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Abstract

Atrial fibrillation (AF) is the most common heart rhythm disorder in adults and a major cause of stroke. Unfortunately,

current treatments for AF are suboptimal as they are not targeting the molecular mechanisms underlying AF. In this regard,

gene therapy is emerging as a promising approach for mechanism-based treatment of AF. In this review, we summarize recent

advances and challenges in gene therapy for this important cardiovascular disease.
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Abstract :

Atrial fibrillation (AF) is the most common heart rhythm disorder in adults and a major cause of stroke.
Unfortunately, current treatments for AF are suboptimal as they are not targeting the molecular mechanisms
underlying AF. In this regard, gene therapy is emerging as a promising approach for mechanism-based
treatment of AF. In this review, we summarize recent advances and challenges in gene therapy for this
important cardiovascular disease.
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ACh Acetylcholine

AF Atrial fibrillation

APD Action potential duration

CREM cAMP response element

Cxs Connexins

ERP Effective refractory period

GFP Green fluorescent protein

I CaL L-type Ca2+ current

I K1 Inward-rectifier K+ current

I KACh Acetylcholine-dependent K+ current

I KH Constitutively active form ofI KACh

NOX2 NADPH oxidase 2

RAP Rapid atrial pacing

ROS Reactive oxygen species

shRNA Short hairpin RNA

TASK-1 Tandem of P Domains in a Weak Inward Rectifying K+ Channel–Related Acid-Sensitive K+
Channel-1

Introduction

Atrial fibrillation (AF) is the most common heart rhythm disorder, with an estimated prevalence of 12.1
million individuals in the US alone by 2030.1 AF is a cause of significant morbidity and mortality, and
because the incidence of AF increases with age, it is fast becoming an epidemic worldwide.2,3 Despite its
clinical importance, AF is a difficult condition to treat. Current therapies for AF include anti-arrhythmic
drugs and ablation to electrically isolate the pulmonary veins.4 Ablation is mostly effective for paroxysmal
AF, with more limited efficacy in persistent AF, and is also associated with complications. Anti-arrhythmic
drugs have limited long-term efficacy and can be associated with significant adverse effects, including pro-
arrhythmia and effects on the nervous system.5

Given these challenges, researchers are actively investigating new treatments, including gene-based ap-
proaches to directly and specifically target the signaling pathways in the atrial myocardium that underlie
the creation of electrical and structural remodeling in AF. In the preclinical stage, promising results having
been obtained in animal models that parallel the electrical and structural remodeling seen in humans. While
gene therapy holds great hope to produce a highly effective and personalized treatment for a diverse range of
cardiac disorders, safe and successful clinical translation is in a nascent phase and therapies must be designed
with careful attention to an ever-expanding body of knowledge.

In this review, we will begin by discussing the current state and advances in gene transfer and gene-editing
technology, with a focus on the gene therapy vectors and methods for delivery of these vectors to the atrium.
We will then examine molecular targets based upon AF mechanisms. Further, we will discuss the potential
of novel AF mapping strategies to better target gene therapy delivery.
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. Overall strategies of Myocardial Gene Transfer

The overarching concept of cardiac gene therapy is simple: replace or remove a disease-causing gene at the
level of the myocardium, thereby eliminating a fundamental incipient for a given condition. In practice,
there is an array of selection criteria and obstacles to consider. For any gene therapy to be successful,
the gene(s) of interest must not only be delivered but also expressed at adequate concentrations in the
target tissue bed. The tools used to accomplish this gene transfer are known as vectors. The ideal vector
manifests tissue selectivity, low immunogenicity, adequate packaging capacity, and a durable level of gene
expression. To date, current vector options incorporate some, but not all of these attributes. Vectors can be
described in two broad categories: viral (gene transduction) and non-viral (transfection). Following selection,
the vector of choice may be delivered to the myocardium through a variety of techniques over a spectrum
of invasiveness and specificity. There is no single optimal combination of the above factors, rather, it is
necessary to understand the appropriate applications and limitations of each.

Gene Therapy Vectors

Non-Viral Vectors

Naked Plasmid DNA

While primarily used for in vitro gene transfer, plasmid DNA remains the most accessible tool for gene
transfer in vivo . Plasmids are circular DNA constructs that can be customized with a versatile combination
of transgenes and regulatory elements. Compared to other vectors, naked plasmids can hold significantly
larger quantities of genetic information.6,7 Plasmids are also easy to produce, with adequate infrastructure
for clinical-grade plasmids already in place.8 Naked plasmid DNA is non-immunogenic; while an immune
response can be mounted against the foreign transgene product, there is no immune response generated
against the plasmid itself.9 This lack of vector-directed immune response enhances safety and allows for
potential repeated administration of plasmid-based gene therapies.

However, naked plasmid alone transduces cells at therapeutically irrelevant levels,10 and enhancement with
transfection reagents is only marginally effective for gene uptake.11,12 Overcoming this limitation requires
select methods of administration, which will be discussed later in this review. In addition, plasmid DNA is
not integrated in the genome, leading to a limited duration of expression. Prolongation of this expression is
under investigation through numerous studies on select promotors. Our group has previously demonstrated
expression of a dominant-negative TGFβ II receptor under the control of a long-acting polyubiquitin C (UBc)
promoter for at least 3-4 weeks in a canine heart failure model of atrial fibrillation.13 Similarly, intermediate
term gene expression has been demonstrated by others in murine myocardium, bone, skeletal muscle, and
lung.14-18 While long term data has yet to be reported, the option of repeated rounds of plasmid gene therapy
could compensate for loss of transgene expression over time.

Nanoparticles

Another choice of non-viral vector for myocardial gene transfer are nanoscale liposomes. Lipid-based nanopar-
ticles offer biocompatibility, good cellular uptake, and can be deployed with targeting ligands to enhance
tissue specificity. The liposomal delivery mechanism for small molecule drugs is already in clinical use as a
chemotherapeutic vehicle, and lipid-based nanoparticles containing a genetic construct have a demonstrated
ability for transducing cardiac cells.19,20 However, off-target tissue effects may still be encountered when
nanoparticles are administered via systemic circulation, and charged lipid particles are subject to rapid
clearance by the reticuloendothelial system. Future advances in liposomal stability, distribution, and release
offer potentially exciting avenues for cardiac gene delivery.20,21
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Another non-viral vector, modified-mRNA (modRNA)

In the early 1990s, mRNA was successfully delivered to brain and skeletal muscle.22,23 However, the use
of mRNA as gene delivery vector to mammalian tissue did not evolve since then. This is mostly due to
mRNA induced innate immune response via stimulation of Toll-like receptors.24 Furthermore, mRNA is
likely cleaved by RNase in vivo.24 In 2005, Dr. Katalin Karikó, who contributed to recent development of
COVID-19 mRNA vaccine, demonstrated that modifying mRNA’s secondary structure by replacement of
uridine with pseudouridine prevented innate immune system recognition and RNase degradation.25

Compared to DNA vectors, modRNA has advantages and disadvantages as a gene delivery tool. One ad-
vantage is that mRNA does not require localization of nucleus or transcription process. modRNA gene
delivery has minimal risk of integration into the host genome.26 modRNA has been shown to be highly
efficient with robust transient expression with no sign of innate immune response.27 ModRNA is translated
within minutes and lasts up to 10 days in vivo.28 The use of modRNA in heart is mainly for myocardial
ischemia/reperfusion injury in ventricle because of its transient pharmacokinetic profile.29,30Disadvantages
of modRNA are unstable modRNA generation and the need for repeated delivery due to its short expression
pattern. To date, modRNA has not been tested in AF treatment yet. If translation efficiency of modRNA is
improved, modRNA can be another non-viral vector for AF.

Viral Vectors

Viral vectors are live, replication deficient viruses which have been genetically modified to replace the native
viral genes with therapeutic transgenes. Any cell that the vector infects integrates the transgene payload
to produce or inhibit a genetic product. Compared to non-viral plasmids which must be delivered directly
to the tissue of interest, viral vectors have the theoretical advantage of minimally invasive delivery via the
bloodstream. There are three main types of viral vectors used today in gene therapy, though the Adeno-
associated virus (AAV) is currently best suited for cardiac gene therapy.

Adeno-associated virus (AAV)

First isolated as an unrelated contaminant in adenovirus samples, AAV is a non-enveloped, non-integrating
single-stranded DNA parvovirus. AAV emerged as a focus of gene therapy vector development due to low
immunogenicity, potential for long duration of expression, and a robust safety profile.31-33 AAV is capable
of durable, possibly life-long transgene expression in vivo : no upper limit to duration of expression has
been determined, with numerous studies showing transgene expression years after a single administration.
Notably, AAV alone is incapable of productive replication and requires coinfection with a helper virus, usually
adenovirus or herpesvirus. The lack of self-replication machinery increases the safety of AAV, but also limits
the size of its genome to about 4.7kb.

The primary AAV serotypes are AAV 1-9. While more serotypes and variants have been characterized and
silent infection is highly prevalent in humans, no associated pathogenicity has been identified.34 Each serotype
has a distinct capsid protein sequence correlating to variable tissue tropism, with AAV serotypes 1, 6, 8,
and 9 exhibiting the highest cardiac tropism.35,36 By engineering the makeup of the viral capsid proteins,
it is possible to generate novel, chimeric AAVs with improved transduction efficiency and tropism in rodent
models.37-39 Tissue specificity can also be achieved with the use of site specific promoters to drive transgene
expression only in the atria.40 While transduction efficiency is often more limited in scale-up from rodent to
large animal models, these emerging strategies are accompanied with recent FDA-approval for non-cardiac
gene therapies and a number of clinical trials utilizing an AAV vector.41-43

The primary disadvantage of AAV vectors is limited transgene size. When including a cardiac-specific pro-
moter, many transgenes exceed the maximal size for an AAV construct. Additionally, a clinical effect may
be delayed as gene expression requires conversion of the single-stranded viral genome to the double stranded
host genome.44AAV-mediated gene therapy is further hindered by the potential pre-existing neutralizing
immune response generated against AAV capsid proteins, described in further detail in a following section.
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Adenovirus (Ad)

The wild-type Ad is a non-enveloped, non-integrating double stranded DNA virus, ubiquitous in the envi-
ronment and one of the causative agents of the common cold. Ad vectors are simple to produce, transduce
both dividing and non-dividing cells with high efficiency, and have a packaging capacity for moderate sized
genes.45However, in the heart, gene expression after Ad vector transduction is robust but transient and Ads
can trigger a strong innate immune response and toxicity due to viral gene products.46 The use of Ads came
into serious question in 1999 after the death of a patient with ornithine transcarbamylase deficiency due to
a massive immune response following injection of Ad vector.47

Recombinant modifications have given rise to first, second, and third-generation Ad vectors, with key im-
munogenic components deleted. These vectors show promise for evading the host immune response and
producing a prolonged gene expression, but are more difficult to produce.48

Lentivirus (LV)

Lentiviral vectors are enveloped, integrating, single-stranded RNA retroviruses42. In gene therapy, LV vectors
are usually derived from the HIV-1 virion, modified to be replication-defective to safeguard against off-target
continued infection.49,50 Retroviral vectors typically require active cellular division to integrate and express
a transgene, but the machinery of HIV conveys an ability to transduce intact nuclear membranes in post-
mitotic cells (such as cardiomyocytes), and accomplishes long-term gene expression with moderate packaging
capacities.51-53 Despite this attractive profile for efficacy, the LV apparatus of random genome integration
with a preference for coding regions poses a clinical safety precedent for oncogenic transformation.34,48

While terminally differentiated cardiomyocytes pose a lower mutagenic risk than mitotically active tissues,
the safety and efficacy of lentiviral vectors for cardiac use have yet to be demonstrated in clinical trials.

Immunogenicity of Viral Vectors

The promise of viral vectors is inseparable from the perennial obstacle of inherent immunogenicity. Viral
capsids are targets for the innate and humoral immune responses, and foreign transgene products can trig-
ger the adaptive immune response. Adenoviruses are most notoriously associated with immune provocation,
resulting in declining use following adverse events in previous clinical trials.54 Though the advent of AAV-
mediated gene therapy has alleviated many of the safety concerns associated with the use of viral vectors,
AAV infections are silently endemic to many human populations. A geographically variable but significant
percentage (20 – 60%) of humans are predicted to have pre-existing neutralizing antibodies (NAbs) against
one or more AAV capsids, rendering AAV-mediated treatments ineffective.55,56 Furthermore, in näıve pati-
ents, initial exposure to an AAV therapy results in generation of NAbs against the AAV capsid, eliminating
the potential for readministration of AAV vector-mediated gene therapy.57 A complete understanding of the
significance of AAV NAb titers and cross-reactivity between serotypes has yet to be established, posing a
challenge for clinical study enrollments. Lentiviral vectors possess an advantageous ability to mostly evade
the host immune system, however, the foreign transgene product itself can still incite an immune response
and subsequent suppression. These altered proteins, while therapeutic, can present to the adaptive immu-
ne system as a potent neo-antigen. In an effort to overcome these sophisticated, protective host defenses,
immunomodulation at the time of vector administration is an area of active research.58

Gene Delivery to the Atrial Myocardium

A well-administered vector achieves homogeneous delivery at the affected tissue bed and demonstrates mini-
mal accumulation at off-target sites. Vectors can be administered by a wide variety of techniques, but often
with an inverse relationship between simplicity and specificity. Route consideration is imperative for patient
safety and gene efficacy, and represents an area under active research in parallel with the vector itself.

5
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Intravenous administration (IV)

The least invasive method of administration is intravenous injection of the vector. While IV exposure should
offer rapid transit to any well-vascularized target tissue, it is also the least specific route. Upon entering the
intravascular compartment, the vector will be systemically dispersed and the tissue beds will be exposed in
accordance with the blood flow to each site. AAV and nanoparticle studies have shown that numerous off-
target organs, particularly the liver, are transduced following IV administration. This effect poses a clinically
relevant concern for decreased efficacy and increased toxicity. To overcome this biodistribution obstacle, site-
directed vector engineering including AAV capsid chimerism and nanoparticle targeting ligands may improve
specificity and potency.21,38

Cardiac perfusion

The common and well-refined clinical practice of coronary artery catheterization offers intracoronary perfusi-
on as a minimally-invasive modification of IV administration. In this form of delivery, the cardiac vasculature
is selectively isolated and perfused with the vector to maximize the potency of a single administration. While
the vector still enters the systemic circulation, the cardiac tissues encounter the vector prior to attenuation by
dilution or hepatic uptake. However, this high tissue dose is limited by permeability of the coronary endothe-
lium and rapid blood flow clearance through the coronary circulation. These two factors are thought to have
contributed to the negative outcome of the CUPID2 trial (AAV1/SERCA2a coronary injection in patients
with heart failure).59,60 Vascular permeability enhancers (substance P or thrombin) can be co-administered
with a vector to enhance myocardial exposure, although any interference with the coronary arterial tree
carries the risk of ischemia and could be unacceptable for patients with pre-existing cardiac disease.34,61

Retrograde infusion via coronary sinus injection may provide a myocardium-targeted approach without the
ischemic risks or patient selection criteria of intracoronary techniques. Here, controlled infusion of the venous
structures in the setting of obstructed outflow increases the capillary pressure gradient and drives the vector
material into the tissue beds. Exposure time can be prolonged, as distribution is not dependent on arterial
flow and the coronary sinus occlusion can be safely tolerated for an extended duration. Large animal studies
have demonstrated efficacy for both drug and gene delivery utilizing this technique.62-64 While coronary
sinus cannulation is generally safe and commonly practiced in routine procedures, trauma to the delicate
cardiac veins and myocardial edema are potential complications and necessitate careful injection pressure
regulation.34

Epicardial gene painting

Epicardial gene painting combines a vector with a protease and a polymer-forming gel to create a “paintable”
gel that can be directly applied to the atrial epicardium.65 Once applied, the polymer vehicle solidifies at
body temperature and provides a substrate for strong adsorption of the vector to the tissue bed. The protease
component of the paint facilitates transmural gene transfer in the thin atrial myocardium.66

Gene painting is safe and effective in animal models with no significant impact on atrial structure or
function.65,67 Though epicardial gene painting can yield homogenous and transmural transduction, the pri-
mary drawback is the invasiveness of the surgical procedure required to achieve epicardial access. In addition,
structures that are difficult to access via the epicardium (posterior left atrium and pulmonary veins) may
preclude delivery to the entire atria, and misapplication of the paint could theoretically result in unintended
transmural gene delivery to the ventricle.

Direct myocardial injection with or without reversible electroporation

As a simple and well-studied method, direct injection of vector into myocardial tissue has been extensively
explored as a route of administration. Through a surgical approach, the vector can be precisely injected and
an intense concentration of gene expression can be achieved. However, gene expression is highly localized to

6
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within a few millimeters of the injection site. In this way, injection-mediated delivery to a large area of the
myocardium is technically challenging and inefficient.68

Following direct injection, naked plasmid DNA gene therapy vectors require subsequent electroporation for
effective myocardial transfection.13,69,70 Electroporation acts by subjecting cells to synchronized electrical
pulses, resulting in a transient electrical gradient that alters the structure of cell membranes and forms
micropores at the cell surface. These micropores enable diffusion of surrounding plasmid into electroporated
cells. The rate of gene uptake in vivo is 15-20 fold higher when electroporation is used versus standard
plasmid DNA delivery alone.71 Irreversible electroporation is a developing procedure used in clinical cardiac
electrophysiology to ablate specific regions of the myocardium.72 Modification of pre-existing irreversible
electroporation techniques and equipment to reduce delivered current from an electroporation device could
be used to transduce the myocardium with plasmid DNA.

Targets for Gene Therapy

Effective gene therapy aims to identify and counteract AF mechanisms originating from or kindled by a
genetic element.73Two principal driving mechanisms of AF are focal ectopic firing and re-entry. Both of
these mechanisms are dependent on electrical and structural remodeling, autonomic nerve remodeling and
Ca2+-handling abnormalities.74Electrical remodeling is typically characterized by shortening of the atrial
action potential duration (APD) through a decrease in the L-type Ca2+ current and an increase in the
inward-rectifier current (I K1), and the emergence of constitutively active acetylcholine induced potassium
current (I KACh).2 Structural remodeling results in left atrial enlargement, atrial fibrosis, and gap junction
remodeling, culminating as slow and heterogeneous conduction.75 In this review, we will limit ourselves to
the current state of mechanistic targets utilizing aforementioned gene therapy vectors.

Ion channels

Ion channels have long been a pharmacologic target for rhythm management, so it follows that gene the-
rapy would pursue a similar path. Indeed, transfection of plasmid containing a clarithromycin-responsive
variant of KCNE2 (Q9E), encoding the IKr regulatory subunit, hMiRP, lead to prolongation of the APD
by administration of clarithromycin 2 weeks later.76 Epicardial gene painting of adenovirus containing a
dominant-negative variant of KCNH2-G628S (encoding alpha subunit of IKr) resulted in APD prolongation
and reduction of AF burden and inducibility in a porcine model of AF.77Similarly, Soucek et al. confirmed
prolongation of APD with myocardial injection and electroporation of adenoviruses expressing same KCNH2
variant in a canine model of AF.78 Genetic suppression of TASK-1 (Tandem of P Domains in a Weak In-
ward Rectifying K+ Channel–Related Acid-Sensitive K+ Channel-1; K2P3.1) through transfection of AAV
containing atrial anti–TASK-1 siRNA lead to reduction of expression of TASK-1 and prolongation of atrial
APD and refractoriness.79

Ca2+ handling proteins

Abnormal sarcoplasmic reticulum (SR) Ca2+ leak via the ryanodine receptor type 2 (RyR2) has been des-
cribed in atrial cardiomyocytes from AF patients and in various AF models.80,81 This disruption in calcium
handling contributes to ectopic atrial activity and is implicated in the progression from paroxysmal to per-
sistent AF. Phosphorylation at the residue site S2814 was shown to promote AF in mouse models, with mice
harboring a phospho-resistant RyR2 form (S2814A) exhibiting a reduced susceptibility to AF.82,83 This was
demonstrated across two different mouse models of atrial arrhythmias: 1) mice lacking the RyR2-stabilizing
subunit FKBP12.6, which causes spontaneous Ca2+ waves and leads to a higher incidence of spontaneous and
pacing-induced AF; and 2) mice exhibiting cardiac overexpression of the transcriptional repressor CREM-
IbΔC-X (CREM-TG), which leads to atrial myopathy and spontaneous AF that progresses from paroxysmal

7
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to persistent. Given these findings, gene therapy integrating a phospho-resistant form of RyR2, such as
RyR2-S2814A may be indicated as a clinical target of interest.

Calmodulin (CaM) is an important regulator of RyR2. When bound to Ca2+, CaM contributes to inactiva-
tion of RyR2. This regulatory property was investigated in a mouse model of catecholaminergic polymor-
phic ventricular tachycardia (CPVT), a syndrome where shortened refractoriness of RyR2 plays a dominant
role.84,85 Liu et al. engineered a form of CaM with slowed Ca2+ dissociation (CaM M37Q, or therapeutic
T-CaM).86 They showed that injection of AAV9 T-CaM attenuated diastolic Ca2+ waves and prevented
ventricular tachycardias in a calsequestrin-associated mouse model of CPVT. It is conceivable that gene
therapy with T-CaM in the atria would attenuate the SR Ca2+ leak, and may therefore reduce atrial triggers
and progression from paroxysmal to persistent AF.

Autonomic nerve remodeling

The atria are highly innervated by the autonomic nervous system. Vagal stimulation results in shortening
of the atrial effective refractory period (ERP) and increased vulnerability to AF.87Acetylcholine (ACh) re-
leased from parasympathetic nerves activates muscarinic type 2 receptors which interact with heterotrimeric
G proteins: the Gαi/o subunits subsequently inhibit adenylate cyclase protein kinase, and the Gβγ subunit
activates IKACh.88 Despite the apparent importance of the autonomic nervous system in AF, drug therapy
studies using β-blockers and selective IKACh blockers have shown modest success.89,90 Donahue et al. pio-
neered gene therapy targeting specific components of the G-protein autonomic pathway in the pig AV node
as a rate control strategy for ventricular response in AF. In the study, an adenoviral vector encoding for
the G-protein alpha inhibitory subunit 2 (Gαi2) was delivered in the AV node of pigs, thereby mimicking
increased vagal tone. There was a substantial increase in the local expression of Gαi2 and a slowing of
conduction through the AV node.91Similarly, Murata et al. overexpressed the ras-related small G-protein
GEM in ovine AV node and showed slower conduction through AV node and reduction of overall heart
rate during AF. 92Conversely, another approach to AF rate control is the knockdown of the stimulatory
G protein α subunit (Gαs), which mimics beta-blockade. Lugenvil et al. found that genetic inhibition of
Gαs protein using adenovirus containing siRNA against Gας in the AV node reduced heart rate by 20% and
prevented AF-associated cardiac dysfunction in a porcine model.93 Our group also targeted of vagal signaling
in the left atrium by inhibiting Gαi and Gαo in canine models.94 Here, injection of plasmids encoding the
inhibitory peptides of Gαi and Gαo to multiple sites in the posterior left atrium (PLA) lead to attenuation
of vagal-induced shortening of ERP and diminished AF inducibility during vagal stimulation.94

Gap Junction remodeling

Connexins (Cxs) are subunit transmembrane proteins that oligomerize to construct a connexon, composed
of six Cxs. Gap junctions are formed as the connexons of two neighboring cells dock together, permitting
direct cell-cell communication and bidirectional passage of ions and small molecules up to 1 kd.95 Reduced
expression or abnormal localization of Cx40 and Cx43 are associated with impaired electrical conduction in
the atrium and an increased risk of developing AF.96,97 Accordingly, gene transfer of both of these connexins
using an epicardial painting approach significantly improved expression and localization of the proteins,
and was associated with improved conduction and a reduction in arrhythmia burden in a porcine model of
AF.98 A separate study of Cx43 alone in the same type of model resulted in similar findings, with a marked
reduction in the development of persistent AF.99

Structural remodeling

Atrial fibrosis is also a well-known factor in the pathogenesis of AF, and may explain the increasing prevalence
of this arrhythmia with age. A central feature of age-related fibrosis is up-regulation of transforming growth
factor (TGF)-β.100 The PLA has been found to play an important role in the maintenance of AF due to
increase in susceptibility to fibrosis and inhomogeneous conduction.101
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Our group evaluated the effect of a transgene that interferes with TGF-β signaling on structural remodeling
in the PLA. Injection of a minigene expressing a dominant-negative type II TGF-β receptor in the PLA of
a canine HF model of AF resulted in decreased fibrosis and reduction in pacing-induced AF in the treated
animals.13

Inflammation/Oxidative injury

AF is a multifactorial disease and there is an ample evidence supporting the involvement of inflammation and
oxidative injury in the pathophysiology of AF.102,103 Inflammatory processes have been shown to affect the
electrical and structural properties of the atria.104 The importance of the NLRP3 (NACHT, LRR and PYD
domains-containing protein 3) inflammasome in the development of AF was recently established. The activity
of NLRP3 inflammasomes is altered not only in patients with AF but also in canine RAP model and in a
murine model of spontaneous AF (CREM-TG mice), suggesting a major role for NLRP3 inflammasome in
AF pathophysiology in the context of different pathologies. Yao et al. found that pharmacological inhibition
by MCC950, an AAV9-mediated shRNA delivery to knockdown NLRP3, or genetic inhibition by NLRP3
knockout prevented the development of AF.105

Oxidative injury results from the imbalance between the generation and neutralization of reactive oxygen
species (ROS), is a major contributor for AF and a possible therapeutic target.106,107 ROS generated in
the cardiovascular system are primarily derived from NADPH oxidase (NOX), mitochondrial electron trans-
port chain, xanthine oxidase and uncoupled nitric oxide (NO) synthase.108,109Despite considerable evidence
that ROS play an important role in the generation of AF, clinical trials using conventional antioxidants for
post-operative AF have been unsuccessful,110,111likely because antioxidants do not reach sufficient, local-
ized concentrations to overcome kinetic limitations and allow for scavenging of highly reactive free radical
species.112 Our group recently demonstrated a clear causative role of NOX2-generated oxidative injury in
the genesis as well as the maintenance of AF. We showed that oxidative injury contributes to electrical re-
modeling in AF by upregulating a constitutively active form of acetylcholine-dependent K+ current (I KAch)
– calledI KH - by a mechanism involving frequency dependent activation of protein kinase C epsilon (PKCε).
Injection and electroporation of plasmids expressing shRNA against NOX2 in the atrium of a canine AF
model not only delayed the time to onset of non-sustained AF more than 5 fold but also prevented the
development of sustained AF for up to 12 weeks.113

Apoptosis

Apoptosis is associated with inflammatory pathways which contribute to electrical and structural remodeling
in AF.104Downregulation of caspase-3 in canine AF model indicated association of apoptosis with AF via
inhibition of calpain, a intracellular Ca2+ activated protease.114 Genetic knockdown of caspase-3 by transfer
of adenovirus containing siRNA against caspase-3 suppressed or delayed the onset of persistent AF by
reduction in apoptosis and prevention of conduction delay in porcine model. 115

MicroRNAs are a class of endogeneous non-coding small RNAs that are becoming more recognized to play an
important role in pathogenesis of AF. Zhang et al. examined differential expression of miRNA in ganglionic
plexus of a canine AF model and found expression of miR-206 was elevated 10 fold and lentiviral infection of
miR-206 resulted in repression of superoxide dismutase-1 (SOD-1).116 Anti-miR-206 infection with lentiviral
vector, thus, lead to prolongation of ERP and reduction of AF inducibility.116

9
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. Future Gene Therapeutic Solutions

Targeted Delivery of Gene Therapy Using Activation Mapping and Imaging

Since the description of the role of structural remodeling in AF, there has been increasing research on atrial
fibrosis in the pathophysiology of AF.117 Imaging methods have been developed to detect, localize, and
quantify atrial fibrosis, which correlated with outcomes such as stroke and recurrence of AF.118,119In vivo
activation mapping methods may allow targeted therapy of AF-specific mechanisms and may detect atrial
substrates and mechanisms initiating and/or maintaining AF.120,121 Advances in percutaneous catheter-
based techniques with fluoroscopic and electroanatomic guidance should allow a less invasive, transendocar-
dial gene delivery. Importantly, electroanatomical mapping may be useful to allow clear delineation of the
region of interest and targeted deployment of the therapeutic product.122 This could be applicable not only
in the ventricle (i.e. in the presence of chronic ischemic heart disease and subacute myocardial infarction)
but also in the atria (i.e. targeting focal structural or electrical remodeling).

Conclusion

This review article summarizes current gene therapy strategies for the treatment of atrial fibrillation. Further
development of gene therapy for this condition is encouraged by the limited efficacy of pharmacological and
catheter-based therapies for AF. While AF remains a complex and heterogeneous clinical entity, gene therapy
targeting multiple signaling pathways show very promising results in pre-clinical models. Improved longevity
of vectors and expansion of targeting and delivery of vectors may lead to the development of effective and
long-lasting treatment for AF.
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