(5)

From the structure of the hexagonal chain, it is easy to see that there exists only (2, 2), (2, 3) and (3, 3)-type
of edges. From Proposition , when n = 2, Ea

2 = 4
√

2a2 − 10a + 13 +
√

2(6 · |2− a|+ |3− a|).

For n ≥ 3, there are three possibilities to be considered (see Figure 1).

Case 1 . HXGn−1 → HXG1
n.

m22(HXG1
n) = m22(HXGn−1) + 1;

m23(HXG1
n) = m23(HXGn−1) + 2;

m33(HXG1
n) = m33(HXGn−1) + 2.

Thus, SOa(HXG1
n) = SOa(HXGn−1) + 2

√
2a2 − 10a + 13 +

√
2(|2− a|+ 2 · |3− a|).

Case 2 . HXGn−1 → HXG2
n.

m22(HXG2
n) = m22(HXGn−1) + 0;

m23(HXG2
n) = m23(HXGn−1) + 4;

m33(HXG2
n) = m33(HXGn−1) + 1.

Thus, SOa(HXG2
n) = SOa(HXGn−1) + 4

√
2a2 − 10a + 13 +

√
2 · |3− a|.

Case 3 . HXGn−1 → HXG3
n.

m22(HXG3
n) = m22(HXGn−1) + 1;

m23(HXG3
n) = m23(HXGn−1) + 2;

m33(HXG3
n) = m33(HXGn−1) + 2.

Thus, SOa(HXG3
n) = SOa(HXGn−1) + 2

√
2a2 − 10a + 13 +

√
2(|2− a|+ 2 · |3− a|).

Therefore, Ea
n = p1 · SOa(HXG1

n) + p2 · SOa(HXG2
n) + (1 − p1 − p2) · SOa(HXG3

n) = SOa(HXGn−1) +
2(p2 + 1)

√
2a2 − 10a + 13 +

√
2[(1− p2) · |2− a|+ (2− p2) · |3− a|]. Since E[Ea

n] = Ea
n, we have

Ea
n = Ea

n−1 + 2(p2 + 1)
√

2a2 − 10a + 13 +
√

2[(1− p2) · |2− a|+ (2− p2) · |3− a|].

(6)

After solving the recurrence relation (6) with initial condition, we get (2).

4
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. When a = 0, we have (3). When a = 1, we have (4). Since |V (HXG(n; p1, p2))| = 4n + 2,
|E(HXG(n; p1, p2))| = 5n + 1, we have 2 < d̄ = 5n+1

2n+1 < 3. For given n, d̄ is a constant and therefore
we get (5).

Let Rn = HXG(n; 0, 0), Ln = HXG(n; 1, 0) and Pn = HXG(n; 0, 1). By Theorem , we have

The Sombor indices of Rn, Ln and Pn are

SOa(Rn) = SOa(Ln) = 2n
√

2a2 − 10a + 13 +
√

2(n + 4) · |2− a|+
√

2(2n− 3) · |3− a|,

SOa(Pn) = 4(n− 1)
√

2a2 − 10a + 13 + 6
√

2 · |2− a|+
√

2(n− 1) · |3− a|.

Among all random hexagonal chains HXGn(n ≥ 2), we have
(1) (8

√
2 + 2

√
13)n−

√
2 ≤ SO(HXGn) ≤ (3

√
2 + 4

√
13)n + 9

√
2− 4

√
13, with left equality iff G ∼= Rn or

G ∼= Ln, right equality iff G ∼= Pn.
(2) (5

√
2 + 2

√
5)n− 2

√
2 ≤ SOred(HXGn) ≤ (2

√
2 + 4

√
5)n + 4

√
2− 4

√
5, with left equality iff G ∼= Rn or

G ∼= Ln, right equality iff G ∼= Pn.

(3) 2n
√

2d̄2 − 10d̄ + 13 +
√

2[(4 − d̄)n + 7d̄ − 17] ≤ SOavr(HXGn) ≤ 4(n − 1)
√

2d̄2 − 10d̄ + 13 +
√

2[(3 −
d̄)n + 7d̄− 15], where d̄ = 5n+1

2n+1 ,with left equality iff G ∼= Rn or G ∼= Ln, right equality iff G ∼= Pn.

Since En = (n−2)(2
√

13−5
√

2)p2 +
√

2(8n−1)+2
√

13n and (n−2)(2
√

13−5
√

2) ≥ 0, SO(HXGn) reaches
the maximum value when p2 = 1 and reaches the minimum value when p2 = 0.

Since Ered
n = (n − 2)(2

√
5 − 3

√
2)p2 +

√
2(5n − 2) + 2

√
5n and (n − 2)(2

√
5 − 3

√
2) ≥ 0, SOred(HXGn)

reaches the maximum value when p2 = 1 and reaches the minimum value when p2 = 0.

Eavr
n = (n−2)[2

√
2d̄2 − 10d̄ + 13−

√
2]p2 +2n

√
2d̄2 − 10d̄ + 13+

√
2[(4− d̄)n+7d̄−17] can be regarded as a

linear function of p2. Since n ≥ 2, 2d̄2− 10d̄+ 13 = 2(d̄− 5
2 )2 + 1

2 ≥
1
2 , we have 2

√
2d̄2 − 10d̄ + 13−

√
2 ≥ 0.

Thus SOavr(HXGn) reaches the maximum value when p2 = 1 and reaches the minimum value when p2 = 0.

Denote by HCn the set of all hexagonal chains with n hexagons. The average value of Sombor indices among
HCn can be characterized as

Aa(HCn) =
1

|HCn|
∑

G∈HCn

SOa(G).

Since each element in HCn has the same probability of occurrence, we have p1 = p2 = 1− p1− p2 = 1
3 . Then

we have the following theorem.

The average values of Sombor indices among HCn are

Aa(HCn) =
4

3
(2n− 1)

√
2a2 − 10a + 13 +

2

3

√
2(n + 7) · |2− a|+

√
2

3
(5n− 7) · |3− a|.

We find that the average values of the Sombor index with respect to Rn, Ln, Pn is equal to the average value
of Sombor index among HCn.

SOa(Rn) + SOa(Ln) + SOa(Pn)

3
= Aa(HCn).

Random phenylene chains

The phenylene chains are a class of conjugated hydrocarbons consists of hexagons and squares connected
in turn, which has unique physicochemical properties due to their aromatic and antiaromatic rings. In (Z.
Raza & geometric indices in random phenylene chains, 2020; Z. Raza, 2021), Raza studied the expected
values of some indices such as sum-connectivity, harmonic, symmetric division, arithmetic bond connectivity

5
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. and geometric indices in random phenylene chains. In the following, we will study the Sombor indices of
phenylene chains which are special molecular graphs. A phenylene chain RPHn with n hexagons can be
regarded as a phenylene chain RPHn−1 with n − 1 hexagons to which a new terminal hexagon has been
adjoined by two edges. For n ≥ 3, the terminal hexagon can be attached in three ways, which results in the
local arrangements, we describe as RPH1

n, RPH2
n, and RPH3

n, respectively (see Figure ??).

A random phenylene chain RPH(n; p1, p2) with n hexagons is a polyphenyl chain obtained by stepwise
addition of terminal hexagons. At each step t(= 3, 4, · · · , n), a random selection is made from one of the
three possible constructions:
(1) RPHn−1 → RPH1

n with probability p1;
(2) RPHn−1 → RPH2

n with probability p2;
(3) RPHn−1 → RPH3

n with probability 1 − p1 − p2, where p1, p2 are constants, irrelative to the step
parameter t.

We denote the expected values of Sombor indices by Ea
n = E[SOa(RPH(n; p1, p2))], En =

E[SO(RPH(n; p1, p2))], Ered
n = E[SOred(RPH(n; p1, p2))] and Eavr

n = E[SOavr(RPH(n; p1, p2))]. In this
section, a is a constant.

Let RPH(n; p1, p2) be the random phenylene chain of length n(≥ 2). Then

(7)

En = [(2
√

13− 5
√

2)p2 + 17
√

2 + 2
√

13]n + 2(5
√

2− 2
√

13)p2 − 10
√

2,

(7)

Ered
n = [(2

√
5− 3

√
2)p2 + 11

√
2 + 2

√
5]n + (6

√
2− 4

√
5)p2 − 8

√
2,

(7)

(7)

From the structure of the phenylene chain, it is easy to see that there exists only (2, 2), (2, 3) and (3, 3)-type
of edges. From Proposition , when n = 2, Ea

2 = 4
√

2a2 − 10a + 13 + 6
√

2 · |2− a|+ 4
√

2 · |3− a|. For n ≥ 3,
there are three possibilities to be considered (see Figure ??).

Case 1 . RPHn−1 → RPH1
n.

m22(RPH1
n) = m22(RPHn−1) + 1;

6
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. m23(RPH1
n) = m23(RPHn−1) + 2;

m33(RPH1
n) = m33(RPHn−1) + 5.

Thus, SOa(RPH1
n) = SOa(RPHn−1) + 2

√
2a2 − 10a + 13 +

√
2 · |2− a|+ 5

√
2 · |3− a|.

Case 2 . RPHn−1 → RPH2
n.

m22(RPH2
n) = m22(RPHn−1) + 0;

m23(RPH2
n) = m23(RPHn−1) + 4;

m33(RPH2
n) = m33(RPHn−1) + 4.

Thus, SOa(RPH2
n) = SOa(RPHn−1) + 4

√
2a2 − 10a + 13 + 4

√
2 · |3− a|.

Case 3 . RPHn−1 → RPH3
n.

m22(RPH3
n) = m22(RPHn−1) + 1;

m23(RPH3
n) = m23(RPHn−1) + 2;

m33(RPH3
n) = m33(RPHn−1) + 5.

Thus, SOa(RPH3
n) = SOa(RPHn−1) + 2

√
2a2 − 10a + 13 +

√
2 · |2− a|+ 5

√
2 · |3− a|.

Therefore, Ea
n = p1 ·SOa(RPH1

n) +p2 ·SOa(RPH2
n) + (1−p1−p2) ·SOa(RPH3

n) = SOa(RPHn−1) + 2(p2 +
1)
√

2a2 − 10a + 13 +
√

2(1− p2) · |2− a|+
√

2(5− p2) · |3− a|. Since E[Ea
n] = Ea

n, we have

Ea
n = Ea

n−1 + 2(p2 + 1)
√

2a2 − 10a + 13 +
√

2(1− p2) · |2− a|+
√

2(5− p2) · |3− a|.

(7)

After solving the recurrence relation (7) with initial condition, we get (7).

When a = 0, we have (7). When a = 1, we have (7). Since |V (RPH(n; p1, p2))| = 6n, |E(RPH(n; p1, p2))| =
8n− 2, we have 2 < d̄ = 8n−2

3n < 3. For given n, d̄ is a constant and therefore we get (7).

Let Rn = RPH(n; 0, 0), Ln = RPH(n; 1, 0) and Pn = RPH(n; 0, 1). By Theorem , we have

The Sombor indices of Rn, Ln and Pn are

SOa(Rn) = SOa(Ln) = 2n
√

2a2 − 10a + 13 +
√

2(n + 4) · |2− a|+
√

2(5n− 6) · |3− a|,

SOa(Pn) = 4(n− 1)
√

2a2 − 10a + 13 + 6
√

2 · |2− a|+ 4
√

2(n− 1) · |3− a|.

Among all random phenylene chains RPHn(n ≥ 2), we have
(1) (17

√
2 + 2

√
13)n − 10

√
2 ≤ SO(RPHn) ≤ (12

√
2 + 4

√
13)n − 4

√
13, with left equality iff G ∼= Rn or

G ∼= Ln, right equality iff G ∼= Pn.
(2) (11

√
2 + 2

√
5)n− 8

√
2 ≤ SOred(RPHn) ≤ (8

√
2 + 4

√
5)n− 2

√
2− 4

√
5, with left equality iff G ∼= Rn or

G ∼= Ln, right equality iff G ∼= Pn.

(3)2n
√

2d̄2 − 10d̄ + 13+
√

2[(13−4d̄)n+2(5d̄−13)] ≤ SOavr(RPHn) ≤ 4(n−1)
√

2d̄2 − 10d̄ + 13+2
√

2[2n(3−
d̄) + 5d̄− 12], where d̄ = 8n−2

3n , with left equality iff G ∼= Rn or G ∼= Ln, right equality iff G ∼= Pn.

Since En = (n − 2)(2
√

13 − 5
√

2)p2 +
√

2(17n − 10) + 2
√

13n and (n − 2)(2
√

13 − 5
√

2) ≥ 0, SO(RPHn)
reaches the maximum value when p2 = 1 and reaches the minimum value when p2 = 0.

Since Ered
n = (n − 2)(2

√
5 − 3

√
2)p2 +

√
2(11n − 8) + 2

√
5n and (n − 2)(2

√
5 − 3

√
2) ≥ 0, SOred(RPHn)

reaches the maximum value when p2 = 1 and reaches the minimum value when p2 = 0.

7
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. Eavr
n = (n−2)[2

√
2d̄2 − 10d̄ + 13−

√
2]p2+2n

√
2d̄2 − 10d̄ + 13+

√
2[(13−4d̄)n+2(5d̄−13)] can be regarded

as a linear function of p2. Since n ≥ 2, 2d̄2−10d̄+13 = 2(d̄− 5
2 )2+ 1

2 ≥
1
2 , we have 2

√
2d̄2 − 10d̄ + 13−

√
2 ≥ 0.

Thus SOavr(RPHn) reaches the maximum value when p2 = 1 and reaches the minimum value when p2 = 0.

Denote by PCn the set of all phenylene chains with n hexagons. The average value of Sombor indices among
PCn can be characterized as

Aa(PCn) =
1

|PCn|
∑

G∈PCn

SOa(G).

Since each element in PCn has the same probability of occurrence, we have p1 = p2 = 1− p1− p2 = 1
3 . Then

we have the following theorem.

The average values of Sombor indices among PCn are

Aa(PCn) =
4

3
(2n− 1)

√
2a2 − 10a + 13 +

2

3

√
2(n + 7) · |2− a|+ 2

3

√
2(7n− 8) · |3− a|.

We find that the average values of the Sombor index with respect to Rn,Ln,Pn is equal to the average value
of Sombor index among PCn.

SOa(Rn) + SOa(Ln) + SOa(Pn)

3
= Aa(PCn).

Comparisons between Sombor indices with respect to random hexagonal chains
and random phenylene chains

With the help of Theorems and , we make a comparison between the expected values for Sombor,
reduced Sombor and average Sombor indices of a random hexagonal chain or a random phenylene chain with
the same probabilities pi (i = 1, 2) (see Figure 2, ??).

Let HXG(n; p1, p2) be the hexagonal chain of length n(≥ 2) and RPH(n; p1, p2) be the random phenylene
chain of length n(≥ 2). Then

E[SO(G)] > E[SOred(G)] > E[SOavr(G)], where G ∼= HXG(n; p1, p2) or RPH(n; p1, p2),

E[SO(RPH(n; p1, p2))] > E[SO(HXG(n; p1, p2))],

E[SOred(RPH(n; p1, p2))] > E[SOred(HXG(n; p1, p2))],

E[SOavr(RPH(n; p1, p2))] > E[SOavr(HXG(n; p1, p2))].

Since 2 ≤ di, dj ≤ 3, 2 < d̄ < 3, we have√
d2i + d2j >

√
(di − 1)2 + (dj − 1)2 >

√
(di − d̄)2 + (dj − d̄)2,

thus E[SO(G)] > E[SOred(G)] > E[SOavr(G)].

Since E[SO(RPH(n; p1, p2))] − E[SO(HXG(n; p1, p2))] = 9
√

2(n − 1) > 0, E[SOred(RPH(n; p1, p2))] −
E[SOred(HXG(n; p1, p2))] = 6

√
2(n − 1) > 0, we have E[SO(RPH(n; p1, p2))] > E[SO(HXG(n; p1, p2))],

and E[SOred(RPH(n; p1, p2))] > E[SOred(HXG(n; p1, p2))].

When n = 2, from Theorem and Theorem , we have E[SOavr(RPH(2; p1, p2))] > E[SOavr(HXG(2; p1, p2))].
Let d̄1 = d̄(HXG(n; p1, p2)) and d̄2 = d̄(RPH(n; p1, p2)). Since

11

5
≤ d̄1 =

5n + 1

2n + 1
<

5

2
,

7

3
≤ d̄2 =

8n− 2

3n
<

8

3
,

8
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. we have d̄1 − 4d̄2 ≥ 11
5 − 4× 8

3 = − 127
15 . Let f(a) = 2

√
2a2 − 10a + 13, then f(d̄2)− f(d̄1) ≥ f( 5

2 )− f( 11
5 ) =√

2− 2
5

√
17. By (6) and (7),

Therefore, E[SOavr(RPH(n; p1, p2))] > E[SOavr(HXG(n; p1, p2))].

figures/hxg/hxg-eps-converted-to.pdf

Figure 2: Difference between SO(HXGn), SOred(HXGn) and SOavr(HXGn)

The Sombor indices of graphene, coronoid systems and carbon
nanocones

Graphene (1986; 2004), denoted by GN(n, k), is a flat monolayer of carbon atoms tightly packed into a
two-dimensional hexagonal lattice that forms a basic building block for graphitic materials of different forms
(see Figure ??). Due to the C-C covalent bonds, graphene is the hardest material known in nature (2007).
There are various results about the topological indices of graphene in recent years (2016; 2020).

9
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. Let G be a graphene nanoribbon GN(n, k), 1 ≤ k ≤ n. Then

SO(G) = 4
√

13(n + k − 2) +
√

2(18nk − 15n− 11k + 20),

SOred(G) = 4
√

5(n + k − 2) +
√

2(12nk − 8k − 10n + 12),

From the structure of graphene GN(n, k), it is easy to see that there exists only (2, 2), (2, 3) and (3, 3)-type
of edges. Since m22(G) = 2k + 4, m23(G) = 4n + 4k − 8, m33(G) = 6nk − 5k − 5n + 4, from Proposition ,
we have

SOa(G) = 4(n + k − 2)
√

2a2 − 10a + 13 + 2
√

2(k + 2) · |2− a|+
√

2(6nk − 5k − 5n + 4) · |3− a|.

Thus
SO(G) = 4

√
13(n + k − 2) +

√
2(18nk − 15n− 11k + 20),

SOred(G) = 4
√

5(n + k − 2) +
√

2(12nk − 8k − 10n + 12).

Since |V (G)| = 2(2n + 1)k, |E(G)| = (6n + 1)k − n, we have 2 < d̄ = (6n+1)k−n
(2n+1)k < 3. Thus

The proof is completed.

A coronoid system can be regarded as a benzenoid system that is allowed to have ’holes’ such that the
perimeter of the coronoid system and the perimeters of the holes are pairwise disjoint. There are many
results on topological index of coronoid systems (Doi: 10.1080/10402020.1804415, 2020; 2021). We now
consider a special family of coronoid systems, denoted by K(n, p, r) (see Figure ??), which is formally
generated from polycyclic benzenoid systems by circumcising some interior atoms or bonds.

Let G be the K(n, p, r) coronoid structure with r ≥ 1, n ≥ 3 and 1 ≤ p ≤ n. Then

SO(G) = 4
√

13(2n + 4p + 3r − 6) + 3
√

2[3(3r − 2)(2p + n) + 9r2 − 15r + 16],

SOred(G) = 4
√

5(2n + 4p + 3r − 6) +
√

2[4(3r − 2)(2p + n) + 18r2 − 30r + 30],

SOavr(G) =
1

r + 1
[4
√

r2 + 1(2n + 4p + 3r − 6) +
√

2(1 + 6r)].

From the structure of K(n, p, r) coronoid structure, it is easy to see that there exists only (2, 2), (2, 3) and
(3, 3)-type of edges. Since m22(G) = 6, m23(G) = 8(2p + n) + 12(r − 2), m33(G) = 2(3r − 2)(2p + n) +
3(3r2 − 5r + 4), from Proposition , we have

SOa(G) = 4
√

2a2 − 10a + 13(4p+2n+3r−6)+6
√

2 · |2−a|+ |3−a| ·
√

2[2(3r−2)(2p+n)+3(3r2−5r+4)].

Thus
SO(G) = 4

√
13(2n + 4p + 3r − 6) + 3

√
2[3(3r − 2)(2p + n) + 9r2 − 15r + 16],

10
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. SOred(G) = 4
√

5(4p + 2n + 3r − 6) +
√

2[4(3r − 2)(n + 2p) + 18r2 − 30r + 30].

Since |V (G)| = 2(r + 1)(4p + 2n + 3r − 3), |E(G)| = (3r + 2)(4p + 2n + 3r − 3), we have 2 < d̄ = 3r+2
r+1 < 3.

Thus

SOavr(G) =
1

r + 1
[4
√

r2 + 1(2n + 4p + 3r − 6) +
√

2(1 + 6r)].

The proof is completed.

From Theorem 7, it is easy to obtain Corollary 7 and Corollary 7 as special cases. More precisely, we use
the previous theorem on K(2, 1, r) and K(2, 2, r) to compute the indices for r-circumscribed C32H16 and
C48H24 coronoid structures.

Let G be an r-circumscribed C32H16 coronoid structure (r ≥ 1). Then

SO(G) = 4
√

13(2 + 3r) + 3
√

2(9r2 + 21r − 8),

SOred(G) = 4
√

5(2 + 3r) + 2
√

2(9r2 + 9r − 1),

SOavr(G) =
1

r + 1
[4
√
r2 + 1(2 + 3r) +

√
2(1 + 6r)].

Let G be an r-circumscribed C48H24 coronoid structure (r ≥ 1). Then

SO(G) = 12
√

13(2 + r) + 3
√

2(9r2 + 39r − 20),

SOred(G) = 12
√

5(2 + r) + 6
√

2(3r2 + 7r − 3),

SOavr(G) =
1

r + 1
[12
√
r2 + 1(2 + r) +

√
2(1 + 6r)].

Carbon nanocones are conical structures, which are conceived as curved forms of graphite sheet obtained by
excising a wedge and subsequently joining the edges (see Figure ??). Carbon nanocones have a wide range
of applications, such as caping ultrafine gold needles, which attracted the attention of both theoretical and
experimental chemists. There are many results on topological index of carbon nanocones (2019; 2018).

Let G be the carbon nanocone structure CNCk(n) with k > 4 and n ≥ 1. Then

SO(G) = 2
√

13kn +

√
2k

2
(9n2 + 3n + 4),

SOred(G) = 2
√

5kn +
√

2k(3n2 + n + 1),

SOavr(G) =
kn

2

(
4

n + 1

√
n2 + 1 + 3

√
2

)
.

From the structure of carbon nanocone CNCk(n), it is easy to see that there exists only (2, 2), (2, 3) and
(3, 3)-type of edges. Since m22(G) = k, m23(G) = 2kn, m33(G) = kn(3n + 1)/2, from Proposition , we have

SOa(G) = 2kn
√

2a2 − 10a + 13 +

√
2k

2
[2 · |2− a|+ |3− a| · (3n + 1)n].

Thus,

SO(G) = 2
√

13kn +

√
2k

2
(9n2 + 3n + 4),

SOred(G) = 2
√

5kn +
√

2k(3n2 + n + 1).

11
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. Since |V (G)| = k(n + 1)2, |E(G)| = k(n + 1)(3n + 2)/2, we have 2 < d̄ = 3n+2
n+1 < 3. Thus

SOavr(G) =
kn

2

(
4

n + 1

√
n2 + 1 + 3

√
2

)
.

The proof is completed.

Let G be n-circumscribed one pentagonal carbon nanocone structure CNC5(n) with n ≥ 1. Then

SO(G) = 10
√

13n +
5
√

2

2
(9n2 + 3n + 4),

SOred(G) = 10
√

5n + 5
√

2(3n2 + n + 1),

SOavr(G) =
5n

2

(
4

n + 1

√
n2 + 1 + 3

√
2

)
.

figures/GN/GN-eps-converted-to.pdf

Figure 3: Differences between Sombor, reduced Sombor and average Sombor indices of GN(n, k).

It’s clear that E[SO(G)] > E[SOred(G)] > E[SOavr(G)] for graph G with only (2, 2), (2, 3) and (3, 3)-type
of edges. The graphical profiles of the comparison between Sombor, reduced Sombor and average Sombor
indices of graphene GN(n, k) or carbon nanocone structure CNCk(n) is give in Figure 3, ??. The numerical
comparison of the Sombor indices with respect to different types of K(n, p, r) coronoid structure is give in
Table 1.
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.

(n, p, r) SO(G) SOred(G) SOavr(G)
(3,1,1) 207.02 116.35 24.75
(3,1,2) 492.12 261.98 35.94
(3,1,3) 853.58 458.51 47.83
(4,2,4) 1759.79 929.34 79.64
(4,2,5) 2388.54 1278.61 92.29
(4,2,6) 3093.66 1678.80 104.80
(5,2,1) 373.31 210.53 47.38
(5,3,2) 970.66 505.07 71.72
(5,4,3) 1797.10 918.41 98.42
(6,4,4) 2696.53 1376.08 119.22
(6,4,5) 3554.38 1827.18 133.08
(6,4,6) 4488.60 2329.18 146.51
(9,5,7) 6852.57 3508.95 194.98
(9,6,8) 8748.16 4482.31 222.69
(9,7,9) 10872.85 5574.47 250.46

Table 1: Numeric differences for K(n, p, r)

Conclusion

In this paper, the expected values of Sombor index, reduced Sombor index and average Sombor index
have been determined for random hexagonal chains and random phenylene chains. Explicit formulae for
Sombor index, reduced Sombor index and average Sombor index of some chemical graphs such as graphene,
coronoid systems and carbon nanocones are given. And detailed comparisons between these indices with
respect to different chemical graphs have been determined explicitly. The structural characteristics of the
compound can be deduced from the topological index formulae, which provides a theoretical basis for drug
discovery and synthetic organic chemistry.
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