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Abstract

Equipped with complex terrain structure, physical models provide an alternative way in understanding and
modeling how critical zone shapes hydrologic processes in headwaters for hydrology research and education.
However, this type of physical models is limited by frustrating rain-erosion or gully-erosion. Herein, the
technique of permeable bricks with cementation property that can help to solve the soil backfilling problem
was adopted to construct a physical model with complex terrain. Through material tests for different
aggregate-cement ratios, we found that saturated hydraulic conductivity (Ksat) of samples is well correlated
with bulk density (BD), e.g., the correlation coefficient (R?) is as high as 0.75 between Ksat and BD. Then,
the test material selected was applied as a soil alternative in the physical model in which two artificial soil
layers have been designed through altering BD. Additionally, the non-uniform scaling of terrain was applied
for the convenience of teaching, and it was constructed by reducing a steep 0.31-ha zero-order basin to 1/130
in horizontal direction and 1/30 in vertical direction. Multiple observation items, e.g., shallow groundwater
level, soil moisture content, subsurface and surface runoff, etc., could provide potential opportunity to explore
the role of soil and terrain in modulating streamflow. We’d like to share this effective tool to facilitate the
research works of critical zone science and enrich experimental teaching methods.



Description

Critical zone structures e.g., topography, soil and bedrock, are the first-order control in shaping runoff
generation in headwater catchments (Zimmer et al., 2017; Harman & Kim, 2018; Anderson et al., 2019;
Liu et al., 2019; Fan et al., 2020). But the critical zone beneath our feet, where subsurface flow moves, is
invisible, and until recently, it is still an inaccessible and unknown world (Grant & Dietrich, 2017). The
reason is mainly that the underlying surface of the watershed has huge heterogeneity at different scales.
Meanwhile, it is hard to characterize subsurface flow path of transient runoff (Weiler et al., 2006). This
explains why classroom teaching and short-term field trips are difficult to reproduce runoff formation in the
critical zone at a glance view.

Contrary to field research, physical model is a practical means for theoretical verification and law discovery
(Black, 1970; Etkina et al., 2002). Particularly, the fully controlled models with expected terrain and soil
properties may have great potential to deepen our recognition of critical zone (Kleinhans et al., 2010). To our
knowledge, soil trough with variable slopes has been widely accepted to investigate hydrological processes by
many hydrologists. For example, the slope-variable soil trough in Hohai University comprises two contrast
tanks to study the effects of vegetation cover on the runoff response (Song & Wang, 2019). In contrast
to above soil troughs without considering plane shape, LEO is more favored by scholars for its convergent
topography (Hopp et al., 2009; Gevaert et al., 2014). Even LEO is only a simple morphology, how to model
the functions and structures of real-world catchments have been still a key difficulty for physical model
developments. Since, as reported by Gevaert et al. (2014), the structures as well as functions can be ruined
by an unintended gully erosion through a single heavy rainfall. And numerous studies have also shown that
erosion of backfilling soil, caused by rainfall and overland flow, is a very common phenomenon in laboratory
experiments (Bryan & Luk, 1981; Jomaa et al., 2010; Ran et al., 2012). This grand challenge is inhibiting
physical models from developing variable and desired morphologies that reflect complex characteristics of
critical zone.

To further facilitate education and research about the role of critical zone, a physical model with complex
terrain has been built. The key of the model is to abandon the traditional backfilling soil and then seek for
permeable material. Currently, permeable bricks made of fine aggregate (sand), coarse aggregate (gravel)
and cement have been widely used for pavements to allow rainwater to quickly seep into the underground in
the field of Low Impact Development (LID) (Dietz, 2007; Ahiablame et al., 2012; Eckart et al., 2017). The
aim of the permeable materials is not only to strengthen the capability of infiltration, but also to enhance
compressive strength and bending strength at the same time (Nishigaki, 2000; Poon & Chan, 2005; Debnath
& Sarkar, 2019). Their maximum water holding capacity is about 13% (Wang et al., 2018), far smaller than
that of the natural soils. Generally, the saturated hydraulic conductivity (Ksat) of materials is about one
to three orders of magnitude higher than that of the natural soil (Wu et al., 2016; Zhou, 2018; Tang et al.,
2019) for the reason that its principal particle components are far coarser than those of the natural soils.
According to the suggested ratios, aggregate accounting for about 70% of total volume of concrete (Cai et
al., 2018) and water cement ratio ranging from 0.3-0.4 (Debnath & Sarkar, 2019; Rahmani et al., 2020) were
used in this study. But the fine aggregate ratio is increased to about 0.8 for weakening the permeability.
Three cases with different aggregate cement ratios were tested by altering the bulk density of the mixed
material (Tab. 1). Ksat was selected to be the only hydraulic indicator because it plays the key role in the
seepage process (Chapuis, 2012). According to the test results (Fig. 1), the permeability of the materials
matches that of the natural soil closely, while the field moisture capacity (FMC) is close to loam according
to Field Estimation of Soil Water Content (2008). In addition, it is found that Ksat and FMC are both well
correlated with bulk density (BD) in these three cases. In other words, the values of Ksat and FMC can be
controlled through changing BD values of the mixed materials. Finally, the fitting curves in Case 2, i.e., the
stronger nonlinear correlation (R?=0.75) between Ksat and BD (Sriravindrarajah et al., 2012; Kevern et al.,
2014; Debnath & Sarkar, 2019), were adopted.

The prototype of the physical model is a steep 0.31-ha zero-order basin (hereafter referred to as H1), which
is located within the Hemugiao Hydrological Experimental Stational Station (30°34’ N, 119°47’ E; 135 ha)



in Taihu Basin in southeastern China (Han et al., 2020). For the convenience of teaching and construction,
the horizontal scale ratio between the model and H1 is 1:130 and the vertical scale ratio is 1:30. The exact
measurements of the employed physical model are 6.2 m (length) x 3.9 m (width) x 2 m (height) (Fig. 2a).
The model is located in a meteorological observation field for hydro-meteorological education. The model
mainly comprises impermeable layer paved by concrete and two artificial soil layers (Fig. 2b). These two
artificial soil layers were made of a selected material according to the relationship of Ksat-FMC-BD (Fig.
1b). The two artificial soil layers are filled homogeneously, whose thickness ratio between the upper and
lower layers are consistent with the prototype, and the thickness are 8 cm and 24 cm, respectively. The
corresponding Ksat values are 1.4 mm/min and 0.2 mm/min, which are approximately the average values
of the upper and lower soils in H1. However, the FMC values in the upper and lower layers are around 20%
and 14%, of which the lower value is 18% less than real-world value. The reason is that the proportion of
the components in the selected material stays the same but clay content in the lower soils in H1 is increased.
Over the artificial soil layers, fake turf was paved for the case of raindrops splashing down and direct sunlight
(Fig. 2b).

In the physical model, various processes in both natural and artificial rainfall-runoff events can be monito-
red (Fig. 2c&d). For the purpose of education and research, four projects have been established. First, 12
groundwater wells are set to observe how free water changes at different locations on the hillslope model,
how the wells respond to rainfall process, and how topography and media affect the storage and discharge
of free soil water (McMillan & Srinivasan, 2015; Han et al, 2020). Second, in order to understand changes of
soil temperature and moisture content, TDR probes are vertically inserted into the upper artificial soil layer.
Third, at the outlet (Fig. 2d), there is a weir (Han et al., 2016) that can simultaneously observe surface and
subsurface runoff. Finally, two cameras are used to cover all possible positions that generate runoff during
rainstorms.

We usually present the physical model at natural rainfall events. After a rainfall-runoff event, the maintainer
could be asked to collect all data. Then the continuous time series would be stored for hydrological charac-
teristic analysis of the model. In summary, it provides us with an efficient tool to identify the role of critical
zone structures in shaping streamflow. The artificial soil has controllable hydraulic properties for permeable
layers in the model, which is of potential to replace the real-world soils. More importantly, compared to the
backfilling soil, it resists erosion and is not easy to deform so as to promote the development of the physical
models with complex terrain.
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Mass proportion % Fine Aggregate

Case ‘Water Cement Ratio ~ Aggregate Cement Ratio
Coarse Aggregate  Fine Aggregate ~ Cement  Water Ratio
1 105 474 31.6 105 0.33 1.83 0.82
2 10.5 44.7 343 105 0.31 1.61 0.81
3 105 4.1 36.9 105 0.29 143 0.80

*The raw materials used are fine aggregate with a particle size of 0.5 to 1.5 mm, composite portland cement with strength class 32.5, and crushed

stones or coarse aggregate with a particle size of 0.5 to 1.5 cm. Fine aggregate ratio = mass of fine aggregate/(mass of fine and coarse aggregate).
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