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Well known Dirichlet series include:
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If we define the inverse Dirichlet transform to map like
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then we can track less standard variations by creating ratios of zeta functions:
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Consider the duality of ((s) — I'(s) with inverse Mellin transform...




Dirichlet Shift Operator

We could consider an operator O~ (O™) which shifts the argument of a zeta function by —1 (+1). Then use
something like the product and quotient rules, to define this on Dirichlet generating functions
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we can then define the 'number theoretic derivative’ of a function for this latter one we appear to have
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where clearly, we have every prime, dA(p) = 1 — p, this is nice. We have depending on definition
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where H(n) = 1 unless n = 9,16,18...7, and 2 otherwise. It seems that
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then there is the convolutions
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noting that o_1(n) = o1(n)/n, also then
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By thinking carefully about the linearity of derivatives and implying the § is a linear operator, then we can

easily show that

for all integer k. In fact in general

A stunning result appears to be
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Further Operators

Consider the operator

such that a factor of {(s) is applied, the derivative taken, and then the factor removed.

therefore

we also have

where P(k) is A018804(k).
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We can consider more complicated operators
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which implies
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Kernel Guided Transform

For the Lambert transform we have the nicve property that
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where the relationship is
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but we can generalise this by realising that
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where
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generates a new transform, we then know for k(n) = 1, we have the Lambert transform.

Ratio of sigma
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